1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
//! Candidate assembly.
//!
//! The selection process begins by examining all in-scope impls,
//! caller obligations, and so forth and assembling a list of
//! candidates. See the [rustc dev guide] for more details.
//!
//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
use std::ops::ControlFlow;
use hir::def_id::DefId;
use hir::LangItem;
use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
use rustc_hir as hir;
use rustc_infer::traits::{Obligation, ObligationCause, PolyTraitObligation, SelectionError};
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::{self, ToPolyTraitRef, Ty, TypeVisitableExt};
use rustc_middle::{bug, span_bug};
use tracing::{debug, instrument, trace};
use super::SelectionCandidate::*;
use super::{BuiltinImplConditions, SelectionCandidateSet, SelectionContext, TraitObligationStack};
use crate::traits;
use crate::traits::query::evaluate_obligation::InferCtxtExt;
use crate::traits::util;
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
#[instrument(skip(self, stack), level = "debug")]
pub(super) fn assemble_candidates<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
let TraitObligationStack { obligation, .. } = *stack;
let obligation = &Obligation {
param_env: obligation.param_env,
cause: obligation.cause.clone(),
recursion_depth: obligation.recursion_depth,
predicate: self.infcx.resolve_vars_if_possible(obligation.predicate),
};
if obligation.predicate.skip_binder().self_ty().is_ty_var() {
debug!(ty = ?obligation.predicate.skip_binder().self_ty(), "ambiguous inference var or opaque type");
// Self is a type variable (e.g., `_: AsRef<str>`).
//
// This is somewhat problematic, as the current scheme can't really
// handle it turning to be a projection. This does end up as truly
// ambiguous in most cases anyway.
//
// Take the fast path out - this also improves
// performance by preventing assemble_candidates_from_impls from
// matching every impl for this trait.
return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
}
let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
// Negative trait predicates have different rules than positive trait predicates.
if obligation.polarity() == ty::PredicatePolarity::Negative {
self.assemble_candidates_for_trait_alias(obligation, &mut candidates);
self.assemble_candidates_from_impls(obligation, &mut candidates);
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
} else {
self.assemble_candidates_for_trait_alias(obligation, &mut candidates);
// Other bounds. Consider both in-scope bounds from fn decl
// and applicable impls. There is a certain set of precedence rules here.
let def_id = obligation.predicate.def_id();
let tcx = self.tcx();
if tcx.is_lang_item(def_id, LangItem::Copy) {
debug!(obligation_self_ty = ?obligation.predicate.skip_binder().self_ty());
// User-defined copy impls are permitted, but only for
// structs and enums.
self.assemble_candidates_from_impls(obligation, &mut candidates);
// For other types, we'll use the builtin rules.
let copy_conditions = self.copy_clone_conditions(obligation);
self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::DiscriminantKind) {
// `DiscriminantKind` is automatically implemented for every type.
candidates.vec.push(BuiltinCandidate { has_nested: false });
} else if tcx.is_lang_item(def_id, LangItem::AsyncDestruct) {
// `AsyncDestruct` is automatically implemented for every type.
candidates.vec.push(BuiltinCandidate { has_nested: false });
} else if tcx.is_lang_item(def_id, LangItem::PointeeTrait) {
// `Pointee` is automatically implemented for every type.
candidates.vec.push(BuiltinCandidate { has_nested: false });
} else if tcx.is_lang_item(def_id, LangItem::Sized) {
// Sized is never implementable by end-users, it is
// always automatically computed.
// FIXME: Consider moving this check to the top level as it
// may also be useful for predicates other than `Sized`
// Error type cannot possibly implement `Sized` (fixes #123154)
if let Err(e) = obligation.predicate.skip_binder().self_ty().error_reported() {
return Err(SelectionError::Overflow(e.into()));
}
let sized_conditions = self.sized_conditions(obligation);
self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::Unsize) {
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::Destruct) {
self.assemble_const_destruct_candidates(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::TransmuteTrait) {
// User-defined transmutability impls are permitted.
self.assemble_candidates_from_impls(obligation, &mut candidates);
self.assemble_candidates_for_transmutability(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::Tuple) {
self.assemble_candidate_for_tuple(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::PointerLike) {
self.assemble_candidate_for_pointer_like(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::FnPtrTrait) {
self.assemble_candidates_for_fn_ptr_trait(obligation, &mut candidates);
} else {
if tcx.is_lang_item(def_id, LangItem::Clone) {
// Same builtin conditions as `Copy`, i.e., every type which has builtin support
// for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
// types have builtin support for `Clone`.
let clone_conditions = self.copy_clone_conditions(obligation);
self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates);
}
if tcx.is_lang_item(def_id, LangItem::Coroutine) {
self.assemble_coroutine_candidates(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::Future) {
self.assemble_future_candidates(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::Iterator) {
self.assemble_iterator_candidates(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::FusedIterator) {
self.assemble_fused_iterator_candidates(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::AsyncIterator) {
self.assemble_async_iterator_candidates(obligation, &mut candidates);
} else if tcx.is_lang_item(def_id, LangItem::AsyncFnKindHelper) {
self.assemble_async_fn_kind_helper_candidates(obligation, &mut candidates);
}
// FIXME: Put these into `else if` blocks above, since they're built-in.
self.assemble_closure_candidates(obligation, &mut candidates);
self.assemble_async_closure_candidates(obligation, &mut candidates);
self.assemble_fn_pointer_candidates(obligation, &mut candidates);
self.assemble_candidates_from_impls(obligation, &mut candidates);
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
}
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
self.assemble_candidates_from_auto_impls(obligation, &mut candidates);
}
debug!("candidate list size: {}", candidates.vec.len());
Ok(candidates)
}
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_candidates_from_projected_tys(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Before we go into the whole placeholder thing, just
// quickly check if the self-type is a projection at all.
match obligation.predicate.skip_binder().trait_ref.self_ty().kind() {
// Excluding IATs and type aliases here as they don't have meaningful item bounds.
ty::Alias(ty::Projection | ty::Opaque, _) => {}
ty::Infer(ty::TyVar(_)) => {
span_bug!(
obligation.cause.span,
"Self=_ should have been handled by assemble_candidates"
);
}
_ => return,
}
self.infcx.probe(|_| {
let poly_trait_predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
let placeholder_trait_predicate =
self.infcx.enter_forall_and_leak_universe(poly_trait_predicate);
// The bounds returned by `item_bounds` may contain duplicates after
// normalization, so try to deduplicate when possible to avoid
// unnecessary ambiguity.
let mut distinct_normalized_bounds = FxHashSet::default();
self.for_each_item_bound::<!>(
placeholder_trait_predicate.self_ty(),
|selcx, bound, idx| {
let Some(bound) = bound.as_trait_clause() else {
return ControlFlow::Continue(());
};
if bound.polarity() != placeholder_trait_predicate.polarity {
return ControlFlow::Continue(());
}
selcx.infcx.probe(|_| {
match selcx.match_normalize_trait_ref(
obligation,
placeholder_trait_predicate.trait_ref,
bound.to_poly_trait_ref(),
) {
Ok(None) => {
candidates.vec.push(ProjectionCandidate(idx));
}
Ok(Some(normalized_trait))
if distinct_normalized_bounds.insert(normalized_trait) =>
{
candidates.vec.push(ProjectionCandidate(idx));
}
_ => {}
}
});
ControlFlow::Continue(())
},
// On ambiguity.
|| candidates.ambiguous = true,
);
});
}
/// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
/// supplied to find out whether it is listed among them.
///
/// Never affects the inference environment.
#[instrument(level = "debug", skip(self, stack, candidates))]
fn assemble_candidates_from_caller_bounds<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) -> Result<(), SelectionError<'tcx>> {
debug!(?stack.obligation);
// An error type will unify with anything. So, avoid
// matching an error type with `ParamCandidate`.
// This helps us avoid spurious errors like issue #121941.
if stack.obligation.predicate.references_error() {
return Ok(());
}
let bounds = stack
.obligation
.param_env
.caller_bounds()
.iter()
.filter(|p| !p.references_error())
.filter_map(|p| p.as_trait_clause())
// Micro-optimization: filter out predicates relating to different traits.
.filter(|p| p.def_id() == stack.obligation.predicate.def_id())
.filter(|p| p.polarity() == stack.obligation.predicate.polarity());
// Keep only those bounds which may apply, and propagate overflow if it occurs.
for bound in bounds {
// FIXME(oli-obk): it is suspicious that we are dropping the constness and
// polarity here.
let wc = self.where_clause_may_apply(stack, bound.map_bound(|t| t.trait_ref))?;
if wc.may_apply() {
candidates.vec.push(ParamCandidate(bound));
}
}
Ok(())
}
fn assemble_coroutine_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Okay to skip binder because the args on coroutine types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = obligation.self_ty().skip_binder();
match self_ty.kind() {
// `async`/`gen` constructs get lowered to a special kind of coroutine that
// should *not* `impl Coroutine`.
ty::Coroutine(did, ..) if self.tcx().is_general_coroutine(*did) => {
debug!(?self_ty, ?obligation, "assemble_coroutine_candidates",);
candidates.vec.push(CoroutineCandidate);
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_coroutine_candidates: ambiguous self-type");
candidates.ambiguous = true;
}
_ => {}
}
}
fn assemble_future_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
if let ty::Coroutine(did, ..) = self_ty.kind() {
// async constructs get lowered to a special kind of coroutine that
// should directly `impl Future`.
if self.tcx().coroutine_is_async(*did) {
debug!(?self_ty, ?obligation, "assemble_future_candidates",);
candidates.vec.push(FutureCandidate);
}
}
}
fn assemble_iterator_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
// gen constructs get lowered to a special kind of coroutine that
// should directly `impl Iterator`.
if let ty::Coroutine(did, ..) = self_ty.kind()
&& self.tcx().coroutine_is_gen(*did)
{
debug!(?self_ty, ?obligation, "assemble_iterator_candidates",);
candidates.vec.push(IteratorCandidate);
}
}
fn assemble_fused_iterator_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
// gen constructs get lowered to a special kind of coroutine that
// should directly `impl FusedIterator`.
if let ty::Coroutine(did, ..) = self_ty.kind()
&& self.tcx().coroutine_is_gen(*did)
{
debug!(?self_ty, ?obligation, "assemble_fused_iterator_candidates",);
candidates.vec.push(BuiltinCandidate { has_nested: false });
}
}
fn assemble_async_iterator_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
if let ty::Coroutine(did, args) = *self_ty.kind() {
// gen constructs get lowered to a special kind of coroutine that
// should directly `impl AsyncIterator`.
if self.tcx().coroutine_is_async_gen(did) {
debug!(?self_ty, ?obligation, "assemble_iterator_candidates",);
// Can only confirm this candidate if we have constrained
// the `Yield` type to at least `Poll<Option<?0>>`..
let ty::Adt(_poll_def, args) = *args.as_coroutine().yield_ty().kind() else {
candidates.ambiguous = true;
return;
};
let ty::Adt(_option_def, _) = *args.type_at(0).kind() else {
candidates.ambiguous = true;
return;
};
candidates.vec.push(AsyncIteratorCandidate);
}
}
}
/// Checks for the artificial impl that the compiler will create for an obligation like `X :
/// FnMut<..>` where `X` is a closure type.
///
/// Note: the type parameters on a closure candidate are modeled as *output* type
/// parameters and hence do not affect whether this trait is a match or not. They will be
/// unified during the confirmation step.
fn assemble_closure_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let Some(kind) = self.tcx().fn_trait_kind_from_def_id(obligation.predicate.def_id()) else {
return;
};
// Okay to skip binder because the args on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = obligation.self_ty().skip_binder();
match *self_ty.kind() {
ty::Closure(def_id, _) => {
let is_const = self.tcx().is_const_fn_raw(def_id);
debug!(?kind, ?obligation, "assemble_unboxed_candidates");
match self.infcx.closure_kind(self_ty) {
Some(closure_kind) => {
debug!(?closure_kind, "assemble_unboxed_candidates");
if closure_kind.extends(kind) {
candidates.vec.push(ClosureCandidate { is_const });
}
}
None => {
if kind == ty::ClosureKind::FnOnce {
candidates.vec.push(ClosureCandidate { is_const });
} else {
candidates.ambiguous = true;
}
}
}
}
ty::CoroutineClosure(def_id, args) => {
let args = args.as_coroutine_closure();
let is_const = self.tcx().is_const_fn_raw(def_id);
if let Some(closure_kind) = self.infcx.closure_kind(self_ty)
// Ambiguity if upvars haven't been constrained yet
&& !args.tupled_upvars_ty().is_ty_var()
{
// A coroutine-closure implements `FnOnce` *always*, since it may
// always be called once. It additionally implements `Fn`/`FnMut`
// only if it has no upvars referencing the closure-env lifetime,
// and if the closure kind permits it.
if closure_kind.extends(kind) && !args.has_self_borrows() {
candidates.vec.push(ClosureCandidate { is_const });
} else if kind == ty::ClosureKind::FnOnce {
candidates.vec.push(ClosureCandidate { is_const });
}
} else {
if kind == ty::ClosureKind::FnOnce {
candidates.vec.push(ClosureCandidate { is_const });
} else {
// This stays ambiguous until kind+upvars are determined.
candidates.ambiguous = true;
}
}
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
candidates.ambiguous = true;
}
_ => {}
}
}
fn assemble_async_closure_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let Some(goal_kind) =
self.tcx().async_fn_trait_kind_from_def_id(obligation.predicate.def_id())
else {
return;
};
match *obligation.self_ty().skip_binder().kind() {
ty::CoroutineClosure(_, args) => {
if let Some(closure_kind) =
args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
&& !closure_kind.extends(goal_kind)
{
return;
}
candidates.vec.push(AsyncClosureCandidate);
}
// Closures and fn pointers implement `AsyncFn*` if their return types
// implement `Future`, which is checked later.
ty::Closure(_, args) => {
if let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
&& !closure_kind.extends(goal_kind)
{
return;
}
candidates.vec.push(AsyncClosureCandidate);
}
// Provide an impl, but only for suitable `fn` pointers.
ty::FnPtr(sig_tys, hdr) => {
if sig_tys.with(hdr).is_fn_trait_compatible() {
candidates.vec.push(AsyncClosureCandidate);
}
}
// Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
ty::FnDef(def_id, _) => {
let tcx = self.tcx();
if tcx.fn_sig(def_id).skip_binder().is_fn_trait_compatible()
&& tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
candidates.vec.push(AsyncClosureCandidate);
}
}
_ => {}
}
}
fn assemble_async_fn_kind_helper_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = obligation.self_ty().skip_binder();
let target_kind_ty = obligation.predicate.skip_binder().trait_ref.args.type_at(1);
// `to_opt_closure_kind` is kind of ICEy when it sees non-int types.
if !(self_ty.is_integral() || self_ty.is_ty_var()) {
return;
}
if !(target_kind_ty.is_integral() || self_ty.is_ty_var()) {
return;
}
// Check that the self kind extends the goal kind. If it does,
// then there's nothing else to check.
if let Some(closure_kind) = self_ty.to_opt_closure_kind()
&& let Some(goal_kind) = target_kind_ty.to_opt_closure_kind()
{
if closure_kind.extends(goal_kind) {
candidates.vec.push(AsyncFnKindHelperCandidate);
}
}
}
/// Implements one of the `Fn()` family for a fn pointer.
fn assemble_fn_pointer_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// We provide impl of all fn traits for fn pointers.
if !self.tcx().is_fn_trait(obligation.predicate.def_id()) {
return;
}
// Keep this function in sync with extract_tupled_inputs_and_output_from_callable
// until the old solver (and thus this function) is removed.
// Okay to skip binder because what we are inspecting doesn't involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
match *self_ty.kind() {
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
candidates.ambiguous = true; // Could wind up being a fn() type.
}
// Provide an impl, but only for suitable `fn` pointers.
ty::FnPtr(sig_tys, hdr) => {
if sig_tys.with(hdr).is_fn_trait_compatible() {
candidates
.vec
.push(FnPointerCandidate { fn_host_effect: self.tcx().consts.true_ });
}
}
// Provide an impl for suitable functions, rejecting `#[target_feature]` functions (RFC 2396).
ty::FnDef(def_id, args) => {
let tcx = self.tcx();
// FIXME(struct_target_features): should a function that inherits target_features
// through an argument implement Fn traits?
if tcx.fn_sig(def_id).skip_binder().is_fn_trait_compatible()
&& tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
candidates.vec.push(FnPointerCandidate {
fn_host_effect: tcx
.generics_of(def_id)
.host_effect_index
.map_or(tcx.consts.true_, |idx| args.const_at(idx)),
});
}
}
_ => {}
}
}
/// Searches for impls that might apply to `obligation`.
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_candidates_from_impls(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Essentially any user-written impl will match with an error type,
// so creating `ImplCandidates` isn't useful. However, we might
// end up finding a candidate elsewhere (e.g. a `BuiltinCandidate` for `Sized`)
// This helps us avoid overflow: see issue #72839
// Since compilation is already guaranteed to fail, this is just
// to try to show the 'nicest' possible errors to the user.
// We don't check for errors in the `ParamEnv` - in practice,
// it seems to cause us to be overly aggressive in deciding
// to give up searching for candidates, leading to spurious errors.
if obligation.predicate.references_error() {
return;
}
let drcx = DeepRejectCtxt::new(self.tcx(), TreatParams::ForLookup);
let obligation_args = obligation.predicate.skip_binder().trait_ref.args;
self.tcx().for_each_relevant_impl(
obligation.predicate.def_id(),
obligation.predicate.skip_binder().trait_ref.self_ty(),
|impl_def_id| {
// Before we create the generic parameters and everything, first
// consider a "quick reject". This avoids creating more types
// and so forth that we need to.
let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
if !drcx
.args_may_unify(obligation_args, impl_trait_header.trait_ref.skip_binder().args)
{
return;
}
// For every `default impl`, there's always a non-default `impl`
// that will *also* apply. There's no reason to register a candidate
// for this impl, since it is *not* proof that the trait goal holds.
if self.tcx().defaultness(impl_def_id).is_default() {
return;
}
if self.reject_fn_ptr_impls(
impl_def_id,
obligation,
impl_trait_header.trait_ref.skip_binder().self_ty(),
) {
return;
}
self.infcx.probe(|_| {
if let Ok(_args) = self.match_impl(impl_def_id, impl_trait_header, obligation) {
candidates.vec.push(ImplCandidate(impl_def_id));
}
});
},
);
}
/// The various `impl<T: FnPtr> Trait for T` in libcore are more like builtin impls for all function items
/// and function pointers and less like blanket impls. Rejecting them when they can't possibly apply (because
/// the obligation's self-type does not implement `FnPtr`) avoids reporting that the self type does not implement
/// `FnPtr`, when we wanted to report that it doesn't implement `Trait`.
#[instrument(level = "trace", skip(self), ret)]
fn reject_fn_ptr_impls(
&mut self,
impl_def_id: DefId,
obligation: &PolyTraitObligation<'tcx>,
impl_self_ty: Ty<'tcx>,
) -> bool {
// Let `impl<T: FnPtr> Trait for Vec<T>` go through the normal rejection path.
if !matches!(impl_self_ty.kind(), ty::Param(..)) {
return false;
}
let Some(fn_ptr_trait) = self.tcx().lang_items().fn_ptr_trait() else {
return false;
};
for &(predicate, _) in self.tcx().predicates_of(impl_def_id).predicates {
let ty::ClauseKind::Trait(pred) = predicate.kind().skip_binder() else { continue };
if fn_ptr_trait != pred.trait_ref.def_id {
continue;
}
trace!(?pred);
// Not the bound we're looking for
if pred.self_ty() != impl_self_ty {
continue;
}
match obligation.self_ty().skip_binder().kind() {
// Fast path to avoid evaluating an obligation that trivially holds.
// There may be more bounds, but these are checked by the regular path.
ty::FnPtr(..) => return false,
// These may potentially implement `FnPtr`
ty::Placeholder(..)
| ty::Dynamic(_, _, _)
| ty::Alias(_, _)
| ty::Infer(_)
| ty::Param(..)
| ty::Bound(_, _) => {}
// These can't possibly implement `FnPtr` as they are concrete types
// and not `FnPtr`
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Pat(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(_, _)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Error(_) => return true,
// FIXME: Function definitions could actually implement `FnPtr` by
// casting the ZST function def to a function pointer.
ty::FnDef(_, _) => return true,
}
// Generic params can implement `FnPtr` if the predicate
// holds within its own environment.
let obligation = Obligation::new(
self.tcx(),
obligation.cause.clone(),
obligation.param_env,
self.tcx().mk_predicate(obligation.predicate.map_bound(|mut pred| {
pred.trait_ref =
ty::TraitRef::new(self.tcx(), fn_ptr_trait, [pred.trait_ref.self_ty()]);
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred))
})),
);
if let Ok(r) = self.evaluate_root_obligation(&obligation) {
if !r.may_apply() {
return true;
}
}
}
false
}
fn assemble_candidates_from_auto_impls(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Okay to skip binder here because the tests we do below do not involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
debug!(?self_ty, "assemble_candidates_from_auto_impls");
let def_id = obligation.predicate.def_id();
if self.tcx().trait_is_auto(def_id) {
match *self_ty.kind() {
ty::Dynamic(..) => {
// For object types, we don't know what the closed
// over types are. This means we conservatively
// say nothing; a candidate may be added by
// `assemble_candidates_from_object_ty`.
}
ty::Foreign(..) => {
// Since the contents of foreign types is unknown,
// we don't add any `..` impl. Default traits could
// still be provided by a manual implementation for
// this trait and type.
}
ty::Param(..)
| ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
| ty::Placeholder(..)
| ty::Bound(..) => {
// In these cases, we don't know what the actual
// type is. Therefore, we cannot break it down
// into its constituent types. So we don't
// consider the `..` impl but instead just add no
// candidates: this means that typeck will only
// succeed if there is another reason to believe
// that this obligation holds. That could be a
// where-clause or, in the case of an object type,
// it could be that the object type lists the
// trait (e.g., `Foo+Send : Send`). See
// `ui/typeck/typeck-default-trait-impl-send-param.rs`
// for an example of a test case that exercises
// this path.
}
ty::Infer(ty::TyVar(_) | ty::IntVar(_) | ty::FloatVar(_)) => {
// The auto impl might apply; we don't know.
candidates.ambiguous = true;
}
ty::Coroutine(coroutine_def_id, _)
if self.tcx().is_lang_item(def_id, LangItem::Unpin) =>
{
match self.tcx().coroutine_movability(coroutine_def_id) {
hir::Movability::Static => {
// Immovable coroutines are never `Unpin`, so
// suppress the normal auto-impl candidate for it.
}
hir::Movability::Movable => {
// Movable coroutines are always `Unpin`, so add an
// unconditional builtin candidate.
candidates.vec.push(BuiltinCandidate { has_nested: false });
}
}
}
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!(
"asked to assemble auto trait candidates of unexpected type: {:?}",
self_ty
);
}
ty::Alias(ty::Opaque, alias) => {
if candidates.vec.iter().any(|c| matches!(c, ProjectionCandidate(_))) {
// We do not generate an auto impl candidate for `impl Trait`s which already
// reference our auto trait.
//
// For example during candidate assembly for `impl Send: Send`, we don't have
// to look at the constituent types for this opaque types to figure out that this
// trivially holds.
//
// Note that this is only sound as projection candidates of opaque types
// are always applicable for auto traits.
} else if self.infcx.intercrate {
// We do not emit auto trait candidates for opaque types in coherence.
// Doing so can result in weird dependency cycles.
candidates.ambiguous = true;
} else if self.infcx.can_define_opaque_ty(alias.def_id) {
// We do not emit auto trait candidates for opaque types in their defining scope, as
// we need to know the hidden type first, which we can't reliably know within the defining
// scope.
candidates.ambiguous = true;
} else {
candidates.vec.push(AutoImplCandidate)
}
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Array(_, _)
| ty::Pat(_, _)
| ty::Slice(_)
| ty::Adt(..)
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::Never
| ty::Tuple(_)
| ty::CoroutineWitness(..) => {
// Only consider auto impls if there are no manual impls for the root of `self_ty`.
//
// For example, we only consider auto candidates for `&i32: Auto` if no explicit impl
// for `&SomeType: Auto` exists. Due to E0321 the only crate where impls
// for `&SomeType: Auto` can be defined is the crate where `Auto` has been defined.
//
// Generally, we have to guarantee that for all `SimplifiedType`s the only crate
// which may define impls for that type is either the crate defining the type
// or the trait. This should be guaranteed by the orphan check.
let mut has_impl = false;
self.tcx().for_each_relevant_impl(def_id, self_ty, |_| has_impl = true);
if !has_impl {
candidates.vec.push(AutoImplCandidate)
}
}
ty::Error(_) => {} // do not add an auto trait impl for `ty::Error` for now.
}
}
}
/// Searches for impls that might apply to `obligation`.
fn assemble_candidates_from_object_ty(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
debug!(
self_ty = ?obligation.self_ty().skip_binder(),
"assemble_candidates_from_object_ty",
);
if !self.tcx().trait_def(obligation.predicate.def_id()).implement_via_object {
return;
}
self.infcx.probe(|_snapshot| {
let poly_trait_predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
self.infcx.enter_forall(poly_trait_predicate, |placeholder_trait_predicate| {
let self_ty = placeholder_trait_predicate.self_ty();
let principal_trait_ref = match self_ty.kind() {
ty::Dynamic(data, ..) => {
if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
debug!(
"assemble_candidates_from_object_ty: matched builtin bound, \
pushing candidate"
);
candidates.vec.push(BuiltinObjectCandidate);
return;
}
if let Some(principal) = data.principal() {
if !self.infcx.tcx.features().object_safe_for_dispatch {
principal.with_self_ty(self.tcx(), self_ty)
} else if self.tcx().is_object_safe(principal.def_id()) {
principal.with_self_ty(self.tcx(), self_ty)
} else {
return;
}
} else {
// Only auto trait bounds exist.
return;
}
}
ty::Infer(ty::TyVar(_)) => {
debug!("assemble_candidates_from_object_ty: ambiguous");
candidates.ambiguous = true; // could wind up being an object type
return;
}
_ => return,
};
debug!(?principal_trait_ref, "assemble_candidates_from_object_ty");
// Count only those upcast versions that match the trait-ref
// we are looking for. Specifically, do not only check for the
// correct trait, but also the correct type parameters.
// For example, we may be trying to upcast `Foo` to `Bar<i32>`,
// but `Foo` is declared as `trait Foo: Bar<u32>`.
let candidate_supertraits = util::supertraits(self.tcx(), principal_trait_ref)
.enumerate()
.filter(|&(_, upcast_trait_ref)| {
self.infcx.probe(|_| {
self.match_normalize_trait_ref(
obligation,
placeholder_trait_predicate.trait_ref,
upcast_trait_ref,
)
.is_ok()
})
})
.map(|(idx, _)| ObjectCandidate(idx));
candidates.vec.extend(candidate_supertraits);
})
})
}
/// Temporary migration for #89190
fn need_migrate_deref_output_trait_object(
&mut self,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: &ObligationCause<'tcx>,
) -> Option<ty::PolyExistentialTraitRef<'tcx>> {
// Don't drop any candidates in intercrate mode, as it's incomplete.
// (Not that it matters, since `Unsize` is not a stable trait.)
if self.infcx.intercrate {
return None;
}
let tcx = self.tcx();
if tcx.features().trait_upcasting {
return None;
}
// <ty as Deref>
let trait_ref = ty::TraitRef::new(tcx, tcx.lang_items().deref_trait()?, [ty]);
let obligation =
traits::Obligation::new(tcx, cause.clone(), param_env, ty::Binder::dummy(trait_ref));
if !self.infcx.predicate_may_hold(&obligation) {
return None;
}
self.infcx.probe(|_| {
let ty = traits::normalize_projection_ty(
self,
param_env,
ty::AliasTy::new_from_args(tcx, tcx.lang_items().deref_target()?, trait_ref.args),
cause.clone(),
0,
// We're *intentionally* throwing these away,
// since we don't actually use them.
&mut vec![],
)
.as_type()
.unwrap();
if let ty::Dynamic(data, ..) = ty.kind() { data.principal() } else { None }
})
}
/// Searches for unsizing that might apply to `obligation`.
fn assemble_candidates_for_unsizing(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// We currently never consider higher-ranked obligations e.g.
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
// because they are a priori invalid, and we could potentially add support
// for them later, it's just that there isn't really a strong need for it.
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
// impl, and those are generally applied to concrete types.
//
// That said, one might try to write a fn with a where clause like
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
// Still, you'd be more likely to write that where clause as
// T: Trait
// so it seems ok if we (conservatively) fail to accept that `Unsize`
// obligation above. Should be possible to extend this in the future.
let Some(source) = obligation.self_ty().no_bound_vars() else {
// Don't add any candidates if there are bound regions.
return;
};
let target = obligation.predicate.skip_binder().trait_ref.args.type_at(1);
debug!(?source, ?target, "assemble_candidates_for_unsizing");
match (source.kind(), target.kind()) {
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
(&ty::Dynamic(a_data, a_region, ty::Dyn), &ty::Dynamic(b_data, b_region, ty::Dyn)) => {
// Upcast coercions permit several things:
//
// 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
// 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
// 3. Tightening trait to its super traits, eg. `Foo` to `Bar` if `Foo: Bar`
//
// Note that neither of the first two of these changes requires any
// change at runtime. The third needs to change pointer metadata at runtime.
//
// We always perform upcasting coercions when we can because of reason
// #2 (region bounds).
let principal_def_id_a = a_data.principal_def_id();
let principal_def_id_b = b_data.principal_def_id();
if principal_def_id_a == principal_def_id_b {
// We may upcast to auto traits that are either explicitly listed in
// the object type's bounds, or implied by the principal trait ref's
// supertraits.
let a_auto_traits: FxIndexSet<DefId> = a_data
.auto_traits()
.chain(principal_def_id_a.into_iter().flat_map(|principal_def_id| {
self.tcx()
.supertrait_def_ids(principal_def_id)
.filter(|def_id| self.tcx().trait_is_auto(*def_id))
}))
.collect();
let auto_traits_compatible = b_data
.auto_traits()
// All of a's auto traits need to be in b's auto traits.
.all(|b| a_auto_traits.contains(&b));
if auto_traits_compatible {
candidates.vec.push(BuiltinUnsizeCandidate);
}
} else if principal_def_id_a.is_some() && principal_def_id_b.is_some() {
// not casual unsizing, now check whether this is trait upcasting coercion.
let principal_a = a_data.principal().unwrap();
let target_trait_did = principal_def_id_b.unwrap();
let source_trait_ref = principal_a.with_self_ty(self.tcx(), source);
if let Some(deref_trait_ref) = self.need_migrate_deref_output_trait_object(
source,
obligation.param_env,
&obligation.cause,
) {
if deref_trait_ref.def_id() == target_trait_did {
return;
}
}
for (idx, upcast_trait_ref) in
util::supertraits(self.tcx(), source_trait_ref).enumerate()
{
self.infcx.probe(|_| {
if upcast_trait_ref.def_id() == target_trait_did
&& let Ok(nested) = self.match_upcast_principal(
obligation,
upcast_trait_ref,
a_data,
b_data,
a_region,
b_region,
)
{
if nested.is_none() {
candidates.ambiguous = true;
}
candidates.vec.push(TraitUpcastingUnsizeCandidate(idx));
}
})
}
}
}
// `T` -> `Trait`
(_, &ty::Dynamic(_, _, ty::Dyn)) => {
candidates.vec.push(BuiltinUnsizeCandidate);
}
// Ambiguous handling is below `T` -> `Trait`, because inference
// variables can still implement `Unsize<Trait>` and nested
// obligations will have the final say (likely deferred).
(&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
debug!("assemble_candidates_for_unsizing: ambiguous");
candidates.ambiguous = true;
}
// `[T; n]` -> `[T]`
(&ty::Array(..), &ty::Slice(_)) => {
candidates.vec.push(BuiltinUnsizeCandidate);
}
// `Struct<T>` -> `Struct<U>`
(&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
if def_id_a == def_id_b {
candidates.vec.push(BuiltinUnsizeCandidate);
}
}
// `(.., T)` -> `(.., U)`
(&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
if tys_a.len() == tys_b.len() {
candidates.vec.push(BuiltinUnsizeCandidate);
}
}
_ => {}
};
}
#[instrument(level = "debug", skip(self, obligation, candidates))]
fn assemble_candidates_for_transmutability(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
if obligation.predicate.has_non_region_param() {
return;
}
if obligation.has_non_region_infer() {
candidates.ambiguous = true;
return;
}
candidates.vec.push(TransmutabilityCandidate);
}
#[instrument(level = "debug", skip(self, obligation, candidates))]
fn assemble_candidates_for_trait_alias(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// Okay to skip binder here because the tests we do below do not involve bound regions.
let self_ty = obligation.self_ty().skip_binder();
debug!(?self_ty);
let def_id = obligation.predicate.def_id();
if self.tcx().is_trait_alias(def_id) {
candidates.vec.push(TraitAliasCandidate);
}
}
/// Assembles the trait which are built-in to the language itself:
/// `Copy`, `Clone` and `Sized`.
#[instrument(level = "debug", skip(self, candidates))]
fn assemble_builtin_bound_candidates(
&mut self,
conditions: BuiltinImplConditions<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
match conditions {
BuiltinImplConditions::Where(nested) => {
candidates
.vec
.push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
}
BuiltinImplConditions::None => {}
BuiltinImplConditions::Ambiguous => {
candidates.ambiguous = true;
}
}
}
fn assemble_const_destruct_candidates(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// If the predicate is `~const Destruct` in a non-const environment, we don't actually need
// to check anything. We'll short-circuit checking any obligations in confirmation, too.
let Some(host_effect_index) =
self.tcx().generics_of(obligation.predicate.def_id()).host_effect_index
else {
candidates.vec.push(BuiltinCandidate { has_nested: false });
return;
};
// If the obligation has `host = true`, then the obligation is non-const and it's always
// trivially implemented.
if obligation.predicate.skip_binder().trait_ref.args.const_at(host_effect_index)
== self.tcx().consts.true_
{
candidates.vec.push(BuiltinCandidate { has_nested: false });
return;
}
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
match self_ty.kind() {
ty::Alias(..)
| ty::Dynamic(..)
| ty::Error(_)
| ty::Bound(..)
| ty::Param(_)
| ty::Placeholder(_) => {
// We don't know if these are `~const Destruct`, at least
// not structurally... so don't push a candidate.
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Infer(ty::IntVar(_))
| ty::Infer(ty::FloatVar(_))
| ty::Str
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Never
| ty::Foreign(_)
| ty::Array(..)
| ty::Pat(..)
| ty::Slice(_)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::Tuple(_)
| ty::CoroutineWitness(..) => {
// These are built-in, and cannot have a custom `impl const Destruct`.
candidates.vec.push(ConstDestructCandidate(None));
}
ty::Adt(..) => {
let mut relevant_impl = None;
self.tcx().for_each_relevant_impl(
self.tcx().require_lang_item(LangItem::Drop, None),
obligation.predicate.skip_binder().trait_ref.self_ty(),
|impl_def_id| {
if let Some(old_impl_def_id) = relevant_impl {
self.tcx()
.dcx()
.struct_span_err(
self.tcx().def_span(impl_def_id),
"multiple drop impls found",
)
.with_span_note(
self.tcx().def_span(old_impl_def_id),
"other impl here",
)
.delay_as_bug();
}
relevant_impl = Some(impl_def_id);
},
);
if let Some(impl_def_id) = relevant_impl {
// Check that `impl Drop` is actually const, if there is a custom impl
if self.tcx().constness(impl_def_id) == hir::Constness::Const {
candidates.vec.push(ConstDestructCandidate(Some(impl_def_id)));
}
} else {
// Otherwise check the ADT like a built-in type (structurally)
candidates.vec.push(ConstDestructCandidate(None));
}
}
ty::Infer(_) => {
candidates.ambiguous = true;
}
}
}
fn assemble_candidate_for_tuple(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
match self_ty.kind() {
ty::Tuple(_) => {
candidates.vec.push(BuiltinCandidate { has_nested: false });
}
ty::Infer(ty::TyVar(_)) => {
candidates.ambiguous = true;
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::Pat(_, _)
| ty::FnPtr(..)
| ty::Dynamic(_, _, _)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(_, _)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Alias(..)
| ty::Param(_)
| ty::Bound(_, _)
| ty::Error(_)
| ty::Infer(_)
| ty::Placeholder(_) => {}
}
}
fn assemble_candidate_for_pointer_like(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
// The regions of a type don't affect the size of the type
let tcx = self.tcx();
let self_ty = tcx.instantiate_bound_regions_with_erased(obligation.predicate.self_ty());
// We should erase regions from both the param-env and type, since both
// may have infer regions. Specifically, after canonicalizing and instantiating,
// early bound regions turn into region vars in both the new and old solver.
let key = tcx.erase_regions(obligation.param_env.and(self_ty));
// But if there are inference variables, we have to wait until it's resolved.
if key.has_non_region_infer() {
candidates.ambiguous = true;
return;
}
if let Ok(layout) = tcx.layout_of(key)
&& layout.layout.is_pointer_like(&tcx.data_layout)
{
candidates.vec.push(BuiltinCandidate { has_nested: false });
}
}
fn assemble_candidates_for_fn_ptr_trait(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
candidates: &mut SelectionCandidateSet<'tcx>,
) {
let self_ty = self.infcx.resolve_vars_if_possible(obligation.self_ty());
match self_ty.skip_binder().kind() {
ty::FnPtr(..) => candidates.vec.push(BuiltinCandidate { has_nested: false }),
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Foreign(..)
| ty::Str
| ty::Array(..)
| ty::Pat(..)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(..)
| ty::FnDef(..)
| ty::Placeholder(..)
| ty::Dynamic(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Tuple(..)
| ty::Alias(..)
| ty::Param(..)
| ty::Bound(..)
| ty::Error(_)
| ty::Infer(
ty::InferTy::IntVar(_)
| ty::InferTy::FloatVar(_)
| ty::InferTy::FreshIntTy(_)
| ty::InferTy::FreshFloatTy(_),
) => {}
ty::Infer(ty::InferTy::TyVar(_) | ty::InferTy::FreshTy(_)) => {
candidates.ambiguous = true;
}
}
}
}