1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
//! THIR datatypes and definitions. See the [rustc dev guide] for more info.
//!
//! If you compare the THIR [`ExprKind`] to [`hir::ExprKind`], you will see it is
//! a good bit simpler. In fact, a number of the more straight-forward
//! MIR simplifications are already done in the lowering to THIR. For
//! example, method calls and overloaded operators are absent: they are
//! expected to be converted into [`ExprKind::Call`] instances.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/thir.html
use std::cmp::Ordering;
use std::fmt;
use std::ops::Index;
use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::{BindingMode, ByRef, HirId, MatchSource, RangeEnd};
use rustc_index::{newtype_index, IndexVec};
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeVisitable};
use rustc_middle::middle::region;
use rustc_middle::mir::interpret::AllocId;
use rustc_middle::mir::{self, BinOp, BorrowKind, FakeReadCause, UnOp};
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{
self, AdtDef, CanonicalUserType, CanonicalUserTypeAnnotation, FnSig, GenericArgsRef, List, Ty,
TyCtxt, UpvarArgs,
};
use rustc_span::def_id::LocalDefId;
use rustc_span::{ErrorGuaranteed, Span, Symbol};
use rustc_target::abi::{FieldIdx, Integer, Size, VariantIdx};
use rustc_target::asm::InlineAsmRegOrRegClass;
use tracing::instrument;
pub mod visit;
macro_rules! thir_with_elements {
(
$($field_name:ident: $field_ty:ty,)*
@elements:
$($name:ident: $id:ty => $value:ty => $format:literal,)*
) => {
$(
newtype_index! {
#[derive(HashStable)]
#[debug_format = $format]
pub struct $id {}
}
)*
/// A container for a THIR body.
///
/// This can be indexed directly by any THIR index (e.g. [`ExprId`]).
#[derive(Debug, HashStable, Clone)]
pub struct Thir<'tcx> {
$(
pub $field_name: $field_ty,
)*
$(
pub $name: IndexVec<$id, $value>,
)*
}
impl<'tcx> Thir<'tcx> {
pub fn new($($field_name: $field_ty,)*) -> Thir<'tcx> {
Thir {
$(
$field_name,
)*
$(
$name: IndexVec::new(),
)*
}
}
}
$(
impl<'tcx> Index<$id> for Thir<'tcx> {
type Output = $value;
fn index(&self, index: $id) -> &Self::Output {
&self.$name[index]
}
}
)*
}
}
thir_with_elements! {
body_type: BodyTy<'tcx>,
@elements:
arms: ArmId => Arm<'tcx> => "a{}",
blocks: BlockId => Block => "b{}",
exprs: ExprId => Expr<'tcx> => "e{}",
stmts: StmtId => Stmt<'tcx> => "s{}",
params: ParamId => Param<'tcx> => "p{}",
}
#[derive(Debug, HashStable, Clone)]
pub enum BodyTy<'tcx> {
Const(Ty<'tcx>),
Fn(FnSig<'tcx>),
}
/// Description of a type-checked function parameter.
#[derive(Clone, Debug, HashStable)]
pub struct Param<'tcx> {
/// The pattern that appears in the parameter list, or None for implicit parameters.
pub pat: Option<Box<Pat<'tcx>>>,
/// The possibly inferred type.
pub ty: Ty<'tcx>,
/// Span of the explicitly provided type, or None if inferred for closures.
pub ty_span: Option<Span>,
/// Whether this param is `self`, and how it is bound.
pub self_kind: Option<hir::ImplicitSelfKind>,
/// HirId for lints.
pub hir_id: Option<HirId>,
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum LintLevel {
Inherited,
Explicit(HirId),
}
#[derive(Clone, Debug, HashStable)]
pub struct Block {
/// Whether the block itself has a label. Used by `label: {}`
/// and `try` blocks.
///
/// This does *not* include labels on loops, e.g. `'label: loop {}`.
pub targeted_by_break: bool,
pub region_scope: region::Scope,
/// The span of the block, including the opening braces,
/// the label, and the `unsafe` keyword, if present.
pub span: Span,
/// The statements in the blocK.
pub stmts: Box<[StmtId]>,
/// The trailing expression of the block, if any.
pub expr: Option<ExprId>,
pub safety_mode: BlockSafety,
}
type UserTy<'tcx> = Option<Box<CanonicalUserType<'tcx>>>;
#[derive(Clone, Debug, HashStable)]
pub struct AdtExpr<'tcx> {
/// The ADT we're constructing.
pub adt_def: AdtDef<'tcx>,
/// The variant of the ADT.
pub variant_index: VariantIdx,
pub args: GenericArgsRef<'tcx>,
/// Optional user-given args: for something like `let x =
/// Bar::<T> { ... }`.
pub user_ty: UserTy<'tcx>,
pub fields: Box<[FieldExpr]>,
/// The base, e.g. `Foo {x: 1, .. base}`.
pub base: Option<FruInfo<'tcx>>,
}
#[derive(Clone, Debug, HashStable)]
pub struct ClosureExpr<'tcx> {
pub closure_id: LocalDefId,
pub args: UpvarArgs<'tcx>,
pub upvars: Box<[ExprId]>,
pub movability: Option<hir::Movability>,
pub fake_reads: Vec<(ExprId, FakeReadCause, HirId)>,
}
#[derive(Clone, Debug, HashStable)]
pub struct InlineAsmExpr<'tcx> {
pub template: &'tcx [InlineAsmTemplatePiece],
pub operands: Box<[InlineAsmOperand<'tcx>]>,
pub options: InlineAsmOptions,
pub line_spans: &'tcx [Span],
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum BlockSafety {
Safe,
/// A compiler-generated unsafe block
BuiltinUnsafe,
/// An `unsafe` block. The `HirId` is the ID of the block.
ExplicitUnsafe(HirId),
}
#[derive(Clone, Debug, HashStable)]
pub struct Stmt<'tcx> {
pub kind: StmtKind<'tcx>,
}
#[derive(Clone, Debug, HashStable)]
pub enum StmtKind<'tcx> {
/// An expression with a trailing semicolon.
Expr {
/// The scope for this statement; may be used as lifetime of temporaries.
scope: region::Scope,
/// The expression being evaluated in this statement.
expr: ExprId,
},
/// A `let` binding.
Let {
/// The scope for variables bound in this `let`; it covers this and
/// all the remaining statements in the block.
remainder_scope: region::Scope,
/// The scope for the initialization itself; might be used as
/// lifetime of temporaries.
init_scope: region::Scope,
/// `let <PAT> = ...`
///
/// If a type annotation is included, it is added as an ascription pattern.
pattern: Box<Pat<'tcx>>,
/// `let pat: ty = <INIT>`
initializer: Option<ExprId>,
/// `let pat: ty = <INIT> else { <ELSE> }`
else_block: Option<BlockId>,
/// The lint level for this `let` statement.
lint_level: LintLevel,
/// Span of the `let <PAT> = <INIT>` part.
span: Span,
},
}
#[derive(Clone, Debug, Copy, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
pub struct LocalVarId(pub HirId);
/// A THIR expression.
#[derive(Clone, Debug, HashStable)]
pub struct Expr<'tcx> {
/// kind of expression
pub kind: ExprKind<'tcx>,
/// The type of this expression
pub ty: Ty<'tcx>,
/// The lifetime of this expression if it should be spilled into a
/// temporary; should be `None` only if in a constant context
pub temp_lifetime: Option<region::Scope>,
/// span of the expression in the source
pub span: Span,
}
#[derive(Clone, Debug, HashStable)]
pub enum ExprKind<'tcx> {
/// `Scope`s are used to explicitly mark destruction scopes,
/// and to track the `HirId` of the expressions within the scope.
Scope {
region_scope: region::Scope,
lint_level: LintLevel,
value: ExprId,
},
/// A `box <value>` expression.
Box {
value: ExprId,
},
/// An `if` expression.
If {
if_then_scope: region::Scope,
cond: ExprId,
then: ExprId,
else_opt: Option<ExprId>,
},
/// A function call. Method calls and overloaded operators are converted to plain function calls.
Call {
/// The type of the function. This is often a [`FnDef`] or a [`FnPtr`].
///
/// [`FnDef`]: ty::TyKind::FnDef
/// [`FnPtr`]: ty::TyKind::FnPtr
ty: Ty<'tcx>,
/// The function itself.
fun: ExprId,
/// The arguments passed to the function.
///
/// Note: in some cases (like calling a closure), the function call `f(...args)` gets
/// rewritten as a call to a function trait method (e.g. `FnOnce::call_once(f, (...args))`).
args: Box<[ExprId]>,
/// Whether this is from an overloaded operator rather than a
/// function call from HIR. `true` for overloaded function call.
from_hir_call: bool,
/// The span of the function, without the dot and receiver
/// (e.g. `foo(a, b)` in `x.foo(a, b)`).
fn_span: Span,
},
/// A *non-overloaded* dereference.
Deref {
arg: ExprId,
},
/// A *non-overloaded* binary operation.
Binary {
op: BinOp,
lhs: ExprId,
rhs: ExprId,
},
/// A logical operation. This is distinct from `BinaryOp` because
/// the operands need to be lazily evaluated.
LogicalOp {
op: LogicalOp,
lhs: ExprId,
rhs: ExprId,
},
/// A *non-overloaded* unary operation. Note that here the deref (`*`)
/// operator is represented by `ExprKind::Deref`.
Unary {
op: UnOp,
arg: ExprId,
},
/// A cast: `<source> as <type>`. The type we cast to is the type of
/// the parent expression.
Cast {
source: ExprId,
},
/// Forces its contents to be treated as a value expression, not a place
/// expression. This is inserted in some places where an operation would
/// otherwise be erased completely (e.g. some no-op casts), but we still
/// need to ensure that its operand is treated as a value and not a place.
Use {
source: ExprId,
},
/// A coercion from `!` to any type.
NeverToAny {
source: ExprId,
},
/// A pointer coercion. More information can be found in [`PointerCoercion`].
/// Pointer casts that cannot be done by coercions are represented by [`ExprKind::Cast`].
PointerCoercion {
cast: PointerCoercion,
source: ExprId,
},
/// A `loop` expression.
Loop {
body: ExprId,
},
/// Special expression representing the `let` part of an `if let` or similar construct
/// (including `if let` guards in match arms, and let-chains formed by `&&`).
///
/// This isn't considered a real expression in surface Rust syntax, so it can
/// only appear in specific situations, such as within the condition of an `if`.
///
/// (Not to be confused with [`StmtKind::Let`], which is a normal `let` statement.)
Let {
expr: ExprId,
pat: Box<Pat<'tcx>>,
},
/// A `match` expression.
Match {
scrutinee: ExprId,
scrutinee_hir_id: HirId,
arms: Box<[ArmId]>,
match_source: MatchSource,
},
/// A block.
Block {
block: BlockId,
},
/// An assignment: `lhs = rhs`.
Assign {
lhs: ExprId,
rhs: ExprId,
},
/// A *non-overloaded* operation assignment, e.g. `lhs += rhs`.
AssignOp {
op: BinOp,
lhs: ExprId,
rhs: ExprId,
},
/// Access to a field of a struct, a tuple, an union, or an enum.
Field {
lhs: ExprId,
/// Variant containing the field.
variant_index: VariantIdx,
/// This can be a named (`.foo`) or unnamed (`.0`) field.
name: FieldIdx,
},
/// A *non-overloaded* indexing operation.
Index {
lhs: ExprId,
index: ExprId,
},
/// A local variable.
VarRef {
id: LocalVarId,
},
/// Used to represent upvars mentioned in a closure/coroutine
UpvarRef {
/// DefId of the closure/coroutine
closure_def_id: DefId,
/// HirId of the root variable
var_hir_id: LocalVarId,
},
/// A borrow, e.g. `&arg`.
Borrow {
borrow_kind: BorrowKind,
arg: ExprId,
},
/// A `&raw [const|mut] $place_expr` raw borrow resulting in type `*[const|mut] T`.
RawBorrow {
mutability: hir::Mutability,
arg: ExprId,
},
/// A `break` expression.
Break {
label: region::Scope,
value: Option<ExprId>,
},
/// A `continue` expression.
Continue {
label: region::Scope,
},
/// A `return` expression.
Return {
value: Option<ExprId>,
},
/// A `become` expression.
Become {
value: ExprId,
},
/// An inline `const` block, e.g. `const {}`.
ConstBlock {
did: DefId,
args: GenericArgsRef<'tcx>,
},
/// An array literal constructed from one repeated element, e.g. `[1; 5]`.
Repeat {
value: ExprId,
count: ty::Const<'tcx>,
},
/// An array, e.g. `[a, b, c, d]`.
Array {
fields: Box<[ExprId]>,
},
/// A tuple, e.g. `(a, b, c, d)`.
Tuple {
fields: Box<[ExprId]>,
},
/// An ADT constructor, e.g. `Foo {x: 1, y: 2}`.
Adt(Box<AdtExpr<'tcx>>),
/// A type ascription on a place.
PlaceTypeAscription {
source: ExprId,
/// Type that the user gave to this expression
user_ty: UserTy<'tcx>,
},
/// A type ascription on a value, e.g. `42: i32`.
ValueTypeAscription {
source: ExprId,
/// Type that the user gave to this expression
user_ty: UserTy<'tcx>,
},
/// A closure definition.
Closure(Box<ClosureExpr<'tcx>>),
/// A literal.
Literal {
lit: &'tcx hir::Lit,
neg: bool,
},
/// For literals that don't correspond to anything in the HIR
NonHirLiteral {
lit: ty::ScalarInt,
user_ty: UserTy<'tcx>,
},
/// A literal of a ZST type.
ZstLiteral {
user_ty: UserTy<'tcx>,
},
/// Associated constants and named constants
NamedConst {
def_id: DefId,
args: GenericArgsRef<'tcx>,
user_ty: UserTy<'tcx>,
},
ConstParam {
param: ty::ParamConst,
def_id: DefId,
},
// FIXME improve docs for `StaticRef` by distinguishing it from `NamedConst`
/// A literal containing the address of a `static`.
///
/// This is only distinguished from `Literal` so that we can register some
/// info for diagnostics.
StaticRef {
alloc_id: AllocId,
ty: Ty<'tcx>,
def_id: DefId,
},
/// Inline assembly, i.e. `asm!()`.
InlineAsm(Box<InlineAsmExpr<'tcx>>),
/// Field offset (`offset_of!`)
OffsetOf {
container: Ty<'tcx>,
fields: &'tcx List<(VariantIdx, FieldIdx)>,
},
/// An expression taking a reference to a thread local.
ThreadLocalRef(DefId),
/// A `yield` expression.
Yield {
value: ExprId,
},
}
/// Represents the association of a field identifier and an expression.
///
/// This is used in struct constructors.
#[derive(Clone, Debug, HashStable)]
pub struct FieldExpr {
pub name: FieldIdx,
pub expr: ExprId,
}
#[derive(Clone, Debug, HashStable)]
pub struct FruInfo<'tcx> {
pub base: ExprId,
pub field_types: Box<[Ty<'tcx>]>,
}
/// A `match` arm.
#[derive(Clone, Debug, HashStable)]
pub struct Arm<'tcx> {
pub pattern: Box<Pat<'tcx>>,
pub guard: Option<ExprId>,
pub body: ExprId,
pub lint_level: LintLevel,
pub scope: region::Scope,
pub span: Span,
}
#[derive(Copy, Clone, Debug, HashStable)]
pub enum LogicalOp {
/// The `&&` operator.
And,
/// The `||` operator.
Or,
}
#[derive(Clone, Debug, HashStable)]
pub enum InlineAsmOperand<'tcx> {
In {
reg: InlineAsmRegOrRegClass,
expr: ExprId,
},
Out {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: Option<ExprId>,
},
InOut {
reg: InlineAsmRegOrRegClass,
late: bool,
expr: ExprId,
},
SplitInOut {
reg: InlineAsmRegOrRegClass,
late: bool,
in_expr: ExprId,
out_expr: Option<ExprId>,
},
Const {
value: mir::Const<'tcx>,
span: Span,
},
SymFn {
value: mir::Const<'tcx>,
span: Span,
},
SymStatic {
def_id: DefId,
},
Label {
block: BlockId,
},
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub struct FieldPat<'tcx> {
pub field: FieldIdx,
pub pattern: Box<Pat<'tcx>>,
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub struct Pat<'tcx> {
pub ty: Ty<'tcx>,
pub span: Span,
pub kind: PatKind<'tcx>,
}
impl<'tcx> Pat<'tcx> {
pub fn simple_ident(&self) -> Option<Symbol> {
match self.kind {
PatKind::Binding {
name, mode: BindingMode(ByRef::No, _), subpattern: None, ..
} => Some(name),
_ => None,
}
}
/// Call `f` on every "binding" in a pattern, e.g., on `a` in
/// `match foo() { Some(a) => (), None => () }`
pub fn each_binding(&self, mut f: impl FnMut(Symbol, ByRef, Ty<'tcx>, Span)) {
self.walk_always(|p| {
if let PatKind::Binding { name, mode, ty, .. } = p.kind {
f(name, mode.0, ty, p.span);
}
});
}
/// Walk the pattern in left-to-right order.
///
/// If `it(pat)` returns `false`, the children are not visited.
pub fn walk(&self, mut it: impl FnMut(&Pat<'tcx>) -> bool) {
self.walk_(&mut it)
}
fn walk_(&self, it: &mut impl FnMut(&Pat<'tcx>) -> bool) {
if !it(self) {
return;
}
use PatKind::*;
match &self.kind {
Wild
| Never
| Range(..)
| Binding { subpattern: None, .. }
| Constant { .. }
| Error(_) => {}
AscribeUserType { subpattern, .. }
| Binding { subpattern: Some(subpattern), .. }
| Deref { subpattern }
| DerefPattern { subpattern, .. }
| InlineConstant { subpattern, .. } => subpattern.walk_(it),
Leaf { subpatterns } | Variant { subpatterns, .. } => {
subpatterns.iter().for_each(|field| field.pattern.walk_(it))
}
Or { pats } => pats.iter().for_each(|p| p.walk_(it)),
Array { box ref prefix, ref slice, box ref suffix }
| Slice { box ref prefix, ref slice, box ref suffix } => {
prefix.iter().chain(slice.iter()).chain(suffix.iter()).for_each(|p| p.walk_(it))
}
}
}
/// Whether the pattern has a `PatKind::Error` nested within.
pub fn pat_error_reported(&self) -> Result<(), ErrorGuaranteed> {
let mut error = None;
self.walk(|pat| {
if let PatKind::Error(e) = pat.kind
&& error.is_none()
{
error = Some(e);
}
error.is_none()
});
match error {
None => Ok(()),
Some(e) => Err(e),
}
}
/// Walk the pattern in left-to-right order.
///
/// If you always want to recurse, prefer this method over `walk`.
pub fn walk_always(&self, mut it: impl FnMut(&Pat<'tcx>)) {
self.walk(|p| {
it(p);
true
})
}
/// Whether this a never pattern.
pub fn is_never_pattern(&self) -> bool {
let mut is_never_pattern = false;
self.walk(|pat| match &pat.kind {
PatKind::Never => {
is_never_pattern = true;
false
}
PatKind::Or { pats } => {
is_never_pattern = pats.iter().all(|p| p.is_never_pattern());
false
}
_ => true,
});
is_never_pattern
}
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub struct Ascription<'tcx> {
pub annotation: CanonicalUserTypeAnnotation<'tcx>,
/// Variance to use when relating the `user_ty` to the **type of the value being
/// matched**. Typically, this is `Variance::Covariant`, since the value being matched must
/// have a type that is some subtype of the ascribed type.
///
/// Note that this variance does not apply for any bindings within subpatterns. The type
/// assigned to those bindings must be exactly equal to the `user_ty` given here.
///
/// The only place where this field is not `Covariant` is when matching constants, where
/// we currently use `Contravariant` -- this is because the constant type just needs to
/// be "comparable" to the type of the input value. So, for example:
///
/// ```text
/// match x { "foo" => .. }
/// ```
///
/// requires that `&'static str <: T_x`, where `T_x` is the type of `x`. Really, we should
/// probably be checking for a `PartialEq` impl instead, but this preserves the behavior
/// of the old type-check for now. See #57280 for details.
pub variance: ty::Variance,
}
#[derive(Clone, Debug, HashStable, TypeVisitable)]
pub enum PatKind<'tcx> {
/// A wildcard pattern: `_`.
Wild,
AscribeUserType {
ascription: Ascription<'tcx>,
subpattern: Box<Pat<'tcx>>,
},
/// `x`, `ref x`, `x @ P`, etc.
Binding {
name: Symbol,
#[type_visitable(ignore)]
mode: BindingMode,
#[type_visitable(ignore)]
var: LocalVarId,
ty: Ty<'tcx>,
subpattern: Option<Box<Pat<'tcx>>>,
/// Is this the leftmost occurrence of the binding, i.e., is `var` the
/// `HirId` of this pattern?
is_primary: bool,
},
/// `Foo(...)` or `Foo{...}` or `Foo`, where `Foo` is a variant name from an ADT with
/// multiple variants.
Variant {
adt_def: AdtDef<'tcx>,
args: GenericArgsRef<'tcx>,
variant_index: VariantIdx,
subpatterns: Vec<FieldPat<'tcx>>,
},
/// `(...)`, `Foo(...)`, `Foo{...}`, or `Foo`, where `Foo` is a variant name from an ADT with
/// a single variant.
Leaf {
subpatterns: Vec<FieldPat<'tcx>>,
},
/// `box P`, `&P`, `&mut P`, etc.
Deref {
subpattern: Box<Pat<'tcx>>,
},
/// Deref pattern, written `box P` for now.
DerefPattern {
subpattern: Box<Pat<'tcx>>,
mutability: hir::Mutability,
},
/// One of the following:
/// * `&str`/`&[u8]` (represented as a valtree), which will be handled as a string/slice pattern
/// and thus exhaustiveness checking will detect if you use the same string/slice twice in
/// different patterns.
/// * integer, bool, char or float (represented as a valtree), which will be handled by
/// exhaustiveness to cover exactly its own value, similar to `&str`, but these values are
/// much simpler.
/// * `String`, if `string_deref_patterns` is enabled.
Constant {
value: mir::Const<'tcx>,
},
/// Inline constant found while lowering a pattern.
InlineConstant {
/// [LocalDefId] of the constant, we need this so that we have a
/// reference that can be used by unsafety checking to visit nested
/// unevaluated constants.
def: LocalDefId,
/// If the inline constant is used in a range pattern, this subpattern
/// represents the range (if both ends are inline constants, there will
/// be multiple InlineConstant wrappers).
///
/// Otherwise, the actual pattern that the constant lowered to. As with
/// other constants, inline constants are matched structurally where
/// possible.
subpattern: Box<Pat<'tcx>>,
},
Range(Box<PatRange<'tcx>>),
/// Matches against a slice, checking the length and extracting elements.
/// irrefutable when there is a slice pattern and both `prefix` and `suffix` are empty.
/// e.g., `&[ref xs @ ..]`.
Slice {
prefix: Box<[Box<Pat<'tcx>>]>,
slice: Option<Box<Pat<'tcx>>>,
suffix: Box<[Box<Pat<'tcx>>]>,
},
/// Fixed match against an array; irrefutable.
Array {
prefix: Box<[Box<Pat<'tcx>>]>,
slice: Option<Box<Pat<'tcx>>>,
suffix: Box<[Box<Pat<'tcx>>]>,
},
/// An or-pattern, e.g. `p | q`.
/// Invariant: `pats.len() >= 2`.
Or {
pats: Box<[Box<Pat<'tcx>>]>,
},
/// A never pattern `!`.
Never,
/// An error has been encountered during lowering. We probably shouldn't report more lints
/// related to this pattern.
Error(ErrorGuaranteed),
}
/// A range pattern.
/// The boundaries must be of the same type and that type must be numeric.
#[derive(Clone, Debug, PartialEq, HashStable, TypeVisitable)]
pub struct PatRange<'tcx> {
/// Must not be `PosInfinity`.
pub lo: PatRangeBoundary<'tcx>,
/// Must not be `NegInfinity`.
pub hi: PatRangeBoundary<'tcx>,
#[type_visitable(ignore)]
pub end: RangeEnd,
pub ty: Ty<'tcx>,
}
impl<'tcx> PatRange<'tcx> {
/// Whether this range covers the full extent of possible values (best-effort, we ignore floats).
#[inline]
pub fn is_full_range(&self, tcx: TyCtxt<'tcx>) -> Option<bool> {
let (min, max, size, bias) = match *self.ty.kind() {
ty::Char => (0, std::char::MAX as u128, Size::from_bits(32), 0),
ty::Int(ity) => {
let size = Integer::from_int_ty(&tcx, ity).size();
let max = size.truncate(u128::MAX);
let bias = 1u128 << (size.bits() - 1);
(0, max, size, bias)
}
ty::Uint(uty) => {
let size = Integer::from_uint_ty(&tcx, uty).size();
let max = size.unsigned_int_max();
(0, max, size, 0)
}
_ => return None,
};
// We want to compare ranges numerically, but the order of the bitwise representation of
// signed integers does not match their numeric order. Thus, to correct the ordering, we
// need to shift the range of signed integers to correct the comparison. This is achieved by
// XORing with a bias (see pattern/deconstruct_pat.rs for another pertinent example of this
// pattern).
//
// Also, for performance, it's important to only do the second `try_to_bits` if necessary.
let lo_is_min = match self.lo {
PatRangeBoundary::NegInfinity => true,
PatRangeBoundary::Finite(value) => {
let lo = value.try_to_bits(size).unwrap() ^ bias;
lo <= min
}
PatRangeBoundary::PosInfinity => false,
};
if lo_is_min {
let hi_is_max = match self.hi {
PatRangeBoundary::NegInfinity => false,
PatRangeBoundary::Finite(value) => {
let hi = value.try_to_bits(size).unwrap() ^ bias;
hi > max || hi == max && self.end == RangeEnd::Included
}
PatRangeBoundary::PosInfinity => true,
};
if hi_is_max {
return Some(true);
}
}
Some(false)
}
#[inline]
pub fn contains(
&self,
value: mir::Const<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Option<bool> {
use Ordering::*;
debug_assert_eq!(self.ty, value.ty());
let ty = self.ty;
let value = PatRangeBoundary::Finite(value);
// For performance, it's important to only do the second comparison if necessary.
Some(
match self.lo.compare_with(value, ty, tcx, param_env)? {
Less | Equal => true,
Greater => false,
} && match value.compare_with(self.hi, ty, tcx, param_env)? {
Less => true,
Equal => self.end == RangeEnd::Included,
Greater => false,
},
)
}
#[inline]
pub fn overlaps(
&self,
other: &Self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Option<bool> {
use Ordering::*;
debug_assert_eq!(self.ty, other.ty);
// For performance, it's important to only do the second comparison if necessary.
Some(
match other.lo.compare_with(self.hi, self.ty, tcx, param_env)? {
Less => true,
Equal => self.end == RangeEnd::Included,
Greater => false,
} && match self.lo.compare_with(other.hi, self.ty, tcx, param_env)? {
Less => true,
Equal => other.end == RangeEnd::Included,
Greater => false,
},
)
}
}
impl<'tcx> fmt::Display for PatRange<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let PatRangeBoundary::Finite(value) = &self.lo {
write!(f, "{value}")?;
}
if let PatRangeBoundary::Finite(value) = &self.hi {
write!(f, "{}", self.end)?;
write!(f, "{value}")?;
} else {
// `0..` is parsed as an inclusive range, we must display it correctly.
write!(f, "..")?;
}
Ok(())
}
}
/// A (possibly open) boundary of a range pattern.
/// If present, the const must be of a numeric type.
#[derive(Copy, Clone, Debug, PartialEq, HashStable, TypeVisitable)]
pub enum PatRangeBoundary<'tcx> {
Finite(mir::Const<'tcx>),
NegInfinity,
PosInfinity,
}
impl<'tcx> PatRangeBoundary<'tcx> {
#[inline]
pub fn is_finite(self) -> bool {
matches!(self, Self::Finite(..))
}
#[inline]
pub fn as_finite(self) -> Option<mir::Const<'tcx>> {
match self {
Self::Finite(value) => Some(value),
Self::NegInfinity | Self::PosInfinity => None,
}
}
pub fn eval_bits(self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> u128 {
match self {
Self::Finite(value) => value.eval_bits(tcx, param_env),
Self::NegInfinity => {
// Unwrap is ok because the type is known to be numeric.
ty.numeric_min_and_max_as_bits(tcx).unwrap().0
}
Self::PosInfinity => {
// Unwrap is ok because the type is known to be numeric.
ty.numeric_min_and_max_as_bits(tcx).unwrap().1
}
}
}
#[instrument(skip(tcx, param_env), level = "debug", ret)]
pub fn compare_with(
self,
other: Self,
ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Option<Ordering> {
use PatRangeBoundary::*;
match (self, other) {
// When comparing with infinities, we must remember that `0u8..` and `0u8..=255`
// describe the same range. These two shortcuts are ok, but for the rest we must check
// bit values.
(PosInfinity, PosInfinity) => return Some(Ordering::Equal),
(NegInfinity, NegInfinity) => return Some(Ordering::Equal),
// This code is hot when compiling matches with many ranges. So we
// special-case extraction of evaluated scalars for speed, for types where
// we can do scalar comparisons. E.g. `unicode-normalization` has
// many ranges such as '\u{037A}'..='\u{037F}', and chars can be compared
// in this way.
(Finite(a), Finite(b)) if matches!(ty.kind(), ty::Int(_) | ty::Uint(_) | ty::Char) => {
if let (Some(a), Some(b)) = (a.try_to_scalar_int(), b.try_to_scalar_int()) {
let sz = ty.primitive_size(tcx);
let cmp = match ty.kind() {
ty::Uint(_) | ty::Char => a.to_uint(sz).cmp(&b.to_uint(sz)),
ty::Int(_) => a.to_int(sz).cmp(&b.to_int(sz)),
_ => unreachable!(),
};
return Some(cmp);
}
}
_ => {}
}
let a = self.eval_bits(ty, tcx, param_env);
let b = other.eval_bits(ty, tcx, param_env);
match ty.kind() {
ty::Float(ty::FloatTy::F16) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Half::from_bits(a);
let b = rustc_apfloat::ieee::Half::from_bits(b);
a.partial_cmp(&b)
}
ty::Float(ty::FloatTy::F32) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Single::from_bits(a);
let b = rustc_apfloat::ieee::Single::from_bits(b);
a.partial_cmp(&b)
}
ty::Float(ty::FloatTy::F64) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Double::from_bits(a);
let b = rustc_apfloat::ieee::Double::from_bits(b);
a.partial_cmp(&b)
}
ty::Float(ty::FloatTy::F128) => {
use rustc_apfloat::Float;
let a = rustc_apfloat::ieee::Quad::from_bits(a);
let b = rustc_apfloat::ieee::Quad::from_bits(b);
a.partial_cmp(&b)
}
ty::Int(ity) => {
let size = rustc_target::abi::Integer::from_int_ty(&tcx, *ity).size();
let a = size.sign_extend(a) as i128;
let b = size.sign_extend(b) as i128;
Some(a.cmp(&b))
}
ty::Uint(_) | ty::Char => Some(a.cmp(&b)),
_ => bug!(),
}
}
}
// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
use rustc_data_structures::static_assert_size;
use super::*;
// tidy-alphabetical-start
static_assert_size!(Block, 48);
static_assert_size!(Expr<'_>, 64);
static_assert_size!(ExprKind<'_>, 40);
static_assert_size!(Pat<'_>, 64);
static_assert_size!(PatKind<'_>, 48);
static_assert_size!(Stmt<'_>, 48);
static_assert_size!(StmtKind<'_>, 48);
// tidy-alphabetical-end
}