rustc_hir_analysis/hir_ty_lowering/dyn_compatibility.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::struct_span_code_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_lint_defs::builtin::UNUSED_ASSOCIATED_TYPE_BOUNDS;
use rustc_middle::span_bug;
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::{
self, DynKind, ExistentialPredicateStableCmpExt as _, Ty, TyCtxt, TypeFoldable, Upcast,
};
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::traits::{self, hir_ty_lowering_dyn_compatibility_violations};
use rustc_type_ir::elaborate::ClauseWithSupertraitSpan;
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};
use super::HirTyLowerer;
use crate::bounds::Bounds;
use crate::hir_ty_lowering::{
GenericArgCountMismatch, GenericArgCountResult, OnlySelfBounds, RegionInferReason,
};
impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
/// Lower a trait object type from the HIR to our internal notion of a type.
#[instrument(level = "debug", skip_all, ret)]
pub(super) fn lower_trait_object_ty(
&self,
span: Span,
hir_id: hir::HirId,
hir_trait_bounds: &[(hir::PolyTraitRef<'tcx>, hir::TraitBoundModifier)],
lifetime: &hir::Lifetime,
representation: DynKind,
) -> Ty<'tcx> {
let tcx = self.tcx();
let mut bounds = Bounds::default();
let mut potential_assoc_types = Vec::new();
let dummy_self = self.tcx().types.trait_object_dummy_self;
for (trait_bound, modifier) in hir_trait_bounds.iter().rev() {
if *modifier == hir::TraitBoundModifier::Maybe {
continue;
}
if let GenericArgCountResult {
correct:
Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
..
} = self.lower_poly_trait_ref(
&trait_bound.trait_ref,
trait_bound.span,
ty::BoundConstness::NotConst,
ty::PredicatePolarity::Positive,
dummy_self,
&mut bounds,
// True so we don't populate `bounds` with associated type bounds, even
// though they're disallowed from object types.
OnlySelfBounds(true),
) {
potential_assoc_types.extend(cur_potential_assoc_types);
}
}
let mut trait_bounds = vec![];
let mut projection_bounds = vec![];
for (pred, span) in bounds.clauses(tcx) {
let bound_pred = pred.kind();
match bound_pred.skip_binder() {
ty::ClauseKind::Trait(trait_pred) => {
assert_eq!(trait_pred.polarity, ty::PredicatePolarity::Positive);
trait_bounds.push((bound_pred.rebind(trait_pred.trait_ref), span));
}
ty::ClauseKind::Projection(proj) => {
projection_bounds.push((bound_pred.rebind(proj), span));
}
ty::ClauseKind::TypeOutlives(_) => {
// Do nothing, we deal with regions separately
}
ty::ClauseKind::RegionOutlives(_)
| ty::ClauseKind::ConstArgHasType(..)
| ty::ClauseKind::WellFormed(_)
| ty::ClauseKind::ConstEvaluatable(_) => {
span_bug!(span, "did not expect {pred} clause in object bounds");
}
}
}
// Expand trait aliases recursively and check that only one regular (non-auto) trait
// is used and no 'maybe' bounds are used.
let expanded_traits =
traits::expand_trait_aliases(tcx, trait_bounds.iter().map(|&(a, b)| (a, b)));
let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
if regular_traits.len() > 1 {
let _ = self.report_trait_object_addition_traits_error(®ular_traits);
} else if regular_traits.is_empty() && auto_traits.is_empty() {
let reported = self.report_trait_object_with_no_traits_error(span, &trait_bounds);
return Ty::new_error(tcx, reported);
}
// Check that there are no gross dyn-compatibility violations;
// most importantly, that the supertraits don't contain `Self`,
// to avoid ICEs.
for item in ®ular_traits {
let violations =
hir_ty_lowering_dyn_compatibility_violations(tcx, item.trait_ref().def_id());
if !violations.is_empty() {
let reported = report_dyn_incompatibility(
tcx,
span,
Some(hir_id),
item.trait_ref().def_id(),
&violations,
)
.emit();
return Ty::new_error(tcx, reported);
}
}
let mut associated_types: FxIndexMap<Span, FxIndexSet<DefId>> = FxIndexMap::default();
let regular_traits_refs_spans = trait_bounds
.into_iter()
.filter(|(trait_ref, _)| !tcx.trait_is_auto(trait_ref.def_id()));
for (base_trait_ref, original_span) in regular_traits_refs_spans {
let base_pred: ty::Predicate<'tcx> = base_trait_ref.upcast(tcx);
for ClauseWithSupertraitSpan { pred, original_span, supertrait_span } in
traits::elaborate(tcx, [ClauseWithSupertraitSpan::new(base_pred, original_span)])
.filter_only_self()
{
debug!("observing object predicate `{pred:?}`");
let bound_predicate = pred.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
let pred = bound_predicate.rebind(pred);
associated_types.entry(original_span).or_default().extend(
tcx.associated_items(pred.def_id())
.in_definition_order()
.filter(|item| item.kind == ty::AssocKind::Type)
.filter(|item| {
!item.is_impl_trait_in_trait() && !item.is_effects_desugaring
})
.map(|item| item.def_id),
);
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(pred)) => {
let pred = bound_predicate.rebind(pred);
// A `Self` within the original bound will be instantiated with a
// `trait_object_dummy_self`, so check for that.
let references_self = match pred.skip_binder().term.unpack() {
ty::TermKind::Ty(ty) => ty.walk().any(|arg| arg == dummy_self.into()),
// FIXME(associated_const_equality): We should walk the const instead of not doing anything
ty::TermKind::Const(_) => false,
};
// If the projection output contains `Self`, force the user to
// elaborate it explicitly to avoid a lot of complexity.
//
// The "classically useful" case is the following:
// ```
// trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
// type MyOutput;
// }
// ```
//
// Here, the user could theoretically write `dyn MyTrait<Output = X>`,
// but actually supporting that would "expand" to an infinitely-long type
// `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
//
// Instead, we force the user to write
// `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
// the discussion in #56288 for alternatives.
if !references_self {
// Include projections defined on supertraits.
projection_bounds.push((pred, original_span));
}
self.check_elaborated_projection_mentions_input_lifetimes(
pred,
original_span,
supertrait_span,
);
}
_ => (),
}
}
}
// `dyn Trait<Assoc = Foo>` desugars to (not Rust syntax) `dyn Trait where <Self as Trait>::Assoc = Foo`.
// So every `Projection` clause is an `Assoc = Foo` bound. `associated_types` contains all associated
// types's `DefId`, so the following loop removes all the `DefIds` of the associated types that have a
// corresponding `Projection` clause
for def_ids in associated_types.values_mut() {
for (projection_bound, span) in &projection_bounds {
let def_id = projection_bound.projection_def_id();
// FIXME(#120456) - is `swap_remove` correct?
def_ids.swap_remove(&def_id);
if tcx.generics_require_sized_self(def_id) {
tcx.emit_node_span_lint(
UNUSED_ASSOCIATED_TYPE_BOUNDS,
hir_id,
*span,
crate::errors::UnusedAssociatedTypeBounds { span: *span },
);
}
}
// If the associated type has a `where Self: Sized` bound, we do not need to constrain the associated
// type in the `dyn Trait`.
def_ids.retain(|def_id| !tcx.generics_require_sized_self(def_id));
}
self.complain_about_missing_assoc_tys(
associated_types,
potential_assoc_types,
hir_trait_bounds,
);
// De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
// `dyn Trait + Send`.
// We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
// the bounds
let mut duplicates = FxHashSet::default();
auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
debug!(?regular_traits);
debug!(?auto_traits);
// Erase the `dummy_self` (`trait_object_dummy_self`) used above.
let existential_trait_refs = regular_traits.iter().map(|i| {
i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
assert_eq!(trait_ref.self_ty(), dummy_self);
// Verify that `dummy_self` did not leak inside default type parameters. This
// could not be done at path creation, since we need to see through trait aliases.
let mut missing_type_params = vec![];
let mut references_self = false;
let generics = tcx.generics_of(trait_ref.def_id);
let args: Vec<_> = trait_ref
.args
.iter()
.enumerate()
.skip(1) // Remove `Self` for `ExistentialPredicate`.
.map(|(index, arg)| {
if arg == dummy_self.into() {
let param = &generics.own_params[index];
missing_type_params.push(param.name);
Ty::new_misc_error(tcx).into()
} else if arg.walk().any(|arg| arg == dummy_self.into()) {
references_self = true;
let guar = self.dcx().span_delayed_bug(
span,
"trait object trait bounds reference `Self`",
);
replace_dummy_self_with_error(tcx, arg, guar)
} else {
arg
}
})
.collect();
let args = tcx.mk_args(&args);
let span = i.bottom().1;
let empty_generic_args = hir_trait_bounds.iter().any(|(hir_bound, _)| {
hir_bound.trait_ref.path.res == Res::Def(DefKind::Trait, trait_ref.def_id)
&& hir_bound.span.contains(span)
});
self.complain_about_missing_type_params(
missing_type_params,
trait_ref.def_id,
span,
empty_generic_args,
);
if references_self {
let def_id = i.bottom().0.def_id();
struct_span_code_err!(
self.dcx(),
i.bottom().1,
E0038,
"the {} `{}` cannot be made into an object",
tcx.def_descr(def_id),
tcx.item_name(def_id),
)
.with_note(
rustc_middle::traits::DynCompatibilityViolation::SupertraitSelf(
smallvec![],
)
.error_msg(),
)
.emit();
}
ty::ExistentialTraitRef { def_id: trait_ref.def_id, args }
})
});
let existential_projections = projection_bounds.iter().map(|(bound, _)| {
bound.map_bound(|mut b| {
assert_eq!(b.projection_term.self_ty(), dummy_self);
// Like for trait refs, verify that `dummy_self` did not leak inside default type
// parameters.
let references_self = b.projection_term.args.iter().skip(1).any(|arg| {
if arg.walk().any(|arg| arg == dummy_self.into()) {
return true;
}
false
});
if references_self {
let guar = tcx
.dcx()
.span_delayed_bug(span, "trait object projection bounds reference `Self`");
b.projection_term = replace_dummy_self_with_error(tcx, b.projection_term, guar);
}
ty::ExistentialProjection::erase_self_ty(tcx, b)
})
});
let regular_trait_predicates = existential_trait_refs
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
});
// N.b. principal, projections, auto traits
// FIXME: This is actually wrong with multiple principals in regards to symbol mangling
let mut v = regular_trait_predicates
.chain(
existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
)
.chain(auto_trait_predicates)
.collect::<SmallVec<[_; 8]>>();
v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
v.dedup();
let existential_predicates = tcx.mk_poly_existential_predicates(&v);
// Use explicitly-specified region bound, unless the bound is missing.
let region_bound = if !lifetime.is_elided() {
self.lower_lifetime(lifetime, RegionInferReason::ExplicitObjectLifetime)
} else {
self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
// Curiously, we prefer object lifetime default for `+ '_`...
if tcx.named_bound_var(lifetime.hir_id).is_some() {
self.lower_lifetime(lifetime, RegionInferReason::ExplicitObjectLifetime)
} else {
let reason =
if let hir::LifetimeName::ImplicitObjectLifetimeDefault = lifetime.res {
if let hir::Node::Ty(hir::Ty {
kind: hir::TyKind::Ref(parent_lifetime, _),
..
}) = tcx.parent_hir_node(hir_id)
&& tcx.named_bound_var(parent_lifetime.hir_id).is_none()
{
// Parent lifetime must have failed to resolve. Don't emit a redundant error.
RegionInferReason::ExplicitObjectLifetime
} else {
RegionInferReason::ObjectLifetimeDefault
}
} else {
RegionInferReason::ExplicitObjectLifetime
};
self.re_infer(span, reason)
}
})
};
debug!(?region_bound);
Ty::new_dynamic(tcx, existential_predicates, region_bound, representation)
}
/// Check that elaborating the principal of a trait ref doesn't lead to projections
/// that are unconstrained. This can happen because an otherwise unconstrained
/// *type variable* can be substituted with a type that has late-bound regions. See
/// `elaborated-predicates-unconstrained-late-bound.rs` for a test.
fn check_elaborated_projection_mentions_input_lifetimes(
&self,
pred: ty::PolyProjectionPredicate<'tcx>,
span: Span,
supertrait_span: Span,
) {
let tcx = self.tcx();
// Find any late-bound regions declared in `ty` that are not
// declared in the trait-ref or assoc_item. These are not well-formed.
//
// Example:
//
// for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
// for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
let late_bound_in_projection_term =
tcx.collect_constrained_late_bound_regions(pred.map_bound(|pred| pred.projection_term));
let late_bound_in_term =
tcx.collect_referenced_late_bound_regions(pred.map_bound(|pred| pred.term));
debug!(?late_bound_in_projection_term);
debug!(?late_bound_in_term);
// FIXME: point at the type params that don't have appropriate lifetimes:
// struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
// ---- ---- ^^^^^^^
// NOTE(associated_const_equality): This error should be impossible to trigger
// with associated const equality constraints.
self.validate_late_bound_regions(
late_bound_in_projection_term,
late_bound_in_term,
|br_name| {
let item_name = tcx.item_name(pred.projection_def_id());
struct_span_code_err!(
self.dcx(),
span,
E0582,
"binding for associated type `{}` references {}, \
which does not appear in the trait input types",
item_name,
br_name
)
.with_span_label(supertrait_span, "due to this supertrait")
},
);
}
}
fn replace_dummy_self_with_error<'tcx, T: TypeFoldable<TyCtxt<'tcx>>>(
tcx: TyCtxt<'tcx>,
t: T,
guar: ErrorGuaranteed,
) -> T {
t.fold_with(&mut BottomUpFolder {
tcx,
ty_op: |ty| {
if ty == tcx.types.trait_object_dummy_self { Ty::new_error(tcx, guar) } else { ty }
},
lt_op: |lt| lt,
ct_op: |ct| ct,
})
}