rustc_hir_analysis/hir_ty_lowering/
dyn_compatibility.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::struct_span_code_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_lint_defs::builtin::UNUSED_ASSOCIATED_TYPE_BOUNDS;
use rustc_middle::span_bug;
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::{
    self, DynKind, ExistentialPredicateStableCmpExt as _, Ty, TyCtxt, TypeFoldable, Upcast,
};
use rustc_span::{ErrorGuaranteed, Span};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::traits::{self, hir_ty_lowering_dyn_compatibility_violations};
use rustc_type_ir::elaborate::ClauseWithSupertraitSpan;
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};

use super::HirTyLowerer;
use crate::bounds::Bounds;
use crate::hir_ty_lowering::{
    GenericArgCountMismatch, GenericArgCountResult, OnlySelfBounds, RegionInferReason,
};

impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
    /// Lower a trait object type from the HIR to our internal notion of a type.
    #[instrument(level = "debug", skip_all, ret)]
    pub(super) fn lower_trait_object_ty(
        &self,
        span: Span,
        hir_id: hir::HirId,
        hir_trait_bounds: &[(hir::PolyTraitRef<'tcx>, hir::TraitBoundModifier)],
        lifetime: &hir::Lifetime,
        representation: DynKind,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();

        let mut bounds = Bounds::default();
        let mut potential_assoc_types = Vec::new();
        let dummy_self = self.tcx().types.trait_object_dummy_self;
        for (trait_bound, modifier) in hir_trait_bounds.iter().rev() {
            if *modifier == hir::TraitBoundModifier::Maybe {
                continue;
            }
            if let GenericArgCountResult {
                correct:
                    Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
                ..
            } = self.lower_poly_trait_ref(
                &trait_bound.trait_ref,
                trait_bound.span,
                ty::BoundConstness::NotConst,
                ty::PredicatePolarity::Positive,
                dummy_self,
                &mut bounds,
                // True so we don't populate `bounds` with associated type bounds, even
                // though they're disallowed from object types.
                OnlySelfBounds(true),
            ) {
                potential_assoc_types.extend(cur_potential_assoc_types);
            }
        }

        let mut trait_bounds = vec![];
        let mut projection_bounds = vec![];
        for (pred, span) in bounds.clauses(tcx) {
            let bound_pred = pred.kind();
            match bound_pred.skip_binder() {
                ty::ClauseKind::Trait(trait_pred) => {
                    assert_eq!(trait_pred.polarity, ty::PredicatePolarity::Positive);
                    trait_bounds.push((bound_pred.rebind(trait_pred.trait_ref), span));
                }
                ty::ClauseKind::Projection(proj) => {
                    projection_bounds.push((bound_pred.rebind(proj), span));
                }
                ty::ClauseKind::TypeOutlives(_) => {
                    // Do nothing, we deal with regions separately
                }
                ty::ClauseKind::RegionOutlives(_)
                | ty::ClauseKind::ConstArgHasType(..)
                | ty::ClauseKind::WellFormed(_)
                | ty::ClauseKind::ConstEvaluatable(_) => {
                    span_bug!(span, "did not expect {pred} clause in object bounds");
                }
            }
        }

        // Expand trait aliases recursively and check that only one regular (non-auto) trait
        // is used and no 'maybe' bounds are used.
        let expanded_traits =
            traits::expand_trait_aliases(tcx, trait_bounds.iter().map(|&(a, b)| (a, b)));

        let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
            expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
        if regular_traits.len() > 1 {
            let _ = self.report_trait_object_addition_traits_error(&regular_traits);
        } else if regular_traits.is_empty() && auto_traits.is_empty() {
            let reported = self.report_trait_object_with_no_traits_error(span, &trait_bounds);
            return Ty::new_error(tcx, reported);
        }

        // Check that there are no gross dyn-compatibility violations;
        // most importantly, that the supertraits don't contain `Self`,
        // to avoid ICEs.
        for item in &regular_traits {
            let violations =
                hir_ty_lowering_dyn_compatibility_violations(tcx, item.trait_ref().def_id());
            if !violations.is_empty() {
                let reported = report_dyn_incompatibility(
                    tcx,
                    span,
                    Some(hir_id),
                    item.trait_ref().def_id(),
                    &violations,
                )
                .emit();
                return Ty::new_error(tcx, reported);
            }
        }

        let mut associated_types: FxIndexMap<Span, FxIndexSet<DefId>> = FxIndexMap::default();

        let regular_traits_refs_spans = trait_bounds
            .into_iter()
            .filter(|(trait_ref, _)| !tcx.trait_is_auto(trait_ref.def_id()));

        for (base_trait_ref, original_span) in regular_traits_refs_spans {
            let base_pred: ty::Predicate<'tcx> = base_trait_ref.upcast(tcx);
            for ClauseWithSupertraitSpan { pred, original_span, supertrait_span } in
                traits::elaborate(tcx, [ClauseWithSupertraitSpan::new(base_pred, original_span)])
                    .filter_only_self()
            {
                debug!("observing object predicate `{pred:?}`");

                let bound_predicate = pred.kind();
                match bound_predicate.skip_binder() {
                    ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
                        let pred = bound_predicate.rebind(pred);
                        associated_types.entry(original_span).or_default().extend(
                            tcx.associated_items(pred.def_id())
                                .in_definition_order()
                                .filter(|item| item.kind == ty::AssocKind::Type)
                                .filter(|item| {
                                    !item.is_impl_trait_in_trait() && !item.is_effects_desugaring
                                })
                                .map(|item| item.def_id),
                        );
                    }
                    ty::PredicateKind::Clause(ty::ClauseKind::Projection(pred)) => {
                        let pred = bound_predicate.rebind(pred);
                        // A `Self` within the original bound will be instantiated with a
                        // `trait_object_dummy_self`, so check for that.
                        let references_self = match pred.skip_binder().term.unpack() {
                            ty::TermKind::Ty(ty) => ty.walk().any(|arg| arg == dummy_self.into()),
                            // FIXME(associated_const_equality): We should walk the const instead of not doing anything
                            ty::TermKind::Const(_) => false,
                        };

                        // If the projection output contains `Self`, force the user to
                        // elaborate it explicitly to avoid a lot of complexity.
                        //
                        // The "classically useful" case is the following:
                        // ```
                        //     trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
                        //         type MyOutput;
                        //     }
                        // ```
                        //
                        // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
                        // but actually supporting that would "expand" to an infinitely-long type
                        // `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
                        //
                        // Instead, we force the user to write
                        // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
                        // the discussion in #56288 for alternatives.
                        if !references_self {
                            // Include projections defined on supertraits.
                            projection_bounds.push((pred, original_span));
                        }

                        self.check_elaborated_projection_mentions_input_lifetimes(
                            pred,
                            original_span,
                            supertrait_span,
                        );
                    }
                    _ => (),
                }
            }
        }

        // `dyn Trait<Assoc = Foo>` desugars to (not Rust syntax) `dyn Trait where <Self as Trait>::Assoc = Foo`.
        // So every `Projection` clause is an `Assoc = Foo` bound. `associated_types` contains all associated
        // types's `DefId`, so the following loop removes all the `DefIds` of the associated types that have a
        // corresponding `Projection` clause
        for def_ids in associated_types.values_mut() {
            for (projection_bound, span) in &projection_bounds {
                let def_id = projection_bound.projection_def_id();
                // FIXME(#120456) - is `swap_remove` correct?
                def_ids.swap_remove(&def_id);
                if tcx.generics_require_sized_self(def_id) {
                    tcx.emit_node_span_lint(
                        UNUSED_ASSOCIATED_TYPE_BOUNDS,
                        hir_id,
                        *span,
                        crate::errors::UnusedAssociatedTypeBounds { span: *span },
                    );
                }
            }
            // If the associated type has a `where Self: Sized` bound, we do not need to constrain the associated
            // type in the `dyn Trait`.
            def_ids.retain(|def_id| !tcx.generics_require_sized_self(def_id));
        }

        self.complain_about_missing_assoc_tys(
            associated_types,
            potential_assoc_types,
            hir_trait_bounds,
        );

        // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
        // `dyn Trait + Send`.
        // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
        // the bounds
        let mut duplicates = FxHashSet::default();
        auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
        debug!(?regular_traits);
        debug!(?auto_traits);

        // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
        let existential_trait_refs = regular_traits.iter().map(|i| {
            i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
                assert_eq!(trait_ref.self_ty(), dummy_self);

                // Verify that `dummy_self` did not leak inside default type parameters. This
                // could not be done at path creation, since we need to see through trait aliases.
                let mut missing_type_params = vec![];
                let mut references_self = false;
                let generics = tcx.generics_of(trait_ref.def_id);
                let args: Vec<_> = trait_ref
                    .args
                    .iter()
                    .enumerate()
                    .skip(1) // Remove `Self` for `ExistentialPredicate`.
                    .map(|(index, arg)| {
                        if arg == dummy_self.into() {
                            let param = &generics.own_params[index];
                            missing_type_params.push(param.name);
                            Ty::new_misc_error(tcx).into()
                        } else if arg.walk().any(|arg| arg == dummy_self.into()) {
                            references_self = true;
                            let guar = self.dcx().span_delayed_bug(
                                span,
                                "trait object trait bounds reference `Self`",
                            );
                            replace_dummy_self_with_error(tcx, arg, guar)
                        } else {
                            arg
                        }
                    })
                    .collect();
                let args = tcx.mk_args(&args);

                let span = i.bottom().1;
                let empty_generic_args = hir_trait_bounds.iter().any(|(hir_bound, _)| {
                    hir_bound.trait_ref.path.res == Res::Def(DefKind::Trait, trait_ref.def_id)
                        && hir_bound.span.contains(span)
                });
                self.complain_about_missing_type_params(
                    missing_type_params,
                    trait_ref.def_id,
                    span,
                    empty_generic_args,
                );

                if references_self {
                    let def_id = i.bottom().0.def_id();
                    struct_span_code_err!(
                        self.dcx(),
                        i.bottom().1,
                        E0038,
                        "the {} `{}` cannot be made into an object",
                        tcx.def_descr(def_id),
                        tcx.item_name(def_id),
                    )
                    .with_note(
                        rustc_middle::traits::DynCompatibilityViolation::SupertraitSelf(
                            smallvec![],
                        )
                        .error_msg(),
                    )
                    .emit();
                }

                ty::ExistentialTraitRef { def_id: trait_ref.def_id, args }
            })
        });

        let existential_projections = projection_bounds.iter().map(|(bound, _)| {
            bound.map_bound(|mut b| {
                assert_eq!(b.projection_term.self_ty(), dummy_self);

                // Like for trait refs, verify that `dummy_self` did not leak inside default type
                // parameters.
                let references_self = b.projection_term.args.iter().skip(1).any(|arg| {
                    if arg.walk().any(|arg| arg == dummy_self.into()) {
                        return true;
                    }
                    false
                });
                if references_self {
                    let guar = tcx
                        .dcx()
                        .span_delayed_bug(span, "trait object projection bounds reference `Self`");
                    b.projection_term = replace_dummy_self_with_error(tcx, b.projection_term, guar);
                }

                ty::ExistentialProjection::erase_self_ty(tcx, b)
            })
        });

        let regular_trait_predicates = existential_trait_refs
            .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
        let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
            ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
        });
        // N.b. principal, projections, auto traits
        // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
        let mut v = regular_trait_predicates
            .chain(
                existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
            )
            .chain(auto_trait_predicates)
            .collect::<SmallVec<[_; 8]>>();
        v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
        v.dedup();
        let existential_predicates = tcx.mk_poly_existential_predicates(&v);

        // Use explicitly-specified region bound, unless the bound is missing.
        let region_bound = if !lifetime.is_elided() {
            self.lower_lifetime(lifetime, RegionInferReason::ExplicitObjectLifetime)
        } else {
            self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
                // Curiously, we prefer object lifetime default for `+ '_`...
                if tcx.named_bound_var(lifetime.hir_id).is_some() {
                    self.lower_lifetime(lifetime, RegionInferReason::ExplicitObjectLifetime)
                } else {
                    let reason =
                        if let hir::LifetimeName::ImplicitObjectLifetimeDefault = lifetime.res {
                            if let hir::Node::Ty(hir::Ty {
                                kind: hir::TyKind::Ref(parent_lifetime, _),
                                ..
                            }) = tcx.parent_hir_node(hir_id)
                                && tcx.named_bound_var(parent_lifetime.hir_id).is_none()
                            {
                                // Parent lifetime must have failed to resolve. Don't emit a redundant error.
                                RegionInferReason::ExplicitObjectLifetime
                            } else {
                                RegionInferReason::ObjectLifetimeDefault
                            }
                        } else {
                            RegionInferReason::ExplicitObjectLifetime
                        };
                    self.re_infer(span, reason)
                }
            })
        };
        debug!(?region_bound);

        Ty::new_dynamic(tcx, existential_predicates, region_bound, representation)
    }

    /// Check that elaborating the principal of a trait ref doesn't lead to projections
    /// that are unconstrained. This can happen because an otherwise unconstrained
    /// *type variable* can be substituted with a type that has late-bound regions. See
    /// `elaborated-predicates-unconstrained-late-bound.rs` for a test.
    fn check_elaborated_projection_mentions_input_lifetimes(
        &self,
        pred: ty::PolyProjectionPredicate<'tcx>,
        span: Span,
        supertrait_span: Span,
    ) {
        let tcx = self.tcx();

        // Find any late-bound regions declared in `ty` that are not
        // declared in the trait-ref or assoc_item. These are not well-formed.
        //
        // Example:
        //
        //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
        //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
        let late_bound_in_projection_term =
            tcx.collect_constrained_late_bound_regions(pred.map_bound(|pred| pred.projection_term));
        let late_bound_in_term =
            tcx.collect_referenced_late_bound_regions(pred.map_bound(|pred| pred.term));
        debug!(?late_bound_in_projection_term);
        debug!(?late_bound_in_term);

        // FIXME: point at the type params that don't have appropriate lifetimes:
        // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
        //                         ----  ----     ^^^^^^^
        // NOTE(associated_const_equality): This error should be impossible to trigger
        //                                  with associated const equality constraints.
        self.validate_late_bound_regions(
            late_bound_in_projection_term,
            late_bound_in_term,
            |br_name| {
                let item_name = tcx.item_name(pred.projection_def_id());
                struct_span_code_err!(
                    self.dcx(),
                    span,
                    E0582,
                    "binding for associated type `{}` references {}, \
                             which does not appear in the trait input types",
                    item_name,
                    br_name
                )
                .with_span_label(supertrait_span, "due to this supertrait")
            },
        );
    }
}

fn replace_dummy_self_with_error<'tcx, T: TypeFoldable<TyCtxt<'tcx>>>(
    tcx: TyCtxt<'tcx>,
    t: T,
    guar: ErrorGuaranteed,
) -> T {
    t.fold_with(&mut BottomUpFolder {
        tcx,
        ty_op: |ty| {
            if ty == tcx.types.trait_object_dummy_self { Ty::new_error(tcx, guar) } else { ty }
        },
        lt_op: |lt| lt,
        ct_op: |ct| ct,
    })
}