rustc_builtin_macros/deriving/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
//! The compiler code necessary to implement the `#[derive]` extensions.

use rustc_ast as ast;
use rustc_ast::ptr::P;
use rustc_ast::{GenericArg, MetaItem};
use rustc_expand::base::{Annotatable, ExpandResult, ExtCtxt, MultiItemModifier};
use rustc_span::Span;
use rustc_span::symbol::{Symbol, sym};
use thin_vec::{ThinVec, thin_vec};

macro path_local($x:ident) {
    generic::ty::Path::new_local(sym::$x)
}

macro pathvec_std($($rest:ident)::+) {{
    vec![ $( sym::$rest ),+ ]
}}

macro path_std($($x:tt)*) {
    generic::ty::Path::new( pathvec_std!( $($x)* ) )
}

pub(crate) mod bounds;
pub(crate) mod clone;
pub(crate) mod debug;
pub(crate) mod decodable;
pub(crate) mod default;
pub(crate) mod encodable;
pub(crate) mod hash;
pub(crate) mod smart_ptr;

#[path = "cmp/eq.rs"]
pub(crate) mod eq;
#[path = "cmp/ord.rs"]
pub(crate) mod ord;
#[path = "cmp/partial_eq.rs"]
pub(crate) mod partial_eq;
#[path = "cmp/partial_ord.rs"]
pub(crate) mod partial_ord;

pub(crate) mod generic;

pub(crate) type BuiltinDeriveFn =
    fn(&ExtCtxt<'_>, Span, &MetaItem, &Annotatable, &mut dyn FnMut(Annotatable), bool);

pub(crate) struct BuiltinDerive(pub(crate) BuiltinDeriveFn);

impl MultiItemModifier for BuiltinDerive {
    fn expand(
        &self,
        ecx: &mut ExtCtxt<'_>,
        span: Span,
        meta_item: &MetaItem,
        item: Annotatable,
        is_derive_const: bool,
    ) -> ExpandResult<Vec<Annotatable>, Annotatable> {
        // FIXME: Built-in derives often forget to give spans contexts,
        // so we are doing it here in a centralized way.
        let span = ecx.with_def_site_ctxt(span);
        let mut items = Vec::new();
        match item {
            Annotatable::Stmt(stmt) => {
                if let ast::StmtKind::Item(item) = stmt.into_inner().kind {
                    (self.0)(
                        ecx,
                        span,
                        meta_item,
                        &Annotatable::Item(item),
                        &mut |a| {
                            // Cannot use 'ecx.stmt_item' here, because we need to pass 'ecx'
                            // to the function
                            items.push(Annotatable::Stmt(P(ast::Stmt {
                                id: ast::DUMMY_NODE_ID,
                                kind: ast::StmtKind::Item(a.expect_item()),
                                span,
                            })));
                        },
                        is_derive_const,
                    );
                } else {
                    unreachable!("should have already errored on non-item statement")
                }
            }
            _ => {
                (self.0)(ecx, span, meta_item, &item, &mut |a| items.push(a), is_derive_const);
            }
        }
        ExpandResult::Ready(items)
    }
}

/// Constructs an expression that calls an intrinsic
fn call_intrinsic(
    cx: &ExtCtxt<'_>,
    span: Span,
    intrinsic: Symbol,
    args: ThinVec<P<ast::Expr>>,
) -> P<ast::Expr> {
    let span = cx.with_def_site_ctxt(span);
    let path = cx.std_path(&[sym::intrinsics, intrinsic]);
    cx.expr_call_global(span, path, args)
}

/// Constructs an expression that calls the `unreachable` intrinsic.
fn call_unreachable(cx: &ExtCtxt<'_>, span: Span) -> P<ast::Expr> {
    let span = cx.with_def_site_ctxt(span);
    let path = cx.std_path(&[sym::intrinsics, sym::unreachable]);
    let call = cx.expr_call_global(span, path, ThinVec::new());

    cx.expr_block(P(ast::Block {
        stmts: thin_vec![cx.stmt_expr(call)],
        id: ast::DUMMY_NODE_ID,
        rules: ast::BlockCheckMode::Unsafe(ast::CompilerGenerated),
        span,
        tokens: None,
        could_be_bare_literal: false,
    }))
}

fn assert_ty_bounds(
    cx: &ExtCtxt<'_>,
    stmts: &mut ThinVec<ast::Stmt>,
    ty: P<ast::Ty>,
    span: Span,
    assert_path: &[Symbol],
) {
    // Generate statement `let _: assert_path<ty>;`.
    let span = cx.with_def_site_ctxt(span);
    let assert_path = cx.path_all(span, true, cx.std_path(assert_path), vec![GenericArg::Type(ty)]);
    stmts.push(cx.stmt_let_type_only(span, cx.ty_path(assert_path)));
}