1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//! The compiler code necessary to implement the `#[derive(RustcEncodable)]`
//! (and `RustcDecodable`, in `decodable.rs`) extension. The idea here is that
//! type-defining items may be tagged with
//! `#[derive(RustcEncodable, RustcDecodable)]`.
//!
//! For example, a type like:
//!
//! ```ignore (old code)
//! #[derive(RustcEncodable, RustcDecodable)]
//! struct Node { id: usize }
//! ```
//!
//! would generate two implementations like:
//!
//! ```ignore (old code)
//! # struct Node { id: usize }
//! impl<S: Encoder<E>, E> Encodable<S, E> for Node {
//!     fn encode(&self, s: &mut S) -> Result<(), E> {
//!         s.emit_struct("Node", 1, |this| {
//!             this.emit_struct_field("id", 0, |this| {
//!                 Encodable::encode(&self.id, this)
//!                 /* this.emit_usize(self.id) can also be used */
//!             })
//!         })
//!     }
//! }
//!
//! impl<D: Decoder<E>, E> Decodable<D, E> for Node {
//!     fn decode(d: &mut D) -> Result<Node, E> {
//!         d.read_struct("Node", 1, |this| {
//!             match this.read_struct_field("id", 0, |this| Decodable::decode(this)) {
//!                 Ok(id) => Ok(Node { id: id }),
//!                 Err(e) => Err(e),
//!             }
//!         })
//!     }
//! }
//! ```
//!
//! Other interesting scenarios are when the item has type parameters or
//! references other non-built-in types. A type definition like:
//!
//! ```ignore (old code)
//! # #[derive(RustcEncodable, RustcDecodable)]
//! # struct Span;
//! #[derive(RustcEncodable, RustcDecodable)]
//! struct Spanned<T> { node: T, span: Span }
//! ```
//!
//! would yield functions like:
//!
//! ```ignore (old code)
//! # #[derive(RustcEncodable, RustcDecodable)]
//! # struct Span;
//! # struct Spanned<T> { node: T, span: Span }
//! impl<
//!     S: Encoder<E>,
//!     E,
//!     T: Encodable<S, E>
//! > Encodable<S, E> for Spanned<T> {
//!     fn encode(&self, s: &mut S) -> Result<(), E> {
//!         s.emit_struct("Spanned", 2, |this| {
//!             this.emit_struct_field("node", 0, |this| self.node.encode(this))
//!                 .unwrap();
//!             this.emit_struct_field("span", 1, |this| self.span.encode(this))
//!         })
//!     }
//! }
//!
//! impl<
//!     D: Decoder<E>,
//!     E,
//!     T: Decodable<D, E>
//! > Decodable<D, E> for Spanned<T> {
//!     fn decode(d: &mut D) -> Result<Spanned<T>, E> {
//!         d.read_struct("Spanned", 2, |this| {
//!             Ok(Spanned {
//!                 node: this.read_struct_field("node", 0, |this| Decodable::decode(this))
//!                     .unwrap(),
//!                 span: this.read_struct_field("span", 1, |this| Decodable::decode(this))
//!                     .unwrap(),
//!             })
//!         })
//!     }
//! }
//! ```

use rustc_ast::{AttrVec, ExprKind, MetaItem, Mutability};
use rustc_expand::base::{Annotatable, ExtCtxt};
use rustc_span::symbol::{sym, Ident, Symbol};
use rustc_span::Span;
use thin_vec::{thin_vec, ThinVec};

use crate::deriving::generic::ty::*;
use crate::deriving::generic::*;
use crate::deriving::pathvec_std;

pub(crate) fn expand_deriving_rustc_encodable(
    cx: &ExtCtxt<'_>,
    span: Span,
    mitem: &MetaItem,
    item: &Annotatable,
    push: &mut dyn FnMut(Annotatable),
    is_const: bool,
) {
    let krate = sym::rustc_serialize;
    let typaram = sym::__S;

    let trait_def = TraitDef {
        span,
        path: Path::new_(vec![krate, sym::Encodable], vec![], PathKind::Global),
        skip_path_as_bound: false,
        needs_copy_as_bound_if_packed: true,
        additional_bounds: Vec::new(),
        supports_unions: false,
        methods: vec![MethodDef {
            name: sym::encode,
            generics: Bounds {
                bounds: vec![(
                    typaram,
                    vec![Path::new_(vec![krate, sym::Encoder], vec![], PathKind::Global)],
                )],
            },
            explicit_self: true,
            nonself_args: vec![(
                Ref(Box::new(Path(Path::new_local(typaram))), Mutability::Mut),
                sym::s,
            )],
            ret_ty: Path(Path::new_(
                pathvec_std!(result::Result),
                vec![
                    Box::new(Unit),
                    Box::new(Path(Path::new_(vec![typaram, sym::Error], vec![], PathKind::Local))),
                ],
                PathKind::Std,
            )),
            attributes: AttrVec::new(),
            fieldless_variants_strategy: FieldlessVariantsStrategy::Default,
            combine_substructure: combine_substructure(Box::new(|a, b, c| {
                encodable_substructure(a, b, c, krate)
            })),
        }],
        associated_types: Vec::new(),
        is_const,
    };

    trait_def.expand(cx, mitem, item, push)
}

fn encodable_substructure(
    cx: &ExtCtxt<'_>,
    trait_span: Span,
    substr: &Substructure<'_>,
    krate: Symbol,
) -> BlockOrExpr {
    let encoder = substr.nonselflike_args[0].clone();
    // throw an underscore in front to suppress unused variable warnings
    let blkarg = Ident::new(sym::_e, trait_span);
    let blkencoder = cx.expr_ident(trait_span, blkarg);
    let fn_path = cx.expr_path(cx.path_global(
        trait_span,
        vec![
            Ident::new(krate, trait_span),
            Ident::new(sym::Encodable, trait_span),
            Ident::new(sym::encode, trait_span),
        ],
    ));

    match substr.fields {
        Struct(_, fields) => {
            let fn_emit_struct_field_path =
                cx.def_site_path(&[sym::rustc_serialize, sym::Encoder, sym::emit_struct_field]);
            let mut stmts = ThinVec::new();
            for (i, &FieldInfo { name, ref self_expr, span, .. }) in fields.iter().enumerate() {
                let name = match name {
                    Some(id) => id.name,
                    None => Symbol::intern(&format!("_field{i}")),
                };
                let self_ref = cx.expr_addr_of(span, self_expr.clone());
                let enc =
                    cx.expr_call(span, fn_path.clone(), thin_vec![self_ref, blkencoder.clone()]);
                let lambda = cx.lambda1(span, enc, blkarg);
                let call = cx.expr_call_global(
                    span,
                    fn_emit_struct_field_path.clone(),
                    thin_vec![
                        blkencoder.clone(),
                        cx.expr_str(span, name),
                        cx.expr_usize(span, i),
                        lambda,
                    ],
                );

                // last call doesn't need a try!
                let last = fields.len() - 1;
                let call = if i != last {
                    cx.expr_try(span, call)
                } else {
                    cx.expr(span, ExprKind::Ret(Some(call)))
                };

                let stmt = cx.stmt_expr(call);
                stmts.push(stmt);
            }

            // unit structs have no fields and need to return Ok()
            let blk = if stmts.is_empty() {
                let ok = cx.expr_ok(trait_span, cx.expr_tuple(trait_span, ThinVec::new()));
                cx.lambda1(trait_span, ok, blkarg)
            } else {
                cx.lambda_stmts_1(trait_span, stmts, blkarg)
            };

            let fn_emit_struct_path =
                cx.def_site_path(&[sym::rustc_serialize, sym::Encoder, sym::emit_struct]);

            let expr = cx.expr_call_global(
                trait_span,
                fn_emit_struct_path,
                thin_vec![
                    encoder,
                    cx.expr_str(trait_span, substr.type_ident.name),
                    cx.expr_usize(trait_span, fields.len()),
                    blk,
                ],
            );
            BlockOrExpr::new_expr(expr)
        }

        EnumMatching(idx, variant, fields) => {
            // We're not generating an AST that the borrow checker is expecting,
            // so we need to generate a unique local variable to take the
            // mutable loan out on, otherwise we get conflicts which don't
            // actually exist.
            let me = cx.stmt_let(trait_span, false, blkarg, encoder);
            let encoder = cx.expr_ident(trait_span, blkarg);

            let fn_emit_enum_variant_arg_path: Vec<_> =
                cx.def_site_path(&[sym::rustc_serialize, sym::Encoder, sym::emit_enum_variant_arg]);

            let mut stmts = ThinVec::new();
            if !fields.is_empty() {
                let last = fields.len() - 1;
                for (i, &FieldInfo { ref self_expr, span, .. }) in fields.iter().enumerate() {
                    let self_ref = cx.expr_addr_of(span, self_expr.clone());
                    let enc = cx.expr_call(
                        span,
                        fn_path.clone(),
                        thin_vec![self_ref, blkencoder.clone()],
                    );
                    let lambda = cx.lambda1(span, enc, blkarg);

                    let call = cx.expr_call_global(
                        span,
                        fn_emit_enum_variant_arg_path.clone(),
                        thin_vec![blkencoder.clone(), cx.expr_usize(span, i), lambda],
                    );
                    let call = if i != last {
                        cx.expr_try(span, call)
                    } else {
                        cx.expr(span, ExprKind::Ret(Some(call)))
                    };
                    stmts.push(cx.stmt_expr(call));
                }
            } else {
                let ok = cx.expr_ok(trait_span, cx.expr_tuple(trait_span, ThinVec::new()));
                let ret_ok = cx.expr(trait_span, ExprKind::Ret(Some(ok)));
                stmts.push(cx.stmt_expr(ret_ok));
            }

            let blk = cx.lambda_stmts_1(trait_span, stmts, blkarg);
            let name = cx.expr_str(trait_span, variant.ident.name);

            let fn_emit_enum_variant_path: Vec<_> =
                cx.def_site_path(&[sym::rustc_serialize, sym::Encoder, sym::emit_enum_variant]);

            let call = cx.expr_call_global(
                trait_span,
                fn_emit_enum_variant_path,
                thin_vec![
                    blkencoder,
                    name,
                    cx.expr_usize(trait_span, *idx),
                    cx.expr_usize(trait_span, fields.len()),
                    blk,
                ],
            );

            let blk = cx.lambda1(trait_span, call, blkarg);
            let fn_emit_enum_path: Vec<_> =
                cx.def_site_path(&[sym::rustc_serialize, sym::Encoder, sym::emit_enum]);
            let expr = cx.expr_call_global(
                trait_span,
                fn_emit_enum_path,
                thin_vec![encoder, cx.expr_str(trait_span, substr.type_ident.name), blk],
            );
            BlockOrExpr::new_mixed(thin_vec![me], Some(expr))
        }

        _ => cx.dcx().bug("expected Struct or EnumMatching in derive(Encodable)"),
    }
}