1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::unord::UnordSet;
use rustc_errors::{Applicability, LintDiagnostic};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_macros::LintDiagnostic;
use rustc_middle::bug;
use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
use rustc_middle::ty::{
    self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor,
};
use rustc_session::lint::FutureIncompatibilityReason;
use rustc_session::{declare_lint, declare_lint_pass};
use rustc_span::edition::Edition;
use rustc_span::Span;

use crate::{fluent_generated as fluent, LateContext, LateLintPass};

declare_lint! {
    /// The `impl_trait_overcaptures` lint warns against cases where lifetime
    /// capture behavior will differ in edition 2024.
    ///
    /// In the 2024 edition, `impl Trait`s will capture all lifetimes in scope,
    /// rather than just the lifetimes that are mentioned in the bounds of the type.
    /// Often these sets are equal, but if not, it means that the `impl Trait` may
    /// cause erroneous borrow-checker errors.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// # #![deny(impl_trait_overcaptures)]
    /// # use std::fmt::Display;
    /// let mut x = vec![];
    /// x.push(1);
    ///
    /// fn test(x: &Vec<i32>) -> impl Display {
    ///     x[0]
    /// }
    ///
    /// let element = test(&x);
    /// x.push(2);
    /// println!("{element}");
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// In edition < 2024, the returned `impl Display` doesn't capture the
    /// lifetime from the `&Vec<i32>`, so the vector can be mutably borrowed
    /// while the `impl Display` is live.
    ///
    /// To fix this, we can explicitly state that the `impl Display` doesn't
    /// capture any lifetimes, using `impl Display + use<>`.
    pub IMPL_TRAIT_OVERCAPTURES,
    Allow,
    "`impl Trait` will capture more lifetimes than possibly intended in edition 2024",
    @future_incompatible = FutureIncompatibleInfo {
        reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2024),
        reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/rpit-lifetime-capture.html>",
    };
}

declare_lint! {
    /// The `impl_trait_redundant_captures` lint warns against cases where use of the
    /// precise capturing `use<...>` syntax is not needed.
    ///
    /// In the 2024 edition, `impl Trait`s will capture all lifetimes in scope.
    /// If precise-capturing `use<...>` syntax is used, and the set of parameters
    /// that are captures are *equal* to the set of parameters in scope, then
    /// the syntax is redundant, and can be removed.
    ///
    /// ### Example
    ///
    /// ```rust,compile_fail
    /// # #![feature(lifetime_capture_rules_2024)]
    /// # #![deny(impl_trait_redundant_captures)]
    /// fn test<'a>(x: &'a i32) -> impl Sized + use<'a> { x }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// To fix this, remove the `use<'a>`, since the lifetime is already captured
    /// since it is in scope.
    pub IMPL_TRAIT_REDUNDANT_CAPTURES,
    Warn,
    "redundant precise-capturing `use<...>` syntax on an `impl Trait`",
}

declare_lint_pass!(
    /// Lint for opaque types that will begin capturing in-scope but unmentioned lifetimes
    /// in edition 2024.
    ImplTraitOvercaptures => [IMPL_TRAIT_OVERCAPTURES, IMPL_TRAIT_REDUNDANT_CAPTURES]
);

impl<'tcx> LateLintPass<'tcx> for ImplTraitOvercaptures {
    fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx hir::Item<'tcx>) {
        match &it.kind {
            hir::ItemKind::Fn(..) => check_fn(cx.tcx, it.owner_id.def_id),
            _ => {}
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx hir::ImplItem<'tcx>) {
        match &it.kind {
            hir::ImplItemKind::Fn(_, _) => check_fn(cx.tcx, it.owner_id.def_id),
            _ => {}
        }
    }

    fn check_trait_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx hir::TraitItem<'tcx>) {
        match &it.kind {
            hir::TraitItemKind::Fn(_, _) => check_fn(cx.tcx, it.owner_id.def_id),
            _ => {}
        }
    }
}

fn check_fn(tcx: TyCtxt<'_>, parent_def_id: LocalDefId) {
    let sig = tcx.fn_sig(parent_def_id).instantiate_identity();

    let mut in_scope_parameters = FxIndexSet::default();
    // Populate the in_scope_parameters list first with all of the generics in scope
    let mut current_def_id = Some(parent_def_id.to_def_id());
    while let Some(def_id) = current_def_id {
        let generics = tcx.generics_of(def_id);
        for param in &generics.own_params {
            in_scope_parameters.insert(param.def_id);
        }
        current_def_id = generics.parent;
    }

    // Then visit the signature to walk through all the binders (incl. the late-bound
    // vars on the function itself, which we need to count too).
    sig.visit_with(&mut VisitOpaqueTypes {
        tcx,
        parent_def_id,
        in_scope_parameters,
        seen: Default::default(),
    });
}

struct VisitOpaqueTypes<'tcx> {
    tcx: TyCtxt<'tcx>,
    parent_def_id: LocalDefId,
    in_scope_parameters: FxIndexSet<DefId>,
    seen: FxIndexSet<LocalDefId>,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for VisitOpaqueTypes<'tcx> {
    fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(
        &mut self,
        t: &ty::Binder<'tcx, T>,
    ) -> Self::Result {
        // When we get into a binder, we need to add its own bound vars to the scope.
        let mut added = vec![];
        for arg in t.bound_vars() {
            let arg: ty::BoundVariableKind = arg;
            match arg {
                ty::BoundVariableKind::Region(ty::BoundRegionKind::BrNamed(def_id, ..))
                | ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id, _)) => {
                    added.push(def_id);
                    let unique = self.in_scope_parameters.insert(def_id);
                    assert!(unique);
                }
                _ => {
                    self.tcx.dcx().span_delayed_bug(
                        self.tcx.def_span(self.parent_def_id),
                        format!("unsupported bound variable kind: {arg:?}"),
                    );
                }
            }
        }

        t.super_visit_with(self);

        // And remove them. The `shift_remove` should be `O(1)` since we're popping
        // them off from the end.
        for arg in added.into_iter().rev() {
            self.in_scope_parameters.shift_remove(&arg);
        }
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
        if !t.has_aliases() {
            return;
        }

        if let ty::Alias(ty::Projection, opaque_ty) = *t.kind()
            && self.tcx.is_impl_trait_in_trait(opaque_ty.def_id)
        {
            // visit the opaque of the RPITIT
            self.tcx
                .type_of(opaque_ty.def_id)
                .instantiate(self.tcx, opaque_ty.args)
                .visit_with(self)
        } else if let ty::Alias(ty::Opaque, opaque_ty) = *t.kind()
            && let Some(opaque_def_id) = opaque_ty.def_id.as_local()
            // Don't recurse infinitely on an opaque
            && self.seen.insert(opaque_def_id)
            // If it's owned by this function
            && let opaque =
                self.tcx.hir_node_by_def_id(opaque_def_id).expect_item().expect_opaque_ty()
            && let hir::OpaqueTyOrigin::FnReturn(parent_def_id) = opaque.origin
            && parent_def_id == self.parent_def_id
        {
            // Compute the set of args that are captured by the opaque...
            let mut captured = FxIndexSet::default();
            let variances = self.tcx.variances_of(opaque_def_id);
            let mut current_def_id = Some(opaque_def_id.to_def_id());
            while let Some(def_id) = current_def_id {
                let generics = self.tcx.generics_of(def_id);
                for param in &generics.own_params {
                    // A param is captured if it's invariant.
                    if variances[param.index as usize] != ty::Invariant {
                        continue;
                    }
                    // We need to turn all `ty::Param`/`ConstKind::Param` and
                    // `ReEarlyParam`/`ReBound` into def ids.
                    captured.insert(extract_def_id_from_arg(
                        self.tcx,
                        generics,
                        opaque_ty.args[param.index as usize],
                    ));
                }
                current_def_id = generics.parent;
            }

            // Compute the set of in scope params that are not captured. Get their spans,
            // since that's all we really care about them for emitting the diagnostic.
            let uncaptured_spans: Vec<_> = self
                .in_scope_parameters
                .iter()
                .filter(|def_id| !captured.contains(*def_id))
                .map(|def_id| self.tcx.def_span(def_id))
                .collect();

            let opaque_span = self.tcx.def_span(opaque_def_id);
            let new_capture_rules =
                opaque_span.at_least_rust_2024() || self.tcx.features().lifetime_capture_rules_2024;

            // If we have uncaptured args, and if the opaque doesn't already have
            // `use<>` syntax on it, and we're < edition 2024, then warn the user.
            if !new_capture_rules
                && !opaque.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Use(..)))
                && !uncaptured_spans.is_empty()
            {
                let suggestion = if let Ok(snippet) =
                    self.tcx.sess.source_map().span_to_snippet(opaque_span)
                    && snippet.starts_with("impl ")
                {
                    let (lifetimes, others): (Vec<_>, Vec<_>) = captured
                        .into_iter()
                        .partition(|def_id| self.tcx.def_kind(*def_id) == DefKind::LifetimeParam);
                    // Take all lifetime params first, then all others (ty/ct).
                    let generics: Vec<_> = lifetimes
                        .into_iter()
                        .chain(others)
                        .map(|def_id| self.tcx.item_name(def_id).to_string())
                        .collect();
                    // Make sure that we're not trying to name any APITs
                    if generics.iter().all(|name| !name.starts_with("impl ")) {
                        Some((
                            format!(" + use<{}>", generics.join(", ")),
                            opaque_span.shrink_to_hi(),
                        ))
                    } else {
                        None
                    }
                } else {
                    None
                };

                self.tcx.emit_node_span_lint(
                    IMPL_TRAIT_OVERCAPTURES,
                    self.tcx.local_def_id_to_hir_id(opaque_def_id),
                    opaque_span,
                    ImplTraitOvercapturesLint {
                        self_ty: t,
                        num_captured: uncaptured_spans.len(),
                        uncaptured_spans,
                        suggestion,
                    },
                );
            }
            // Otherwise, if we are edition 2024, have `use<>` syntax, and
            // have no uncaptured args, then we should warn to the user that
            // it's redundant to capture all args explicitly.
            else if new_capture_rules
                && let Some((captured_args, capturing_span)) =
                    opaque.bounds.iter().find_map(|bound| match *bound {
                        hir::GenericBound::Use(a, s) => Some((a, s)),
                        _ => None,
                    })
            {
                let mut explicitly_captured = UnordSet::default();
                for arg in captured_args {
                    match self.tcx.named_bound_var(arg.hir_id()) {
                        Some(
                            ResolvedArg::EarlyBound(def_id) | ResolvedArg::LateBound(_, _, def_id),
                        ) => {
                            if self.tcx.def_kind(self.tcx.local_parent(def_id)) == DefKind::OpaqueTy
                            {
                                let def_id = self
                                    .tcx
                                    .map_opaque_lifetime_to_parent_lifetime(def_id)
                                    .opt_param_def_id(self.tcx, self.parent_def_id.to_def_id())
                                    .expect("variable should have been duplicated from parent");

                                explicitly_captured.insert(def_id);
                            } else {
                                explicitly_captured.insert(def_id.to_def_id());
                            }
                        }
                        _ => {
                            self.tcx.dcx().span_delayed_bug(
                                self.tcx.hir().span(arg.hir_id()),
                                "no valid for captured arg",
                            );
                        }
                    }
                }

                if self
                    .in_scope_parameters
                    .iter()
                    .all(|def_id| explicitly_captured.contains(def_id))
                {
                    self.tcx.emit_node_span_lint(
                        IMPL_TRAIT_REDUNDANT_CAPTURES,
                        self.tcx.local_def_id_to_hir_id(opaque_def_id),
                        opaque_span,
                        ImplTraitRedundantCapturesLint { capturing_span },
                    );
                }
            }

            // Walk into the bounds of the opaque, too, since we want to get nested opaques
            // in this lint as well. Interestingly, one place that I expect this lint to fire
            // is for `impl for<'a> Bound<Out = impl Other>`, since `impl Other` will begin
            // to capture `'a` in e2024 (even though late-bound vars in opaques are not allowed).
            for clause in
                self.tcx.item_bounds(opaque_ty.def_id).iter_instantiated(self.tcx, opaque_ty.args)
            {
                clause.visit_with(self)
            }
        }

        t.super_visit_with(self);
    }
}

struct ImplTraitOvercapturesLint<'tcx> {
    uncaptured_spans: Vec<Span>,
    self_ty: Ty<'tcx>,
    num_captured: usize,
    suggestion: Option<(String, Span)>,
}

impl<'a> LintDiagnostic<'a, ()> for ImplTraitOvercapturesLint<'_> {
    fn decorate_lint<'b>(self, diag: &'b mut rustc_errors::Diag<'a, ()>) {
        diag.primary_message(fluent::lint_impl_trait_overcaptures);
        diag.arg("self_ty", self.self_ty.to_string())
            .arg("num_captured", self.num_captured)
            .span_note(self.uncaptured_spans, fluent::lint_note)
            .note(fluent::lint_note2);
        if let Some((suggestion, span)) = self.suggestion {
            diag.span_suggestion(
                span,
                fluent::lint_suggestion,
                suggestion,
                Applicability::MachineApplicable,
            );
        }
    }
}

#[derive(LintDiagnostic)]
#[diag(lint_impl_trait_redundant_captures)]
struct ImplTraitRedundantCapturesLint {
    #[suggestion(lint_suggestion, code = "", applicability = "machine-applicable")]
    capturing_span: Span,
}

fn extract_def_id_from_arg<'tcx>(
    tcx: TyCtxt<'tcx>,
    generics: &'tcx ty::Generics,
    arg: ty::GenericArg<'tcx>,
) -> DefId {
    match arg.unpack() {
        ty::GenericArgKind::Lifetime(re) => match *re {
            ty::ReEarlyParam(ebr) => generics.region_param(ebr, tcx).def_id,
            ty::ReBound(
                _,
                ty::BoundRegion { kind: ty::BoundRegionKind::BrNamed(def_id, ..), .. },
            ) => def_id,
            _ => unreachable!(),
        },
        ty::GenericArgKind::Type(ty) => {
            let ty::Param(param_ty) = *ty.kind() else {
                bug!();
            };
            generics.type_param(param_ty, tcx).def_id
        }
        ty::GenericArgKind::Const(ct) => {
            let ty::ConstKind::Param(param_ct) = ct.kind() else {
                bug!();
            };
            generics.const_param(param_ct, tcx).def_id
        }
    }
}