1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::unord::UnordSet;
use rustc_errors::{Applicability, LintDiagnostic};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_macros::LintDiagnostic;
use rustc_middle::bug;
use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
use rustc_middle::ty::{
self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor,
};
use rustc_session::lint::FutureIncompatibilityReason;
use rustc_session::{declare_lint, declare_lint_pass};
use rustc_span::edition::Edition;
use rustc_span::Span;
use crate::{fluent_generated as fluent, LateContext, LateLintPass};
declare_lint! {
/// The `impl_trait_overcaptures` lint warns against cases where lifetime
/// capture behavior will differ in edition 2024.
///
/// In the 2024 edition, `impl Trait`s will capture all lifetimes in scope,
/// rather than just the lifetimes that are mentioned in the bounds of the type.
/// Often these sets are equal, but if not, it means that the `impl Trait` may
/// cause erroneous borrow-checker errors.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![deny(impl_trait_overcaptures)]
/// # use std::fmt::Display;
/// let mut x = vec![];
/// x.push(1);
///
/// fn test(x: &Vec<i32>) -> impl Display {
/// x[0]
/// }
///
/// let element = test(&x);
/// x.push(2);
/// println!("{element}");
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// In edition < 2024, the returned `impl Display` doesn't capture the
/// lifetime from the `&Vec<i32>`, so the vector can be mutably borrowed
/// while the `impl Display` is live.
///
/// To fix this, we can explicitly state that the `impl Display` doesn't
/// capture any lifetimes, using `impl Display + use<>`.
pub IMPL_TRAIT_OVERCAPTURES,
Allow,
"`impl Trait` will capture more lifetimes than possibly intended in edition 2024",
@future_incompatible = FutureIncompatibleInfo {
reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2024),
reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/rpit-lifetime-capture.html>",
};
}
declare_lint! {
/// The `impl_trait_redundant_captures` lint warns against cases where use of the
/// precise capturing `use<...>` syntax is not needed.
///
/// In the 2024 edition, `impl Trait`s will capture all lifetimes in scope.
/// If precise-capturing `use<...>` syntax is used, and the set of parameters
/// that are captures are *equal* to the set of parameters in scope, then
/// the syntax is redundant, and can be removed.
///
/// ### Example
///
/// ```rust,compile_fail
/// # #![feature(lifetime_capture_rules_2024)]
/// # #![deny(impl_trait_redundant_captures)]
/// fn test<'a>(x: &'a i32) -> impl Sized + use<'a> { x }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// To fix this, remove the `use<'a>`, since the lifetime is already captured
/// since it is in scope.
pub IMPL_TRAIT_REDUNDANT_CAPTURES,
Warn,
"redundant precise-capturing `use<...>` syntax on an `impl Trait`",
}
declare_lint_pass!(
/// Lint for opaque types that will begin capturing in-scope but unmentioned lifetimes
/// in edition 2024.
ImplTraitOvercaptures => [IMPL_TRAIT_OVERCAPTURES, IMPL_TRAIT_REDUNDANT_CAPTURES]
);
impl<'tcx> LateLintPass<'tcx> for ImplTraitOvercaptures {
fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx hir::Item<'tcx>) {
match &it.kind {
hir::ItemKind::Fn(..) => check_fn(cx.tcx, it.owner_id.def_id),
_ => {}
}
}
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx hir::ImplItem<'tcx>) {
match &it.kind {
hir::ImplItemKind::Fn(_, _) => check_fn(cx.tcx, it.owner_id.def_id),
_ => {}
}
}
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx hir::TraitItem<'tcx>) {
match &it.kind {
hir::TraitItemKind::Fn(_, _) => check_fn(cx.tcx, it.owner_id.def_id),
_ => {}
}
}
}
fn check_fn(tcx: TyCtxt<'_>, parent_def_id: LocalDefId) {
let sig = tcx.fn_sig(parent_def_id).instantiate_identity();
let mut in_scope_parameters = FxIndexSet::default();
// Populate the in_scope_parameters list first with all of the generics in scope
let mut current_def_id = Some(parent_def_id.to_def_id());
while let Some(def_id) = current_def_id {
let generics = tcx.generics_of(def_id);
for param in &generics.own_params {
in_scope_parameters.insert(param.def_id);
}
current_def_id = generics.parent;
}
// Then visit the signature to walk through all the binders (incl. the late-bound
// vars on the function itself, which we need to count too).
sig.visit_with(&mut VisitOpaqueTypes {
tcx,
parent_def_id,
in_scope_parameters,
seen: Default::default(),
});
}
struct VisitOpaqueTypes<'tcx> {
tcx: TyCtxt<'tcx>,
parent_def_id: LocalDefId,
in_scope_parameters: FxIndexSet<DefId>,
seen: FxIndexSet<LocalDefId>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for VisitOpaqueTypes<'tcx> {
fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(
&mut self,
t: &ty::Binder<'tcx, T>,
) -> Self::Result {
// When we get into a binder, we need to add its own bound vars to the scope.
let mut added = vec![];
for arg in t.bound_vars() {
let arg: ty::BoundVariableKind = arg;
match arg {
ty::BoundVariableKind::Region(ty::BoundRegionKind::BrNamed(def_id, ..))
| ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id, _)) => {
added.push(def_id);
let unique = self.in_scope_parameters.insert(def_id);
assert!(unique);
}
_ => {
self.tcx.dcx().span_delayed_bug(
self.tcx.def_span(self.parent_def_id),
format!("unsupported bound variable kind: {arg:?}"),
);
}
}
}
t.super_visit_with(self);
// And remove them. The `shift_remove` should be `O(1)` since we're popping
// them off from the end.
for arg in added.into_iter().rev() {
self.in_scope_parameters.shift_remove(&arg);
}
}
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if !t.has_aliases() {
return;
}
if let ty::Alias(ty::Projection, opaque_ty) = *t.kind()
&& self.tcx.is_impl_trait_in_trait(opaque_ty.def_id)
{
// visit the opaque of the RPITIT
self.tcx
.type_of(opaque_ty.def_id)
.instantiate(self.tcx, opaque_ty.args)
.visit_with(self)
} else if let ty::Alias(ty::Opaque, opaque_ty) = *t.kind()
&& let Some(opaque_def_id) = opaque_ty.def_id.as_local()
// Don't recurse infinitely on an opaque
&& self.seen.insert(opaque_def_id)
// If it's owned by this function
&& let opaque =
self.tcx.hir_node_by_def_id(opaque_def_id).expect_item().expect_opaque_ty()
&& let hir::OpaqueTyOrigin::FnReturn(parent_def_id) = opaque.origin
&& parent_def_id == self.parent_def_id
{
// Compute the set of args that are captured by the opaque...
let mut captured = FxIndexSet::default();
let variances = self.tcx.variances_of(opaque_def_id);
let mut current_def_id = Some(opaque_def_id.to_def_id());
while let Some(def_id) = current_def_id {
let generics = self.tcx.generics_of(def_id);
for param in &generics.own_params {
// A param is captured if it's invariant.
if variances[param.index as usize] != ty::Invariant {
continue;
}
// We need to turn all `ty::Param`/`ConstKind::Param` and
// `ReEarlyParam`/`ReBound` into def ids.
captured.insert(extract_def_id_from_arg(
self.tcx,
generics,
opaque_ty.args[param.index as usize],
));
}
current_def_id = generics.parent;
}
// Compute the set of in scope params that are not captured. Get their spans,
// since that's all we really care about them for emitting the diagnostic.
let uncaptured_spans: Vec<_> = self
.in_scope_parameters
.iter()
.filter(|def_id| !captured.contains(*def_id))
.map(|def_id| self.tcx.def_span(def_id))
.collect();
let opaque_span = self.tcx.def_span(opaque_def_id);
let new_capture_rules =
opaque_span.at_least_rust_2024() || self.tcx.features().lifetime_capture_rules_2024;
// If we have uncaptured args, and if the opaque doesn't already have
// `use<>` syntax on it, and we're < edition 2024, then warn the user.
if !new_capture_rules
&& !opaque.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Use(..)))
&& !uncaptured_spans.is_empty()
{
let suggestion = if let Ok(snippet) =
self.tcx.sess.source_map().span_to_snippet(opaque_span)
&& snippet.starts_with("impl ")
{
let (lifetimes, others): (Vec<_>, Vec<_>) = captured
.into_iter()
.partition(|def_id| self.tcx.def_kind(*def_id) == DefKind::LifetimeParam);
// Take all lifetime params first, then all others (ty/ct).
let generics: Vec<_> = lifetimes
.into_iter()
.chain(others)
.map(|def_id| self.tcx.item_name(def_id).to_string())
.collect();
// Make sure that we're not trying to name any APITs
if generics.iter().all(|name| !name.starts_with("impl ")) {
Some((
format!(" + use<{}>", generics.join(", ")),
opaque_span.shrink_to_hi(),
))
} else {
None
}
} else {
None
};
self.tcx.emit_node_span_lint(
IMPL_TRAIT_OVERCAPTURES,
self.tcx.local_def_id_to_hir_id(opaque_def_id),
opaque_span,
ImplTraitOvercapturesLint {
self_ty: t,
num_captured: uncaptured_spans.len(),
uncaptured_spans,
suggestion,
},
);
}
// Otherwise, if we are edition 2024, have `use<>` syntax, and
// have no uncaptured args, then we should warn to the user that
// it's redundant to capture all args explicitly.
else if new_capture_rules
&& let Some((captured_args, capturing_span)) =
opaque.bounds.iter().find_map(|bound| match *bound {
hir::GenericBound::Use(a, s) => Some((a, s)),
_ => None,
})
{
let mut explicitly_captured = UnordSet::default();
for arg in captured_args {
match self.tcx.named_bound_var(arg.hir_id()) {
Some(
ResolvedArg::EarlyBound(def_id) | ResolvedArg::LateBound(_, _, def_id),
) => {
if self.tcx.def_kind(self.tcx.local_parent(def_id)) == DefKind::OpaqueTy
{
let def_id = self
.tcx
.map_opaque_lifetime_to_parent_lifetime(def_id)
.opt_param_def_id(self.tcx, self.parent_def_id.to_def_id())
.expect("variable should have been duplicated from parent");
explicitly_captured.insert(def_id);
} else {
explicitly_captured.insert(def_id.to_def_id());
}
}
_ => {
self.tcx.dcx().span_delayed_bug(
self.tcx.hir().span(arg.hir_id()),
"no valid for captured arg",
);
}
}
}
if self
.in_scope_parameters
.iter()
.all(|def_id| explicitly_captured.contains(def_id))
{
self.tcx.emit_node_span_lint(
IMPL_TRAIT_REDUNDANT_CAPTURES,
self.tcx.local_def_id_to_hir_id(opaque_def_id),
opaque_span,
ImplTraitRedundantCapturesLint { capturing_span },
);
}
}
// Walk into the bounds of the opaque, too, since we want to get nested opaques
// in this lint as well. Interestingly, one place that I expect this lint to fire
// is for `impl for<'a> Bound<Out = impl Other>`, since `impl Other` will begin
// to capture `'a` in e2024 (even though late-bound vars in opaques are not allowed).
for clause in
self.tcx.item_bounds(opaque_ty.def_id).iter_instantiated(self.tcx, opaque_ty.args)
{
clause.visit_with(self)
}
}
t.super_visit_with(self);
}
}
struct ImplTraitOvercapturesLint<'tcx> {
uncaptured_spans: Vec<Span>,
self_ty: Ty<'tcx>,
num_captured: usize,
suggestion: Option<(String, Span)>,
}
impl<'a> LintDiagnostic<'a, ()> for ImplTraitOvercapturesLint<'_> {
fn decorate_lint<'b>(self, diag: &'b mut rustc_errors::Diag<'a, ()>) {
diag.primary_message(fluent::lint_impl_trait_overcaptures);
diag.arg("self_ty", self.self_ty.to_string())
.arg("num_captured", self.num_captured)
.span_note(self.uncaptured_spans, fluent::lint_note)
.note(fluent::lint_note2);
if let Some((suggestion, span)) = self.suggestion {
diag.span_suggestion(
span,
fluent::lint_suggestion,
suggestion,
Applicability::MachineApplicable,
);
}
}
}
#[derive(LintDiagnostic)]
#[diag(lint_impl_trait_redundant_captures)]
struct ImplTraitRedundantCapturesLint {
#[suggestion(lint_suggestion, code = "", applicability = "machine-applicable")]
capturing_span: Span,
}
fn extract_def_id_from_arg<'tcx>(
tcx: TyCtxt<'tcx>,
generics: &'tcx ty::Generics,
arg: ty::GenericArg<'tcx>,
) -> DefId {
match arg.unpack() {
ty::GenericArgKind::Lifetime(re) => match *re {
ty::ReEarlyParam(ebr) => generics.region_param(ebr, tcx).def_id,
ty::ReBound(
_,
ty::BoundRegion { kind: ty::BoundRegionKind::BrNamed(def_id, ..), .. },
) => def_id,
_ => unreachable!(),
},
ty::GenericArgKind::Type(ty) => {
let ty::Param(param_ty) = *ty.kind() else {
bug!();
};
generics.type_param(param_ty, tcx).def_id
}
ty::GenericArgKind::Const(ct) => {
let ty::ConstKind::Param(param_ct) = ct.kind() else {
bug!();
};
generics.const_param(param_ct, tcx).def_id
}
}
}