1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use std::iter;

use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_macros::{Decodable, Encodable, HashStable};
use tracing::debug;

use crate::query::LocalCrate;
use crate::traits::specialization_graph;
use crate::ty::fast_reject::{self, SimplifiedType, TreatParams};
use crate::ty::{Ident, Ty, TyCtxt};

/// A trait's definition with type information.
#[derive(HashStable, Encodable, Decodable)]
pub struct TraitDef {
    pub def_id: DefId,

    pub safety: hir::Safety,

    /// Whether this trait has been annotated with `#[const_trait]`.
    pub constness: hir::Constness,

    /// If `true`, then this trait had the `#[rustc_paren_sugar]`
    /// attribute, indicating that it should be used with `Foo()`
    /// sugar. This is a temporary thing -- eventually any trait will
    /// be usable with the sugar (or without it).
    pub paren_sugar: bool,

    pub has_auto_impl: bool,

    /// If `true`, then this trait has the `#[marker]` attribute, indicating
    /// that all its associated items have defaults that cannot be overridden,
    /// and thus `impl`s of it are allowed to overlap.
    pub is_marker: bool,

    /// If `true`, then this trait has the `#[rustc_coinductive]` attribute or
    /// is an auto trait. This indicates that trait solver cycles involving an
    /// `X: ThisTrait` goal are accepted.
    ///
    /// In the future all traits should be coinductive, but we need a better
    /// formal understanding of what exactly that means and should probably
    /// also have already switched to the new trait solver.
    pub is_coinductive: bool,

    /// If `true`, then this trait has the `#[fundamental]` attribute. This
    /// affects how conherence computes whether a trait may have trait implementations
    /// added in the future.
    pub is_fundamental: bool,

    /// If `true`, then this trait has the `#[rustc_skip_during_method_dispatch(array)]`
    /// attribute, indicating that editions before 2021 should not consider this trait
    /// during method dispatch if the receiver is an array.
    pub skip_array_during_method_dispatch: bool,

    /// If `true`, then this trait has the `#[rustc_skip_during_method_dispatch(boxed_slice)]`
    /// attribute, indicating that editions before 2024 should not consider this trait
    /// during method dispatch if the receiver is a boxed slice.
    pub skip_boxed_slice_during_method_dispatch: bool,

    /// Used to determine whether the standard library is allowed to specialize
    /// on this trait.
    pub specialization_kind: TraitSpecializationKind,

    /// List of functions from `#[rustc_must_implement_one_of]` attribute one of which
    /// must be implemented.
    pub must_implement_one_of: Option<Box<[Ident]>>,

    /// Whether to add a builtin `dyn Trait: Trait` implementation.
    /// This is enabled for all traits except ones marked with
    /// `#[rustc_deny_explicit_impl(implement_via_object = false)]`.
    pub implement_via_object: bool,

    /// Whether a trait is fully built-in, and any implementation is disallowed.
    /// This only applies to built-in traits, and is marked via
    /// `#[rustc_deny_explicit_impl(implement_via_object = ...)]`.
    pub deny_explicit_impl: bool,
}

/// Whether this trait is treated specially by the standard library
/// specialization lint.
#[derive(HashStable, PartialEq, Clone, Copy, Encodable, Decodable)]
pub enum TraitSpecializationKind {
    /// The default. Specializing on this trait is not allowed.
    None,
    /// Specializing on this trait is allowed because it doesn't have any
    /// methods. For example `Sized` or `FusedIterator`.
    /// Applies to traits with the `rustc_unsafe_specialization_marker`
    /// attribute.
    Marker,
    /// Specializing on this trait is allowed because all of the impls of this
    /// trait are "always applicable". Always applicable means that if
    /// `X<'x>: T<'y>` for any lifetimes, then `for<'a, 'b> X<'a>: T<'b>`.
    /// Applies to traits with the `rustc_specialization_trait` attribute.
    AlwaysApplicable,
}

#[derive(Default, Debug, HashStable)]
pub struct TraitImpls {
    blanket_impls: Vec<DefId>,
    /// Impls indexed by their simplified self type, for fast lookup.
    non_blanket_impls: FxIndexMap<SimplifiedType, Vec<DefId>>,
}

impl TraitImpls {
    pub fn is_empty(&self) -> bool {
        self.blanket_impls.is_empty() && self.non_blanket_impls.is_empty()
    }

    pub fn blanket_impls(&self) -> &[DefId] {
        self.blanket_impls.as_slice()
    }

    pub fn non_blanket_impls(&self) -> &FxIndexMap<SimplifiedType, Vec<DefId>> {
        &self.non_blanket_impls
    }
}

impl<'tcx> TraitDef {
    pub fn ancestors(
        &self,
        tcx: TyCtxt<'tcx>,
        of_impl: DefId,
    ) -> Result<specialization_graph::Ancestors<'tcx>, ErrorGuaranteed> {
        specialization_graph::ancestors(tcx, self.def_id, of_impl)
    }
}

impl<'tcx> TyCtxt<'tcx> {
    /// `trait_def_id` MUST BE the `DefId` of a trait.
    pub fn for_each_impl<F: FnMut(DefId)>(self, trait_def_id: DefId, mut f: F) {
        let impls = self.trait_impls_of(trait_def_id);

        for &impl_def_id in impls.blanket_impls.iter() {
            f(impl_def_id);
        }

        for v in impls.non_blanket_impls.values() {
            for &impl_def_id in v {
                f(impl_def_id);
            }
        }
    }

    /// Iterate over every impl that could possibly match the self type `self_ty`.
    ///
    /// `trait_def_id` MUST BE the `DefId` of a trait.
    pub fn for_each_relevant_impl(
        self,
        trait_def_id: DefId,
        self_ty: Ty<'tcx>,
        mut f: impl FnMut(DefId),
    ) {
        // FIXME: This depends on the set of all impls for the trait. That is
        // unfortunate wrt. incremental compilation.
        //
        // If we want to be faster, we could have separate queries for
        // blanket and non-blanket impls, and compare them separately.
        let impls = self.trait_impls_of(trait_def_id);

        for &impl_def_id in impls.blanket_impls.iter() {
            f(impl_def_id);
        }

        // This way, when searching for some impl for `T: Trait`, we do not look at any impls
        // whose outer level is not a parameter or projection. Especially for things like
        // `T: Clone` this is incredibly useful as we would otherwise look at all the impls
        // of `Clone` for `Option<T>`, `Vec<T>`, `ConcreteType` and so on.
        // Note that we're using `TreatParams::ForLookup` to query `non_blanket_impls` while using
        // `TreatParams::AsCandidateKey` while actually adding them.
        if let Some(simp) = fast_reject::simplify_type(self, self_ty, TreatParams::ForLookup) {
            if let Some(impls) = impls.non_blanket_impls.get(&simp) {
                for &impl_def_id in impls {
                    f(impl_def_id);
                }
            }
        } else {
            for &impl_def_id in impls.non_blanket_impls.values().flatten() {
                f(impl_def_id);
            }
        }
    }

    /// `trait_def_id` MUST BE the `DefId` of a trait.
    pub fn non_blanket_impls_for_ty(
        self,
        trait_def_id: DefId,
        self_ty: Ty<'tcx>,
    ) -> impl Iterator<Item = DefId> + 'tcx {
        let impls = self.trait_impls_of(trait_def_id);
        if let Some(simp) = fast_reject::simplify_type(self, self_ty, TreatParams::AsCandidateKey) {
            if let Some(impls) = impls.non_blanket_impls.get(&simp) {
                return impls.iter().copied();
            }
        }

        [].iter().copied()
    }

    /// Returns an iterator containing all impls for `trait_def_id`.
    ///
    /// `trait_def_id` MUST BE the `DefId` of a trait.
    pub fn all_impls(self, trait_def_id: DefId) -> impl Iterator<Item = DefId> + 'tcx {
        let TraitImpls { blanket_impls, non_blanket_impls } = self.trait_impls_of(trait_def_id);

        blanket_impls.iter().chain(non_blanket_impls.iter().flat_map(|(_, v)| v)).cloned()
    }
}

/// Query provider for `trait_impls_of`.
pub(super) fn trait_impls_of_provider(tcx: TyCtxt<'_>, trait_id: DefId) -> TraitImpls {
    let mut impls = TraitImpls::default();

    // Traits defined in the current crate can't have impls in upstream
    // crates, so we don't bother querying the cstore.
    if !trait_id.is_local() {
        for &cnum in tcx.crates(()).iter() {
            for &(impl_def_id, simplified_self_ty) in
                tcx.implementations_of_trait((cnum, trait_id)).iter()
            {
                if let Some(simplified_self_ty) = simplified_self_ty {
                    impls
                        .non_blanket_impls
                        .entry(simplified_self_ty)
                        .or_default()
                        .push(impl_def_id);
                } else {
                    impls.blanket_impls.push(impl_def_id);
                }
            }
        }
    }

    for &impl_def_id in tcx.hir().trait_impls(trait_id) {
        let impl_def_id = impl_def_id.to_def_id();

        let impl_self_ty = tcx.type_of(impl_def_id).instantiate_identity();

        if let Some(simplified_self_ty) =
            fast_reject::simplify_type(tcx, impl_self_ty, TreatParams::AsCandidateKey)
        {
            impls.non_blanket_impls.entry(simplified_self_ty).or_default().push(impl_def_id);
        } else {
            impls.blanket_impls.push(impl_def_id);
        }
    }

    impls
}

/// Query provider for `incoherent_impls`.
pub(super) fn incoherent_impls_provider(
    tcx: TyCtxt<'_>,
    simp: SimplifiedType,
) -> Result<&[DefId], ErrorGuaranteed> {
    let mut impls = Vec::new();

    let mut res = Ok(());
    for cnum in iter::once(LOCAL_CRATE).chain(tcx.crates(()).iter().copied()) {
        let incoherent_impls = match tcx.crate_incoherent_impls((cnum, simp)) {
            Ok(impls) => impls,
            Err(e) => {
                res = Err(e);
                continue;
            }
        };
        for &impl_def_id in incoherent_impls {
            impls.push(impl_def_id)
        }
    }

    debug!(?impls);
    res?;

    Ok(tcx.arena.alloc_slice(&impls))
}

pub(super) fn traits_provider(tcx: TyCtxt<'_>, _: LocalCrate) -> &[DefId] {
    let mut traits = Vec::new();
    for id in tcx.hir().items() {
        if matches!(tcx.def_kind(id.owner_id), DefKind::Trait | DefKind::TraitAlias) {
            traits.push(id.owner_id.to_def_id())
        }
    }

    tcx.arena.alloc_slice(&traits)
}

pub(super) fn trait_impls_in_crate_provider(tcx: TyCtxt<'_>, _: LocalCrate) -> &[DefId] {
    let mut trait_impls = Vec::new();
    for id in tcx.hir().items() {
        if matches!(tcx.def_kind(id.owner_id), DefKind::Impl { .. })
            && tcx.impl_trait_ref(id.owner_id).is_some()
        {
            trait_impls.push(id.owner_id.to_def_id())
        }
    }

    tcx.arena.alloc_slice(&trait_impls)
}