1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
use super::{Pointer, Tag};
use crate::stable_hasher::{HashStable, StableHasher};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem::ManuallyDrop;
use std::num::NonZero;
use std::ops::{Deref, DerefMut};
use std::ptr::NonNull;
/// A [`Copy`] tagged pointer.
///
/// This is essentially `{ pointer: P, tag: T }` packed in a single pointer.
///
/// You should use this instead of the [`TaggedPtr`] type in all cases where
/// `P` implements [`Copy`].
///
/// If `COMPARE_PACKED` is true, then the pointers will be compared and hashed without
/// unpacking. Otherwise we don't implement [`PartialEq`], [`Eq`] and [`Hash`];
/// if you want that, wrap the [`CopyTaggedPtr`].
///
/// [`TaggedPtr`]: crate::tagged_ptr::TaggedPtr
pub struct CopyTaggedPtr<P, T, const COMPARE_PACKED: bool>
where
P: Pointer,
T: Tag,
{
/// This is semantically a pair of `pointer: P` and `tag: T` fields,
/// however we pack them in a single pointer, to save space.
///
/// We pack the tag into the **most**-significant bits of the pointer to
/// ease retrieval of the value. A left shift is a multiplication and
/// those are embeddable in instruction encoding, for example:
///
/// ```asm
/// // (<https://godbolt.org/z/jqcYPWEr3>)
/// example::shift_read3:
/// mov eax, dword ptr [8*rdi]
/// ret
///
/// example::mask_read3:
/// and rdi, -8
/// mov eax, dword ptr [rdi]
/// ret
/// ```
///
/// This is ASM outputted by rustc for reads of values behind tagged
/// pointers for different approaches of tagging:
/// - `shift_read3` uses `<< 3` (the tag is in the most-significant bits)
/// - `mask_read3` uses `& !0b111` (the tag is in the least-significant bits)
///
/// The shift approach thus produces less instructions and is likely faster
/// (see <https://godbolt.org/z/Y913sMdWb>).
///
/// Encoding diagram:
/// ```text
/// [ packed.addr ]
/// [ tag ] [ pointer.addr >> T::BITS ] <-- usize::BITS - T::BITS bits
/// ^
/// |
/// T::BITS bits
/// ```
///
/// The tag can be retrieved by `packed.addr() >> T::BITS` and the pointer
/// can be retrieved by `packed.map_addr(|addr| addr << T::BITS)`.
packed: NonNull<P::Target>,
tag_ghost: PhantomData<T>,
}
// Note that even though `CopyTaggedPtr` is only really expected to work with
// `P: Copy`, can't add `P: Copy` bound, because `CopyTaggedPtr` is used in the
// `TaggedPtr`'s implementation.
impl<P, T, const CP: bool> CopyTaggedPtr<P, T, CP>
where
P: Pointer,
T: Tag,
{
/// Tags `pointer` with `tag`.
///
/// Note that this leaks `pointer`: it won't be dropped when
/// `CopyTaggedPtr` is dropped. If you have a pointer with a significant
/// drop, use [`TaggedPtr`] instead.
///
/// [`TaggedPtr`]: crate::tagged_ptr::TaggedPtr
#[inline]
pub fn new(pointer: P, tag: T) -> Self {
Self { packed: Self::pack(P::into_ptr(pointer), tag), tag_ghost: PhantomData }
}
/// Retrieves the pointer.
#[inline]
pub fn pointer(self) -> P
where
P: Copy,
{
// SAFETY: pointer_raw returns the original pointer
//
// Note that this isn't going to double-drop or anything because we have
// P: Copy
unsafe { P::from_ptr(self.pointer_raw()) }
}
/// Retrieves the tag.
#[inline]
pub fn tag(&self) -> T {
// Unpack the tag, according to the `self.packed` encoding scheme
let tag = self.packed.addr().get() >> Self::TAG_BIT_SHIFT;
// Safety:
// The shift retrieves the original value from `T::into_usize`,
// satisfying `T::from_usize`'s preconditions.
unsafe { T::from_usize(tag) }
}
/// Sets the tag to a new value.
#[inline]
pub fn set_tag(&mut self, tag: T) {
self.packed = Self::pack(self.pointer_raw(), tag);
}
const TAG_BIT_SHIFT: u32 = usize::BITS - T::BITS;
const ASSERTION: () = { assert!(T::BITS <= P::BITS) };
/// Pack pointer `ptr` that comes from [`P::into_ptr`] with a `tag`,
/// according to `self.packed` encoding scheme.
///
/// [`P::into_ptr`]: Pointer::into_ptr
#[inline]
fn pack(ptr: NonNull<P::Target>, tag: T) -> NonNull<P::Target> {
// Trigger assert!
let () = Self::ASSERTION;
let packed_tag = tag.into_usize() << Self::TAG_BIT_SHIFT;
ptr.map_addr(|addr| {
// Safety:
// - The pointer is `NonNull` => it's address is `NonZero<usize>`
// - `P::BITS` least significant bits are always zero (`Pointer` contract)
// - `T::BITS <= P::BITS` (from `Self::ASSERTION`)
//
// Thus `addr >> T::BITS` is guaranteed to be non-zero.
//
// `{non_zero} | packed_tag` can't make the value zero.
let packed = (addr.get() >> T::BITS) | packed_tag;
unsafe { NonZero::new_unchecked(packed) }
})
}
/// Retrieves the original raw pointer from `self.packed`.
#[inline]
pub(super) fn pointer_raw(&self) -> NonNull<P::Target> {
self.packed.map_addr(|addr| unsafe { NonZero::new_unchecked(addr.get() << T::BITS) })
}
/// This provides a reference to the `P` pointer itself, rather than the
/// `Deref::Target`. It is used for cases where we want to call methods
/// that may be implement differently for the Pointer than the Pointee
/// (e.g., `Rc::clone` vs cloning the inner value).
pub(super) fn with_pointer_ref<R>(&self, f: impl FnOnce(&P) -> R) -> R {
// Safety:
// - `self.raw.pointer_raw()` is originally returned from `P::into_ptr`
// and as such is valid for `P::from_ptr`.
// - This also allows us to not care whatever `f` panics or not.
// - Even though we create a copy of the pointer, we store it inside
// `ManuallyDrop` and only access it by-ref, so we don't double-drop.
//
// Semantically this is just `f(&self.pointer)` (where `self.pointer`
// is non-packed original pointer).
//
// Note that even though `CopyTaggedPtr` is only really expected to
// work with `P: Copy`, we have to assume `P: ?Copy`, because
// `CopyTaggedPtr` is used in the `TaggedPtr`'s implementation.
let ptr = unsafe { ManuallyDrop::new(P::from_ptr(self.pointer_raw())) };
f(&ptr)
}
}
impl<P, T, const CP: bool> Copy for CopyTaggedPtr<P, T, CP>
where
P: Pointer + Copy,
T: Tag,
{
}
impl<P, T, const CP: bool> Clone for CopyTaggedPtr<P, T, CP>
where
P: Pointer + Copy,
T: Tag,
{
#[inline]
fn clone(&self) -> Self {
*self
}
}
impl<P, T, const CP: bool> Deref for CopyTaggedPtr<P, T, CP>
where
P: Pointer,
T: Tag,
{
type Target = P::Target;
#[inline]
fn deref(&self) -> &Self::Target {
// Safety:
// `pointer_raw` returns the original pointer from `P::into_ptr` which,
// by the `Pointer`'s contract, must be valid.
unsafe { self.pointer_raw().as_ref() }
}
}
impl<P, T, const CP: bool> DerefMut for CopyTaggedPtr<P, T, CP>
where
P: Pointer + DerefMut,
T: Tag,
{
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
// Safety:
// `pointer_raw` returns the original pointer from `P::into_ptr` which,
// by the `Pointer`'s contract, must be valid for writes if
// `P: DerefMut`.
unsafe { self.pointer_raw().as_mut() }
}
}
impl<P, T, const CP: bool> fmt::Debug for CopyTaggedPtr<P, T, CP>
where
P: Pointer + fmt::Debug,
T: Tag + fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.with_pointer_ref(|ptr| {
f.debug_struct("CopyTaggedPtr").field("pointer", ptr).field("tag", &self.tag()).finish()
})
}
}
impl<P, T> PartialEq for CopyTaggedPtr<P, T, true>
where
P: Pointer,
T: Tag,
{
#[inline]
#[allow(ambiguous_wide_pointer_comparisons)]
fn eq(&self, other: &Self) -> bool {
self.packed == other.packed
}
}
impl<P, T> Eq for CopyTaggedPtr<P, T, true>
where
P: Pointer,
T: Tag,
{
}
impl<P, T> Hash for CopyTaggedPtr<P, T, true>
where
P: Pointer,
T: Tag,
{
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.packed.hash(state);
}
}
impl<P, T, HCX, const CP: bool> HashStable<HCX> for CopyTaggedPtr<P, T, CP>
where
P: Pointer + HashStable<HCX>,
T: Tag + HashStable<HCX>,
{
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
self.with_pointer_ref(|ptr| ptr.hash_stable(hcx, hasher));
self.tag().hash_stable(hcx, hasher);
}
}
// Safety:
// `CopyTaggedPtr<P, T, ..>` is semantically just `{ ptr: P, tag: T }`, as such
// it's ok to implement `Sync` as long as `P: Sync, T: Sync`
unsafe impl<P, T, const CP: bool> Sync for CopyTaggedPtr<P, T, CP>
where
P: Sync + Pointer,
T: Sync + Tag,
{
}
// Safety:
// `CopyTaggedPtr<P, T, ..>` is semantically just `{ ptr: P, tag: T }`, as such
// it's ok to implement `Send` as long as `P: Send, T: Send`
unsafe impl<P, T, const CP: bool> Send for CopyTaggedPtr<P, T, CP>
where
P: Send + Pointer,
T: Send + Tag,
{
}
/// Test that `new` does not compile if there is not enough alignment for the
/// tag in the pointer.
///
/// ```compile_fail,E0080
/// use rustc_data_structures::tagged_ptr::{CopyTaggedPtr, Tag};
///
/// #[derive(Copy, Clone, Debug, PartialEq, Eq)]
/// enum Tag2 { B00 = 0b00, B01 = 0b01, B10 = 0b10, B11 = 0b11 };
///
/// unsafe impl Tag for Tag2 {
/// const BITS: u32 = 2;
///
/// fn into_usize(self) -> usize { todo!() }
/// unsafe fn from_usize(tag: usize) -> Self { todo!() }
/// }
///
/// let value = 12u16;
/// let reference = &value;
/// let tag = Tag2::B01;
///
/// let _ptr = CopyTaggedPtr::<_, _, true>::new(reference, tag);
/// ```
// For some reason miri does not get the compile error
// probably it `check`s instead of `build`ing?
#[cfg(not(miri))]
const _: () = ();
#[cfg(test)]
mod tests;