1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
use crate::mir::Mutability;
use crate::ty::GenericArgKind;
use crate::ty::{self, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt};
use rustc_hir::def_id::DefId;
use std::fmt::Debug;
use std::hash::Hash;
use std::iter;

/// See `simplify_type`.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable)]
pub enum SimplifiedType {
    Bool,
    Char,
    Int(ty::IntTy),
    Uint(ty::UintTy),
    Float(ty::FloatTy),
    Adt(DefId),
    Foreign(DefId),
    Str,
    Array,
    Slice,
    Ref(Mutability),
    Ptr(Mutability),
    Never,
    Tuple(usize),
    /// A trait object, all of whose components are markers
    /// (e.g., `dyn Send + Sync`).
    MarkerTraitObject,
    Trait(DefId),
    Closure(DefId),
    Coroutine(DefId),
    CoroutineWitness(DefId),
    Function(usize),
    Placeholder,
    Error,
}

/// Generic parameters are pretty much just bound variables, e.g.
/// the type of `fn foo<'a, T>(x: &'a T) -> u32 { ... }` can be thought of as
/// `for<'a, T> fn(&'a T) -> u32`.
///
/// Typecheck of `foo` has to succeed for all possible generic arguments, so
/// during typeck, we have to treat its generic parameters as if they
/// were placeholders.
///
/// But when calling `foo` we only have to provide a specific generic argument.
/// In that case the generic parameters are instantiated with inference variables.
/// As we use `simplify_type` before that instantiation happens, we just treat
/// generic parameters as if they were inference variables in that case.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum TreatParams {
    /// Treat parameters as infer vars. This is the correct mode for caching
    /// an impl's type for lookup.
    AsCandidateKey,
    /// Treat parameters as placeholders in the given environment. This is the
    /// correct mode for *lookup*, as during candidate selection.
    ///
    /// This also treats projections with inference variables as infer vars
    /// since they could be further normalized.
    ForLookup,
    /// Treat parameters as placeholders in the given environment. This is the
    /// correct mode for *lookup*, as during candidate selection.
    ///
    /// N.B. during deep rejection, this acts identically to `ForLookup`.
    ///
    /// FIXME(-Znext-solver): Remove this variant and cleanup
    /// the code.
    NextSolverLookup,
}

/// During fast-rejection, we have the choice of treating projection types
/// as either simplifiable or not, depending on whether we expect the projection
/// to be normalized/rigid.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum TreatProjections {
    /// In the old solver we don't try to normalize projections
    /// when looking up impls and only access them by using the
    /// current self type. This means that if the self type is
    /// a projection which could later be normalized, we must not
    /// treat it as rigid.
    ForLookup,
    /// We can treat projections in the self type as opaque as
    /// we separately look up impls for the normalized self type.
    NextSolverLookup,
}

/// Tries to simplify a type by only returning the outermost injective¹ layer, if one exists.
///
/// **This function should only be used if you need to store or retrieve the type from some
/// hashmap. If you want to quickly decide whether two types may unify, use the [DeepRejectCtxt]
/// instead.**
///
/// The idea is to get something simple that we can use to quickly decide if two types could unify,
/// for example during method lookup. If this function returns `Some(x)` it can only unify with
/// types for which this method returns either `Some(x)` as well or `None`.
///
/// A special case here are parameters and projections, which are only injective
/// if they are treated as placeholders.
///
/// For example when storing impls based on their simplified self type, we treat
/// generic parameters as if they were inference variables. We must not simplify them here,
/// as they can unify with any other type.
///
/// With projections we have to be even more careful, as treating them as placeholders
/// is only correct if they are fully normalized.
///
/// ¹ meaning that if the outermost layers are different, then the whole types are also different.
pub fn simplify_type<'tcx>(
    tcx: TyCtxt<'tcx>,
    ty: Ty<'tcx>,
    treat_params: TreatParams,
) -> Option<SimplifiedType> {
    match *ty.kind() {
        ty::Bool => Some(SimplifiedType::Bool),
        ty::Char => Some(SimplifiedType::Char),
        ty::Int(int_type) => Some(SimplifiedType::Int(int_type)),
        ty::Uint(uint_type) => Some(SimplifiedType::Uint(uint_type)),
        ty::Float(float_type) => Some(SimplifiedType::Float(float_type)),
        ty::Adt(def, _) => Some(SimplifiedType::Adt(def.did())),
        ty::Str => Some(SimplifiedType::Str),
        ty::Array(..) => Some(SimplifiedType::Array),
        ty::Slice(..) => Some(SimplifiedType::Slice),
        ty::RawPtr(ptr) => Some(SimplifiedType::Ptr(ptr.mutbl)),
        ty::Dynamic(trait_info, ..) => match trait_info.principal_def_id() {
            Some(principal_def_id) if !tcx.trait_is_auto(principal_def_id) => {
                Some(SimplifiedType::Trait(principal_def_id))
            }
            _ => Some(SimplifiedType::MarkerTraitObject),
        },
        ty::Ref(_, _, mutbl) => Some(SimplifiedType::Ref(mutbl)),
        ty::FnDef(def_id, _) | ty::Closure(def_id, _) => Some(SimplifiedType::Closure(def_id)),
        ty::Coroutine(def_id, _) => Some(SimplifiedType::Coroutine(def_id)),
        ty::CoroutineWitness(def_id, _) => Some(SimplifiedType::CoroutineWitness(def_id)),
        ty::Never => Some(SimplifiedType::Never),
        ty::Tuple(tys) => Some(SimplifiedType::Tuple(tys.len())),
        ty::FnPtr(f) => Some(SimplifiedType::Function(f.skip_binder().inputs().len())),
        ty::Placeholder(..) => Some(SimplifiedType::Placeholder),
        ty::Param(_) => match treat_params {
            TreatParams::ForLookup | TreatParams::NextSolverLookup => {
                Some(SimplifiedType::Placeholder)
            }
            TreatParams::AsCandidateKey => None,
        },
        ty::Alias(..) => match treat_params {
            // When treating `ty::Param` as a placeholder, projections also
            // don't unify with anything else as long as they are fully normalized.
            //
            // We will have to be careful with lazy normalization here.
            // FIXME(lazy_normalization): This is probably not right...
            TreatParams::ForLookup if !ty.has_non_region_infer() => {
                Some(SimplifiedType::Placeholder)
            }
            TreatParams::NextSolverLookup => Some(SimplifiedType::Placeholder),
            TreatParams::ForLookup | TreatParams::AsCandidateKey => None,
        },
        ty::Foreign(def_id) => Some(SimplifiedType::Foreign(def_id)),
        ty::Error(_) => Some(SimplifiedType::Error),
        ty::Bound(..) | ty::Infer(_) => None,
    }
}

impl SimplifiedType {
    pub fn def(self) -> Option<DefId> {
        match self {
            SimplifiedType::Adt(d)
            | SimplifiedType::Foreign(d)
            | SimplifiedType::Trait(d)
            | SimplifiedType::Closure(d)
            | SimplifiedType::Coroutine(d)
            | SimplifiedType::CoroutineWitness(d) => Some(d),
            _ => None,
        }
    }
}

/// Given generic arguments from an obligation and an impl,
/// could these two be unified after replacing parameters in the
/// the impl with inference variables.
///
/// For obligations, parameters won't be replaced by inference
/// variables and only unify with themselves. We treat them
/// the same way we treat placeholders.
///
/// We also use this function during coherence. For coherence the
/// impls only have to overlap for some value, so we treat parameters
/// on both sides like inference variables. This behavior is toggled
/// using the `treat_obligation_params` field.
#[derive(Debug, Clone, Copy)]
pub struct DeepRejectCtxt {
    pub treat_obligation_params: TreatParams,
}

impl DeepRejectCtxt {
    pub fn args_may_unify<'tcx>(
        self,
        obligation_args: GenericArgsRef<'tcx>,
        impl_args: GenericArgsRef<'tcx>,
    ) -> bool {
        iter::zip(obligation_args, impl_args).all(|(obl, imp)| {
            match (obl.unpack(), imp.unpack()) {
                // We don't fast reject based on regions.
                (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => true,
                (GenericArgKind::Type(obl), GenericArgKind::Type(imp)) => {
                    self.types_may_unify(obl, imp)
                }
                (GenericArgKind::Const(obl), GenericArgKind::Const(imp)) => {
                    self.consts_may_unify(obl, imp)
                }
                _ => bug!("kind mismatch: {obl} {imp}"),
            }
        })
    }

    pub fn types_may_unify<'tcx>(self, obligation_ty: Ty<'tcx>, impl_ty: Ty<'tcx>) -> bool {
        match impl_ty.kind() {
            // Start by checking whether the type in the impl may unify with
            // pretty much everything. Just return `true` in that case.
            ty::Param(_) | ty::Error(_) | ty::Alias(..) => return true,
            // These types only unify with inference variables or their own
            // variant.
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Adt(..)
            | ty::Str
            | ty::Array(..)
            | ty::Slice(..)
            | ty::RawPtr(..)
            | ty::Dynamic(..)
            | ty::Ref(..)
            | ty::Never
            | ty::Tuple(..)
            | ty::FnPtr(..)
            | ty::Foreign(..) => debug_assert!(impl_ty.is_known_rigid()),
            ty::FnDef(..)
            | ty::Closure(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Placeholder(..)
            | ty::Bound(..)
            | ty::Infer(_) => bug!("unexpected impl_ty: {impl_ty}"),
        }

        let k = impl_ty.kind();
        match *obligation_ty.kind() {
            // Purely rigid types, use structural equivalence.
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Str
            | ty::Never
            | ty::Foreign(_) => obligation_ty == impl_ty,
            ty::Ref(_, obl_ty, obl_mutbl) => match k {
                &ty::Ref(_, impl_ty, impl_mutbl) => {
                    obl_mutbl == impl_mutbl && self.types_may_unify(obl_ty, impl_ty)
                }
                _ => false,
            },
            ty::Adt(obl_def, obl_args) => match k {
                &ty::Adt(impl_def, impl_args) => {
                    obl_def == impl_def && self.args_may_unify(obl_args, impl_args)
                }
                _ => false,
            },
            ty::Slice(obl_ty) => {
                matches!(k, &ty::Slice(impl_ty) if self.types_may_unify(obl_ty, impl_ty))
            }
            ty::Array(obl_ty, obl_len) => match k {
                &ty::Array(impl_ty, impl_len) => {
                    self.types_may_unify(obl_ty, impl_ty)
                        && self.consts_may_unify(obl_len, impl_len)
                }
                _ => false,
            },
            ty::Tuple(obl) => match k {
                &ty::Tuple(imp) => {
                    obl.len() == imp.len()
                        && iter::zip(obl, imp).all(|(obl, imp)| self.types_may_unify(obl, imp))
                }
                _ => false,
            },
            ty::RawPtr(obl) => match k {
                ty::RawPtr(imp) => obl.mutbl == imp.mutbl && self.types_may_unify(obl.ty, imp.ty),
                _ => false,
            },
            ty::Dynamic(obl_preds, ..) => {
                // Ideally we would walk the existential predicates here or at least
                // compare their length. But considering that the relevant `Relate` impl
                // actually sorts and deduplicates these, that doesn't work.
                matches!(k, ty::Dynamic(impl_preds, ..) if
                    obl_preds.principal_def_id() == impl_preds.principal_def_id()
                )
            }
            ty::FnPtr(obl_sig) => match k {
                ty::FnPtr(impl_sig) => {
                    let ty::FnSig { inputs_and_output, c_variadic, unsafety, abi } =
                        obl_sig.skip_binder();
                    let impl_sig = impl_sig.skip_binder();

                    abi == impl_sig.abi
                        && c_variadic == impl_sig.c_variadic
                        && unsafety == impl_sig.unsafety
                        && inputs_and_output.len() == impl_sig.inputs_and_output.len()
                        && iter::zip(inputs_and_output, impl_sig.inputs_and_output)
                            .all(|(obl, imp)| self.types_may_unify(obl, imp))
                }
                _ => false,
            },

            // Impls cannot contain these types as these cannot be named directly.
            ty::FnDef(..) | ty::Closure(..) | ty::Coroutine(..) => false,

            // Placeholder types don't unify with anything on their own
            ty::Placeholder(..) | ty::Bound(..) => false,

            // Depending on the value of `treat_obligation_params`, we either
            // treat generic parameters like placeholders or like inference variables.
            ty::Param(_) => match self.treat_obligation_params {
                TreatParams::ForLookup | TreatParams::NextSolverLookup => false,
                TreatParams::AsCandidateKey => true,
            },

            ty::Infer(ty::IntVar(_)) => impl_ty.is_integral(),

            ty::Infer(ty::FloatVar(_)) => impl_ty.is_floating_point(),

            ty::Infer(_) => true,

            // As we're walking the whole type, it may encounter projections
            // inside of binders and what not, so we're just going to assume that
            // projections can unify with other stuff.
            //
            // Looking forward to lazy normalization this is the safer strategy anyways.
            ty::Alias(..) => true,

            ty::Error(_) => true,

            ty::CoroutineWitness(..) => {
                bug!("unexpected obligation type: {:?}", obligation_ty)
            }
        }
    }

    pub fn consts_may_unify(self, obligation_ct: ty::Const<'_>, impl_ct: ty::Const<'_>) -> bool {
        match impl_ct.kind() {
            ty::ConstKind::Expr(_)
            | ty::ConstKind::Param(_)
            | ty::ConstKind::Unevaluated(_)
            | ty::ConstKind::Error(_) => {
                return true;
            }
            ty::ConstKind::Value(_) => {}
            ty::ConstKind::Infer(_) | ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(_) => {
                bug!("unexpected impl arg: {:?}", impl_ct)
            }
        }

        let k = impl_ct.kind();
        match obligation_ct.kind() {
            ty::ConstKind::Param(_) => match self.treat_obligation_params {
                TreatParams::ForLookup | TreatParams::NextSolverLookup => false,
                TreatParams::AsCandidateKey => true,
            },

            // Placeholder consts don't unify with anything on their own
            ty::ConstKind::Placeholder(_) => false,

            // As we don't necessarily eagerly evaluate constants,
            // they might unify with any value.
            ty::ConstKind::Expr(_) | ty::ConstKind::Unevaluated(_) | ty::ConstKind::Error(_) => {
                true
            }
            ty::ConstKind::Value(obl) => match k {
                ty::ConstKind::Value(imp) => obl == imp,
                _ => true,
            },

            ty::ConstKind::Infer(_) => true,

            ty::ConstKind::Bound(..) => {
                bug!("unexpected obl const: {:?}", obligation_ct)
            }
        }
    }
}