1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::traits::query::{DropckConstraint, DropckOutlivesResult};
use rustc_middle::ty::{self, EarlyBinder, ParamEnvAnd, Ty, TyCtxt};
use rustc_span::{Span, DUMMY_SP};
use tracing::{debug, instrument};

use crate::traits::query::normalize::QueryNormalizeExt;
use crate::traits::query::NoSolution;
use crate::traits::{Normalized, ObligationCause, ObligationCtxt};

/// This returns true if the type `ty` is "trivial" for
/// dropck-outlives -- that is, if it doesn't require any types to
/// outlive. This is similar but not *quite* the same as the
/// `needs_drop` test in the compiler already -- that is, for every
/// type T for which this function return true, needs-drop would
/// return `false`. But the reverse does not hold: in particular,
/// `needs_drop` returns false for `PhantomData`, but it is not
/// trivial for dropck-outlives.
///
/// Note also that `needs_drop` requires a "global" type (i.e., one
/// with erased regions), but this function does not.
///
// FIXME(@lcnr): remove this module and move this function somewhere else.
pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
    match ty.kind() {
        // None of these types have a destructor and hence they do not
        // require anything in particular to outlive the dtor's
        // execution.
        ty::Infer(ty::FreshIntTy(_))
        | ty::Infer(ty::FreshFloatTy(_))
        | ty::Bool
        | ty::Int(_)
        | ty::Uint(_)
        | ty::Float(_)
        | ty::Never
        | ty::FnDef(..)
        | ty::FnPtr(..)
        | ty::Char
        | ty::CoroutineWitness(..)
        | ty::RawPtr(_, _)
        | ty::Ref(..)
        | ty::Str
        | ty::Foreign(..)
        | ty::Error(_) => true,

        // `T is PAT` and `[T]` have same properties as T.
        ty::Pat(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, *ty),
        ty::Array(ty, size) => {
            // Empty array never has a dtor. See issue #110288.
            match size.try_to_target_usize(tcx) {
                Some(0) => true,
                _ => trivial_dropck_outlives(tcx, *ty),
            }
        }

        // (T1..Tn) and closures have same properties as T1..Tn --
        // check if *all* of them are trivial.
        ty::Tuple(tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t)),

        ty::Closure(_, args) => trivial_dropck_outlives(tcx, args.as_closure().tupled_upvars_ty()),
        ty::CoroutineClosure(_, args) => {
            trivial_dropck_outlives(tcx, args.as_coroutine_closure().tupled_upvars_ty())
        }

        ty::Adt(def, _) => {
            if def.is_manually_drop() {
                // `ManuallyDrop` never has a dtor.
                true
            } else {
                // Other types might. Moreover, PhantomData doesn't
                // have a dtor, but it is considered to own its
                // content, so it is non-trivial. Unions can have `impl Drop`,
                // and hence are non-trivial as well.
                false
            }
        }

        // The following *might* require a destructor: needs deeper inspection.
        ty::Dynamic(..)
        | ty::Alias(..)
        | ty::Param(_)
        | ty::Placeholder(..)
        | ty::Infer(_)
        | ty::Bound(..)
        | ty::Coroutine(..) => false,
    }
}

pub fn compute_dropck_outlives_inner<'tcx>(
    ocx: &ObligationCtxt<'_, 'tcx>,
    goal: ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> Result<DropckOutlivesResult<'tcx>, NoSolution> {
    let tcx = ocx.infcx.tcx;
    let ParamEnvAnd { param_env, value: for_ty } = goal;

    let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] };

    // A stack of types left to process. Each round, we pop
    // something from the stack and invoke
    // `dtorck_constraint_for_ty_inner`. This may produce new types that
    // have to be pushed on the stack. This continues until we have explored
    // all the reachable types from the type `for_ty`.
    //
    // Example: Imagine that we have the following code:
    //
    // ```rust
    // struct A {
    //     value: B,
    //     children: Vec<A>,
    // }
    //
    // struct B {
    //     value: u32
    // }
    //
    // fn f() {
    //   let a: A = ...;
    //   ..
    // } // here, `a` is dropped
    // ```
    //
    // at the point where `a` is dropped, we need to figure out
    // which types inside of `a` contain region data that may be
    // accessed by any destructors in `a`. We begin by pushing `A`
    // onto the stack, as that is the type of `a`. We will then
    // invoke `dtorck_constraint_for_ty_inner` which will expand `A`
    // into the types of its fields `(B, Vec<A>)`. These will get
    // pushed onto the stack. Eventually, expanding `Vec<A>` will
    // lead to us trying to push `A` a second time -- to prevent
    // infinite recursion, we notice that `A` was already pushed
    // once and stop.
    let mut ty_stack = vec![(for_ty, 0)];

    // Set used to detect infinite recursion.
    let mut ty_set = FxHashSet::default();

    let cause = ObligationCause::dummy();
    let mut constraints = DropckConstraint::empty();
    while let Some((ty, depth)) = ty_stack.pop() {
        debug!(
            "{} kinds, {} overflows, {} ty_stack",
            result.kinds.len(),
            result.overflows.len(),
            ty_stack.len()
        );
        dtorck_constraint_for_ty_inner(tcx, param_env, DUMMY_SP, depth, ty, &mut constraints)?;

        // "outlives" represent types/regions that may be touched
        // by a destructor.
        result.kinds.append(&mut constraints.outlives);
        result.overflows.append(&mut constraints.overflows);

        // If we have even one overflow, we should stop trying to evaluate further --
        // chances are, the subsequent overflows for this evaluation won't provide useful
        // information and will just decrease the speed at which we can emit these errors
        // (since we'll be printing for just that much longer for the often enormous types
        // that result here).
        if !result.overflows.is_empty() {
            break;
        }

        // dtorck types are "types that will get dropped but which
        // do not themselves define a destructor", more or less. We have
        // to push them onto the stack to be expanded.
        for ty in constraints.dtorck_types.drain(..) {
            let Normalized { value: ty, obligations } =
                ocx.infcx.at(&cause, param_env).query_normalize(ty)?;
            ocx.register_obligations(obligations);

            debug!("dropck_outlives: ty from dtorck_types = {:?}", ty);

            match ty.kind() {
                // All parameters live for the duration of the
                // function.
                ty::Param(..) => {}

                // A projection that we couldn't resolve - it
                // might have a destructor.
                ty::Alias(..) => {
                    result.kinds.push(ty.into());
                }

                _ => {
                    if ty_set.insert(ty) {
                        ty_stack.push((ty, depth + 1));
                    }
                }
            }
        }
    }

    debug!("dropck_outlives: result = {:#?}", result);
    Ok(result)
}

/// Returns a set of constraints that needs to be satisfied in
/// order for `ty` to be valid for destruction.
#[instrument(level = "debug", skip(tcx, param_env, span, constraints))]
pub fn dtorck_constraint_for_ty_inner<'tcx>(
    tcx: TyCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    span: Span,
    depth: usize,
    ty: Ty<'tcx>,
    constraints: &mut DropckConstraint<'tcx>,
) -> Result<(), NoSolution> {
    if !tcx.recursion_limit().value_within_limit(depth) {
        constraints.overflows.push(ty);
        return Ok(());
    }

    if trivial_dropck_outlives(tcx, ty) {
        return Ok(());
    }

    match ty.kind() {
        ty::Bool
        | ty::Char
        | ty::Int(_)
        | ty::Uint(_)
        | ty::Float(_)
        | ty::Str
        | ty::Never
        | ty::Foreign(..)
        | ty::RawPtr(..)
        | ty::Ref(..)
        | ty::FnDef(..)
        | ty::FnPtr(..)
        | ty::CoroutineWitness(..) => {
            // these types never have a destructor
        }

        ty::Pat(ety, _) | ty::Array(ety, _) | ty::Slice(ety) => {
            // single-element containers, behave like their element
            rustc_data_structures::stack::ensure_sufficient_stack(|| {
                dtorck_constraint_for_ty_inner(tcx, param_env, span, depth + 1, *ety, constraints)
            })?;
        }

        ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| {
            for ty in tys.iter() {
                dtorck_constraint_for_ty_inner(tcx, param_env, span, depth + 1, ty, constraints)?;
            }
            Ok::<_, NoSolution>(())
        })?,

        ty::Closure(_, args) => rustc_data_structures::stack::ensure_sufficient_stack(|| {
            for ty in args.as_closure().upvar_tys() {
                dtorck_constraint_for_ty_inner(tcx, param_env, span, depth + 1, ty, constraints)?;
            }
            Ok::<_, NoSolution>(())
        })?,

        ty::CoroutineClosure(_, args) => {
            rustc_data_structures::stack::ensure_sufficient_stack(|| {
                for ty in args.as_coroutine_closure().upvar_tys() {
                    dtorck_constraint_for_ty_inner(
                        tcx,
                        param_env,
                        span,
                        depth + 1,
                        ty,
                        constraints,
                    )?;
                }
                Ok::<_, NoSolution>(())
            })?
        }

        ty::Coroutine(_, args) => {
            // rust-lang/rust#49918: types can be constructed, stored
            // in the interior, and sit idle when coroutine yields
            // (and is subsequently dropped).
            //
            // It would be nice to descend into interior of a
            // coroutine to determine what effects dropping it might
            // have (by looking at any drop effects associated with
            // its interior).
            //
            // However, the interior's representation uses things like
            // CoroutineWitness that explicitly assume they are not
            // traversed in such a manner. So instead, we will
            // simplify things for now by treating all coroutines as
            // if they were like trait objects, where its upvars must
            // all be alive for the coroutine's (potential)
            // destructor.
            //
            // In particular, skipping over `_interior` is safe
            // because any side-effects from dropping `_interior` can
            // only take place through references with lifetimes
            // derived from lifetimes attached to the upvars and resume
            // argument, and we *do* incorporate those here.
            let args = args.as_coroutine();

            // While we conservatively assume that all coroutines require drop
            // to avoid query cycles during MIR building, we can check the actual
            // witness during borrowck to avoid unnecessary liveness constraints.
            if args.witness().needs_drop(tcx, tcx.erase_regions(param_env)) {
                constraints.outlives.extend(args.upvar_tys().iter().map(ty::GenericArg::from));
                constraints.outlives.push(args.resume_ty().into());
            }
        }

        ty::Adt(def, args) => {
            let DropckConstraint { dtorck_types, outlives, overflows } =
                tcx.at(span).adt_dtorck_constraint(def.did())?;
            // FIXME: we can try to recursively `dtorck_constraint_on_ty`
            // there, but that needs some way to handle cycles.
            constraints
                .dtorck_types
                .extend(dtorck_types.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args)));
            constraints
                .outlives
                .extend(outlives.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args)));
            constraints
                .overflows
                .extend(overflows.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args)));
        }

        // Objects must be alive in order for their destructor
        // to be called.
        ty::Dynamic(..) => {
            constraints.outlives.push(ty.into());
        }

        // Types that can't be resolved. Pass them forward.
        ty::Alias(..) | ty::Param(..) => {
            constraints.dtorck_types.push(ty);
        }

        ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => {
            // By the time this code runs, all type variables ought to
            // be fully resolved.
            return Err(NoSolution);
        }
    }

    Ok(())
}