miri/shims/x86/avx2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
use rustc_middle::mir;
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::LayoutOf as _;
use rustc_span::Symbol;
use rustc_target::spec::abi::Abi;
use super::{
ShiftOp, horizontal_bin_op, int_abs, mask_load, mask_store, mpsadbw, packssdw, packsswb,
packusdw, packuswb, pmulhrsw, psign, shift_simd_by_scalar, shift_simd_by_simd,
};
use crate::*;
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn emulate_x86_avx2_intrinsic(
&mut self,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, EmulateItemResult> {
let this = self.eval_context_mut();
this.expect_target_feature_for_intrinsic(link_name, "avx2")?;
// Prefix should have already been checked.
let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.avx2.").unwrap();
match unprefixed_name {
// Used to implement the _mm256_abs_epi{8,16,32} functions.
// Calculates the absolute value of packed 8/16/32-bit integers.
"pabs.b" | "pabs.w" | "pabs.d" => {
let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
int_abs(this, op, dest)?;
}
// Used to implement the _mm256_h{add,adds,sub}_epi{16,32} functions.
// Horizontally add / add with saturation / subtract adjacent 16/32-bit
// integer values in `left` and `right`.
"phadd.w" | "phadd.sw" | "phadd.d" | "phsub.w" | "phsub.sw" | "phsub.d" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (which, saturating) = match unprefixed_name {
"phadd.w" | "phadd.d" => (mir::BinOp::Add, false),
"phadd.sw" => (mir::BinOp::Add, true),
"phsub.w" | "phsub.d" => (mir::BinOp::Sub, false),
"phsub.sw" => (mir::BinOp::Sub, true),
_ => unreachable!(),
};
horizontal_bin_op(this, which, saturating, left, right, dest)?;
}
// Used to implement `_mm{,_mask}_{i32,i64}gather_{epi32,epi64,pd,ps}` functions
// Gathers elements from `slice` using `offsets * scale` as indices.
// When the highest bit of the corresponding element of `mask` is 0,
// the value is copied from `src` instead.
"gather.d.d" | "gather.d.d.256" | "gather.d.q" | "gather.d.q.256" | "gather.q.d"
| "gather.q.d.256" | "gather.q.q" | "gather.q.q.256" | "gather.d.pd"
| "gather.d.pd.256" | "gather.q.pd" | "gather.q.pd.256" | "gather.d.ps"
| "gather.d.ps.256" | "gather.q.ps" | "gather.q.ps.256" => {
let [src, slice, offsets, mask, scale] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
assert_eq!(dest.layout, src.layout);
let (src, _) = this.project_to_simd(src)?;
let (offsets, offsets_len) = this.project_to_simd(offsets)?;
let (mask, mask_len) = this.project_to_simd(mask)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
// There are cases like dest: i32x4, offsets: i64x2
// If dest has more elements than offset, extra dest elements are filled with zero.
// If offsets has more elements than dest, extra offsets are ignored.
let actual_len = dest_len.min(offsets_len);
assert_eq!(dest_len, mask_len);
let mask_item_size = mask.layout.field(this, 0).size;
let high_bit_offset = mask_item_size.bits().strict_sub(1);
let scale = this.read_scalar(scale)?.to_i8()?;
if !matches!(scale, 1 | 2 | 4 | 8) {
panic!("invalid gather scale {scale}");
}
let scale = i64::from(scale);
let slice = this.read_pointer(slice)?;
for i in 0..actual_len {
let mask = this.project_index(&mask, i)?;
let dest = this.project_index(&dest, i)?;
if this.read_scalar(&mask)?.to_uint(mask_item_size)? >> high_bit_offset != 0 {
let offset = this.project_index(&offsets, i)?;
let offset =
i64::try_from(this.read_scalar(&offset)?.to_int(offset.layout.size)?)
.unwrap();
let ptr = slice.wrapping_signed_offset(offset.strict_mul(scale), &this.tcx);
// Unaligned copy, which is what we want.
this.mem_copy(
ptr,
dest.ptr(),
dest.layout.size,
/*nonoverlapping*/ true,
)?;
} else {
this.copy_op(&this.project_index(&src, i)?, &dest)?;
}
}
for i in actual_len..dest_len {
let dest = this.project_index(&dest, i)?;
this.write_scalar(Scalar::from_int(0, dest.layout.size), &dest)?;
}
}
// Used to implement the _mm256_madd_epi16 function.
// Multiplies packed signed 16-bit integers in `left` and `right`, producing
// intermediate signed 32-bit integers. Horizontally add adjacent pairs of
// intermediate 32-bit integers, and pack the results in `dest`.
"pmadd.wd" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (right, right_len) = this.project_to_simd(right)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(left_len, right_len);
assert_eq!(dest_len.strict_mul(2), left_len);
for i in 0..dest_len {
let j1 = i.strict_mul(2);
let left1 = this.read_scalar(&this.project_index(&left, j1)?)?.to_i16()?;
let right1 = this.read_scalar(&this.project_index(&right, j1)?)?.to_i16()?;
let j2 = j1.strict_add(1);
let left2 = this.read_scalar(&this.project_index(&left, j2)?)?.to_i16()?;
let right2 = this.read_scalar(&this.project_index(&right, j2)?)?.to_i16()?;
let dest = this.project_index(&dest, i)?;
// Multiplications are i16*i16->i32, which will not overflow.
let mul1 = i32::from(left1).strict_mul(right1.into());
let mul2 = i32::from(left2).strict_mul(right2.into());
// However, this addition can overflow in the most extreme case
// (-0x8000)*(-0x8000)+(-0x8000)*(-0x8000) = 0x80000000
let res = mul1.wrapping_add(mul2);
this.write_scalar(Scalar::from_i32(res), &dest)?;
}
}
// Used to implement the _mm256_maddubs_epi16 function.
// Multiplies packed 8-bit unsigned integers from `left` and packed
// signed 8-bit integers from `right` into 16-bit signed integers. Then,
// the saturating sum of the products with indices `2*i` and `2*i+1`
// produces the output at index `i`.
"pmadd.ub.sw" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (right, right_len) = this.project_to_simd(right)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(left_len, right_len);
assert_eq!(dest_len.strict_mul(2), left_len);
for i in 0..dest_len {
let j1 = i.strict_mul(2);
let left1 = this.read_scalar(&this.project_index(&left, j1)?)?.to_u8()?;
let right1 = this.read_scalar(&this.project_index(&right, j1)?)?.to_i8()?;
let j2 = j1.strict_add(1);
let left2 = this.read_scalar(&this.project_index(&left, j2)?)?.to_u8()?;
let right2 = this.read_scalar(&this.project_index(&right, j2)?)?.to_i8()?;
let dest = this.project_index(&dest, i)?;
// Multiplication of a u8 and an i8 into an i16 cannot overflow.
let mul1 = i16::from(left1).strict_mul(right1.into());
let mul2 = i16::from(left2).strict_mul(right2.into());
let res = mul1.saturating_add(mul2);
this.write_scalar(Scalar::from_i16(res), &dest)?;
}
}
// Used to implement the _mm_maskload_epi32, _mm_maskload_epi64,
// _mm256_maskload_epi32 and _mm256_maskload_epi64 functions.
// For the element `i`, if the high bit of the `i`-th element of `mask`
// is one, it is loaded from `ptr.wrapping_add(i)`, otherwise zero is
// loaded.
"maskload.d" | "maskload.q" | "maskload.d.256" | "maskload.q.256" => {
let [ptr, mask] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
mask_load(this, ptr, mask, dest)?;
}
// Used to implement the _mm_maskstore_epi32, _mm_maskstore_epi64,
// _mm256_maskstore_epi32 and _mm256_maskstore_epi64 functions.
// For the element `i`, if the high bit of the element `i`-th of `mask`
// is one, it is stored into `ptr.wapping_add(i)`.
// Unlike SSE2's _mm_maskmoveu_si128, these are not non-temporal stores.
"maskstore.d" | "maskstore.q" | "maskstore.d.256" | "maskstore.q.256" => {
let [ptr, mask, value] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
mask_store(this, ptr, mask, value)?;
}
// Used to implement the _mm256_mpsadbw_epu8 function.
// Compute the sum of absolute differences of quadruplets of unsigned
// 8-bit integers in `left` and `right`, and store the 16-bit results
// in `right`. Quadruplets are selected from `left` and `right` with
// offsets specified in `imm`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mpsadbw_epu8
"mpsadbw" => {
let [left, right, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
mpsadbw(this, left, right, imm, dest)?;
}
// Used to implement the _mm256_mulhrs_epi16 function.
// Multiplies packed 16-bit signed integer values, truncates the 32-bit
// product to the 18 most significant bits by right-shifting, and then
// divides the 18-bit value by 2 (rounding to nearest) by first adding
// 1 and then taking the bits `1..=16`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mulhrs_epi16
"pmul.hr.sw" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
pmulhrsw(this, left, right, dest)?;
}
// Used to implement the _mm256_packs_epi16 function.
// Converts two 16-bit integer vectors to a single 8-bit integer
// vector with signed saturation.
"packsswb" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
packsswb(this, left, right, dest)?;
}
// Used to implement the _mm256_packs_epi32 function.
// Converts two 32-bit integer vectors to a single 16-bit integer
// vector with signed saturation.
"packssdw" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
packssdw(this, left, right, dest)?;
}
// Used to implement the _mm256_packus_epi16 function.
// Converts two 16-bit signed integer vectors to a single 8-bit
// unsigned integer vector with saturation.
"packuswb" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
packuswb(this, left, right, dest)?;
}
// Used to implement the _mm256_packus_epi32 function.
// Concatenates two 32-bit signed integer vectors and converts
// the result to a 16-bit unsigned integer vector with saturation.
"packusdw" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
packusdw(this, left, right, dest)?;
}
// Used to implement the _mm256_permutevar8x32_epi32 and
// _mm256_permutevar8x32_ps function.
// Shuffles `left` using the three low bits of each element of `right`
// as indices.
"permd" | "permps" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (right, right_len) = this.project_to_simd(right)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(dest_len, left_len);
assert_eq!(dest_len, right_len);
for i in 0..dest_len {
let dest = this.project_index(&dest, i)?;
let right = this.read_scalar(&this.project_index(&right, i)?)?.to_u32()?;
let left = this.project_index(&left, (right & 0b111).into())?;
this.copy_op(&left, &dest)?;
}
}
// Used to implement the _mm256_permute2x128_si256 function.
// Shuffles 128-bit blocks of `a` and `b` using `imm` as pattern.
"vperm2i128" => {
let [left, right, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
assert_eq!(left.layout.size.bits(), 256);
assert_eq!(right.layout.size.bits(), 256);
assert_eq!(dest.layout.size.bits(), 256);
// Transmute to `[i128; 2]`
let array_layout =
this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.i128, 2))?;
let left = left.transmute(array_layout, this)?;
let right = right.transmute(array_layout, this)?;
let dest = dest.transmute(array_layout, this)?;
let imm = this.read_scalar(imm)?.to_u8()?;
for i in 0..2 {
let dest = this.project_index(&dest, i)?;
let src = match (imm >> i.strict_mul(4)) & 0b11 {
0 => this.project_index(&left, 0)?,
1 => this.project_index(&left, 1)?,
2 => this.project_index(&right, 0)?,
3 => this.project_index(&right, 1)?,
_ => unreachable!(),
};
this.copy_op(&src, &dest)?;
}
}
// Used to implement the _mm256_sad_epu8 function.
// Compute the absolute differences of packed unsigned 8-bit integers
// in `left` and `right`, then horizontally sum each consecutive 8
// differences to produce four unsigned 16-bit integers, and pack
// these unsigned 16-bit integers in the low 16 bits of 64-bit elements
// in `dest`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_sad_epu8
"psad.bw" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (right, right_len) = this.project_to_simd(right)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(left_len, right_len);
assert_eq!(left_len, dest_len.strict_mul(8));
for i in 0..dest_len {
let dest = this.project_index(&dest, i)?;
let mut acc: u16 = 0;
for j in 0..8 {
let src_index = i.strict_mul(8).strict_add(j);
let left = this.project_index(&left, src_index)?;
let left = this.read_scalar(&left)?.to_u8()?;
let right = this.project_index(&right, src_index)?;
let right = this.read_scalar(&right)?.to_u8()?;
acc = acc.strict_add(left.abs_diff(right).into());
}
this.write_scalar(Scalar::from_u64(acc.into()), &dest)?;
}
}
// Used to implement the _mm256_shuffle_epi8 intrinsic.
// Shuffles bytes from `left` using `right` as pattern.
// Each 128-bit block is shuffled independently.
"pshuf.b" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (right, right_len) = this.project_to_simd(right)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(dest_len, left_len);
assert_eq!(dest_len, right_len);
for i in 0..dest_len {
let right = this.read_scalar(&this.project_index(&right, i)?)?.to_u8()?;
let dest = this.project_index(&dest, i)?;
let res = if right & 0x80 == 0 {
// Shuffle each 128-bit (16-byte) block independently.
let j = u64::from(right % 16).strict_add(i & !15);
this.read_scalar(&this.project_index(&left, j)?)?
} else {
// If the highest bit in `right` is 1, write zero.
Scalar::from_u8(0)
};
this.write_scalar(res, &dest)?;
}
}
// Used to implement the _mm256_sign_epi{8,16,32} functions.
// Negates elements from `left` when the corresponding element in
// `right` is negative. If an element from `right` is zero, zero
// is writen to the corresponding output element.
// Basically, we multiply `left` with `right.signum()`.
"psign.b" | "psign.w" | "psign.d" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
psign(this, left, right, dest)?;
}
// Used to implement the _mm256_{sll,srl,sra}_epi{16,32,64} functions
// (except _mm256_sra_epi64, which is not available in AVX2).
// Shifts N-bit packed integers in left by the amount in right.
// `right` is as 128-bit vector. but it is interpreted as a single
// 64-bit integer (remaining bits are ignored).
// For logic shifts, when right is larger than N - 1, zero is produced.
// For arithmetic shifts, when right is larger than N - 1, the sign bit
// is copied to remaining bits.
"psll.w" | "psrl.w" | "psra.w" | "psll.d" | "psrl.d" | "psra.d" | "psll.q"
| "psrl.q" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which = match unprefixed_name {
"psll.w" | "psll.d" | "psll.q" => ShiftOp::Left,
"psrl.w" | "psrl.d" | "psrl.q" => ShiftOp::RightLogic,
"psra.w" | "psra.d" => ShiftOp::RightArith,
_ => unreachable!(),
};
shift_simd_by_scalar(this, left, right, which, dest)?;
}
// Used to implement the _mm{,256}_{sllv,srlv,srav}_epi{32,64} functions
// (except _mm{,256}_srav_epi64, which are not available in AVX2).
"psllv.d" | "psllv.d.256" | "psllv.q" | "psllv.q.256" | "psrlv.d" | "psrlv.d.256"
| "psrlv.q" | "psrlv.q.256" | "psrav.d" | "psrav.d.256" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which = match unprefixed_name {
"psllv.d" | "psllv.d.256" | "psllv.q" | "psllv.q.256" => ShiftOp::Left,
"psrlv.d" | "psrlv.d.256" | "psrlv.q" | "psrlv.q.256" => ShiftOp::RightLogic,
"psrav.d" | "psrav.d.256" => ShiftOp::RightArith,
_ => unreachable!(),
};
shift_simd_by_simd(this, left, right, which, dest)?;
}
_ => return interp_ok(EmulateItemResult::NotSupported),
}
interp_ok(EmulateItemResult::NeedsReturn)
}
}