1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
use std::ops::ControlFlow;

use super::{Byte, Def, Ref};

#[cfg(test)]
mod tests;

/// A tree-based representation of a type layout.
///
/// Invariants:
/// 1. All paths through the layout have the same length (in bytes).
///
/// Nice-to-haves:
/// 1. An `Alt` is never directly nested beneath another `Alt`.
/// 2. A `Seq` is never directly nested beneath another `Seq`.
/// 3. `Seq`s and `Alt`s with a single member do not exist.
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub(crate) enum Tree<D, R>
where
    D: Def,
    R: Ref,
{
    /// A sequence of successive layouts.
    Seq(Vec<Self>),
    /// A choice between alternative layouts.
    Alt(Vec<Self>),
    /// A definition node.
    Def(D),
    /// A reference node.
    Ref(R),
    /// A byte node.
    Byte(Byte),
}

impl<D, R> Tree<D, R>
where
    D: Def,
    R: Ref,
{
    /// A `Tree` consisting only of a definition node.
    pub(crate) fn def(def: D) -> Self {
        Self::Def(def)
    }

    /// A `Tree` representing an uninhabited type.
    pub(crate) fn uninhabited() -> Self {
        Self::Alt(vec![])
    }

    /// A `Tree` representing a zero-sized type.
    pub(crate) fn unit() -> Self {
        Self::Seq(Vec::new())
    }

    /// A `Tree` containing a single, uninitialized byte.
    pub(crate) fn uninit() -> Self {
        Self::Byte(Byte::Uninit)
    }

    /// A `Tree` representing the layout of `bool`.
    pub(crate) fn bool() -> Self {
        Self::from_bits(0x00).or(Self::from_bits(0x01))
    }

    /// A `Tree` whose layout matches that of a `u8`.
    pub(crate) fn u8() -> Self {
        Self::Alt((0u8..=255).map(Self::from_bits).collect())
    }

    /// A `Tree` whose layout accepts exactly the given bit pattern.
    pub(crate) fn from_bits(bits: u8) -> Self {
        Self::Byte(Byte::Init(bits))
    }

    /// A `Tree` whose layout is a number of the given width.
    pub(crate) fn number(width_in_bytes: usize) -> Self {
        Self::Seq(vec![Self::u8(); width_in_bytes])
    }

    /// A `Tree` whose layout is entirely padding of the given width.
    pub(crate) fn padding(width_in_bytes: usize) -> Self {
        Self::Seq(vec![Self::uninit(); width_in_bytes])
    }

    /// Remove all `Def` nodes, and all branches of the layout for which `f`
    /// produces `true`.
    pub(crate) fn prune<F>(self, f: &F) -> Tree<!, R>
    where
        F: Fn(D) -> bool,
    {
        match self {
            Self::Seq(elts) => match elts.into_iter().map(|elt| elt.prune(f)).try_fold(
                Tree::unit(),
                |elts, elt| {
                    if elt == Tree::uninhabited() {
                        ControlFlow::Break(Tree::uninhabited())
                    } else {
                        ControlFlow::Continue(elts.then(elt))
                    }
                },
            ) {
                ControlFlow::Break(node) | ControlFlow::Continue(node) => node,
            },
            Self::Alt(alts) => alts
                .into_iter()
                .map(|alt| alt.prune(f))
                .fold(Tree::uninhabited(), |alts, alt| alts.or(alt)),
            Self::Byte(b) => Tree::Byte(b),
            Self::Ref(r) => Tree::Ref(r),
            Self::Def(d) => {
                if f(d) {
                    Tree::uninhabited()
                } else {
                    Tree::unit()
                }
            }
        }
    }

    /// Produces `true` if `Tree` is an inhabited type; otherwise false.
    pub(crate) fn is_inhabited(&self) -> bool {
        match self {
            Self::Seq(elts) => elts.into_iter().all(|elt| elt.is_inhabited()),
            Self::Alt(alts) => alts.into_iter().any(|alt| alt.is_inhabited()),
            Self::Byte(..) | Self::Ref(..) | Self::Def(..) => true,
        }
    }
}

impl<D, R> Tree<D, R>
where
    D: Def,
    R: Ref,
{
    /// Produces a new `Tree` where `other` is sequenced after `self`.
    pub(crate) fn then(self, other: Self) -> Self {
        match (self, other) {
            (Self::Seq(elts), other) | (other, Self::Seq(elts)) if elts.len() == 0 => other,
            (Self::Seq(mut lhs), Self::Seq(mut rhs)) => {
                lhs.append(&mut rhs);
                Self::Seq(lhs)
            }
            (Self::Seq(mut lhs), rhs) => {
                lhs.push(rhs);
                Self::Seq(lhs)
            }
            (lhs, Self::Seq(mut rhs)) => {
                rhs.insert(0, lhs);
                Self::Seq(rhs)
            }
            (lhs, rhs) => Self::Seq(vec![lhs, rhs]),
        }
    }

    /// Produces a new `Tree` accepting either `self` or `other` as alternative layouts.
    pub(crate) fn or(self, other: Self) -> Self {
        match (self, other) {
            (Self::Alt(alts), other) | (other, Self::Alt(alts)) if alts.len() == 0 => other,
            (Self::Alt(mut lhs), Self::Alt(rhs)) => {
                lhs.extend(rhs);
                Self::Alt(lhs)
            }
            (Self::Alt(mut alts), alt) | (alt, Self::Alt(mut alts)) => {
                alts.push(alt);
                Self::Alt(alts)
            }
            (lhs, rhs) => Self::Alt(vec![lhs, rhs]),
        }
    }
}

#[cfg(feature = "rustc")]
pub(crate) mod rustc {
    use rustc_middle::ty::layout::{HasTyCtxt, LayoutCx, LayoutError};
    use rustc_middle::ty::{self, AdtDef, AdtKind, List, ScalarInt, Ty, TyCtxt, TypeVisitableExt};
    use rustc_span::ErrorGuaranteed;
    use rustc_target::abi::{
        FieldIdx, FieldsShape, Layout, Size, TyAndLayout, VariantIdx, Variants,
    };

    use super::Tree;
    use crate::layout::rustc::{layout_of, Def, Ref};

    #[derive(Debug, Copy, Clone)]
    pub(crate) enum Err {
        /// The layout of the type is not yet supported.
        NotYetSupported,
        /// This error will be surfaced elsewhere by rustc, so don't surface it.
        UnknownLayout,
        /// Overflow size
        SizeOverflow,
        TypeError(ErrorGuaranteed),
    }

    impl<'tcx> From<&LayoutError<'tcx>> for Err {
        fn from(err: &LayoutError<'tcx>) -> Self {
            match err {
                LayoutError::Unknown(..) | LayoutError::ReferencesError(..) => Self::UnknownLayout,
                LayoutError::SizeOverflow(..) => Self::SizeOverflow,
                LayoutError::Cycle(err) => Self::TypeError(*err),
                err => unimplemented!("{:?}", err),
            }
        }
    }

    impl<'tcx> Tree<Def<'tcx>, Ref<'tcx>> {
        pub fn from_ty(ty: Ty<'tcx>, cx: LayoutCx<'tcx, TyCtxt<'tcx>>) -> Result<Self, Err> {
            use rustc_target::abi::HasDataLayout;
            let layout = layout_of(cx, ty)?;

            if let Err(e) = ty.error_reported() {
                return Err(Err::TypeError(e));
            }

            let target = cx.tcx.data_layout();
            let pointer_size = target.pointer_size;

            match ty.kind() {
                ty::Bool => Ok(Self::bool()),

                ty::Float(nty) => {
                    let width = nty.bit_width() / 8;
                    Ok(Self::number(width as _))
                }

                ty::Int(nty) => {
                    let width = nty.normalize(pointer_size.bits() as _).bit_width().unwrap() / 8;
                    Ok(Self::number(width as _))
                }

                ty::Uint(nty) => {
                    let width = nty.normalize(pointer_size.bits() as _).bit_width().unwrap() / 8;
                    Ok(Self::number(width as _))
                }

                ty::Tuple(members) => Self::from_tuple((ty, layout), members, cx),

                ty::Array(inner_ty, len) => {
                    let FieldsShape::Array { stride, count } = &layout.fields else {
                        return Err(Err::NotYetSupported);
                    };
                    let inner_layout = layout_of(cx, *inner_ty)?;
                    assert_eq!(*stride, inner_layout.size);
                    let elt = Tree::from_ty(*inner_ty, cx)?;
                    Ok(std::iter::repeat(elt)
                        .take(*count as usize)
                        .fold(Tree::unit(), |tree, elt| tree.then(elt)))
                }

                ty::Adt(adt_def, _args_ref) if !ty.is_box() => match adt_def.adt_kind() {
                    AdtKind::Struct => Self::from_struct((ty, layout), *adt_def, cx),
                    AdtKind::Enum => Self::from_enum((ty, layout), *adt_def, cx),
                    AdtKind::Union => Self::from_union((ty, layout), *adt_def, cx),
                },

                ty::Ref(lifetime, ty, mutability) => {
                    let layout = layout_of(cx, *ty)?;
                    let align = layout.align.abi.bytes_usize();
                    let size = layout.size.bytes_usize();
                    Ok(Tree::Ref(Ref {
                        lifetime: *lifetime,
                        ty: *ty,
                        mutability: *mutability,
                        align,
                        size,
                    }))
                }

                _ => Err(Err::NotYetSupported),
            }
        }

        /// Constructs a `Tree` from a tuple.
        fn from_tuple(
            (ty, layout): (Ty<'tcx>, Layout<'tcx>),
            members: &'tcx List<Ty<'tcx>>,
            cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        ) -> Result<Self, Err> {
            match &layout.fields {
                FieldsShape::Primitive => {
                    assert_eq!(members.len(), 1);
                    let inner_ty = members[0];
                    let inner_layout = layout_of(cx, inner_ty)?;
                    Self::from_ty(inner_ty, cx)
                }
                FieldsShape::Arbitrary { offsets, .. } => {
                    assert_eq!(offsets.len(), members.len());
                    Self::from_variant(Def::Primitive, None, (ty, layout), layout.size, cx)
                }
                FieldsShape::Array { .. } | FieldsShape::Union(_) => Err(Err::NotYetSupported),
            }
        }

        /// Constructs a `Tree` from a struct.
        ///
        /// # Panics
        ///
        /// Panics if `def` is not a struct definition.
        fn from_struct(
            (ty, layout): (Ty<'tcx>, Layout<'tcx>),
            def: AdtDef<'tcx>,
            cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        ) -> Result<Self, Err> {
            assert!(def.is_struct());
            let def = Def::Adt(def);
            Self::from_variant(def, None, (ty, layout), layout.size, cx)
        }

        /// Constructs a `Tree` from an enum.
        ///
        /// # Panics
        ///
        /// Panics if `def` is not an enum definition.
        fn from_enum(
            (ty, layout): (Ty<'tcx>, Layout<'tcx>),
            def: AdtDef<'tcx>,
            cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        ) -> Result<Self, Err> {
            assert!(def.is_enum());

            // Computes the variant of a given index.
            let layout_of_variant = |index| {
                let tag = cx.tcx.tag_for_variant((cx.tcx.erase_regions(ty), index));
                let variant_def = Def::Variant(def.variant(index));
                let variant_layout = ty_variant(cx, (ty, layout), index);
                Self::from_variant(variant_def, tag, (ty, variant_layout), layout.size, cx)
            };

            // We consider three kinds of enums, each demanding a different
            // treatment of their layout computation:
            // 1. enums that are uninhabited ZSTs
            // 2. enums that delegate their layout to a variant
            // 3. enums with multiple variants
            match layout.variants() {
                Variants::Single { .. }
                    if layout.abi.is_uninhabited() && layout.size == Size::ZERO =>
                {
                    // The layout representation of uninhabited, ZST enums is
                    // defined to be like that of the `!` type, as opposed of a
                    // typical enum. Consequently, they cannot be descended into
                    // as if they typical enums. We therefore special-case this
                    // scenario and simply return an uninhabited `Tree`.
                    Ok(Self::uninhabited())
                }
                Variants::Single { index } => {
                    // `Variants::Single` on enums with variants denotes that
                    // the enum delegates its layout to the variant at `index`.
                    layout_of_variant(*index)
                }
                Variants::Multiple { tag_field, .. } => {
                    // `Variants::Multiple` denotes an enum with multiple
                    // variants. The layout of such an enum is the disjunction
                    // of the layouts of its tagged variants.

                    // For enums (but not coroutines), the tag field is
                    // currently always the first field of the layout.
                    assert_eq!(*tag_field, 0);

                    let variants = def.discriminants(cx.tcx()).try_fold(
                        Self::uninhabited(),
                        |variants, (idx, ref discriminant)| {
                            let variant = layout_of_variant(idx)?;
                            Result::<Self, Err>::Ok(variants.or(variant))
                        },
                    )?;

                    return Ok(Self::def(Def::Adt(def)).then(variants));
                }
            }
        }

        /// Constructs a `Tree` from a 'variant-like' layout.
        ///
        /// A 'variant-like' layout includes those of structs and, of course,
        /// enum variants. Pragmatically speaking, this method supports anything
        /// with `FieldsShape::Arbitrary`.
        ///
        /// Note: This routine assumes that the optional `tag` is the first
        /// field, and enum callers should check that `tag_field` is, in fact,
        /// `0`.
        fn from_variant(
            def: Def<'tcx>,
            tag: Option<ScalarInt>,
            (ty, layout): (Ty<'tcx>, Layout<'tcx>),
            total_size: Size,
            cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        ) -> Result<Self, Err> {
            // This constructor does not support non-`FieldsShape::Arbitrary`
            // layouts.
            let FieldsShape::Arbitrary { offsets, memory_index } = layout.fields() else {
                return Err(Err::NotYetSupported);
            };

            // When this function is invoked with enum variants,
            // `ty_and_layout.size` does not encompass the entire size of the
            // enum. We rely on `total_size` for this.
            assert!(layout.size <= total_size);

            let mut size = Size::ZERO;
            let mut struct_tree = Self::def(def);

            // If a `tag` is provided, place it at the start of the layout.
            if let Some(tag) = tag {
                size += tag.size();
                struct_tree = struct_tree.then(Self::from_tag(tag, cx.tcx));
            }

            // Append the fields, in memory order, to the layout.
            let inverse_memory_index = memory_index.invert_bijective_mapping();
            for (memory_idx, &field_idx) in inverse_memory_index.iter_enumerated() {
                // Add interfield padding.
                let padding_needed = offsets[field_idx] - size;
                let padding = Self::padding(padding_needed.bytes_usize());

                let field_ty = ty_field(cx, (ty, layout), field_idx);
                let field_layout = layout_of(cx, field_ty)?;
                let field_tree = Self::from_ty(field_ty, cx)?;

                struct_tree = struct_tree.then(padding).then(field_tree);

                size += padding_needed + field_layout.size;
            }

            // Add trailing padding.
            let padding_needed = total_size - size;
            let trailing_padding = Self::padding(padding_needed.bytes_usize());

            Ok(struct_tree.then(trailing_padding))
        }

        /// Constructs a `Tree` representing the value of a enum tag.
        fn from_tag(tag: ScalarInt, tcx: TyCtxt<'tcx>) -> Self {
            use rustc_target::abi::Endian;
            let size = tag.size();
            let bits = tag.to_bits(size);
            let bytes: [u8; 16];
            let bytes = match tcx.data_layout.endian {
                Endian::Little => {
                    bytes = bits.to_le_bytes();
                    &bytes[..size.bytes_usize()]
                }
                Endian::Big => {
                    bytes = bits.to_be_bytes();
                    &bytes[bytes.len() - size.bytes_usize()..]
                }
            };
            Self::Seq(bytes.iter().map(|&b| Self::from_bits(b)).collect())
        }

        /// Constructs a `Tree` from a union.
        ///
        /// # Panics
        ///
        /// Panics if `def` is not a union definition.
        fn from_union(
            (ty, layout): (Ty<'tcx>, Layout<'tcx>),
            def: AdtDef<'tcx>,
            cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        ) -> Result<Self, Err> {
            assert!(def.is_union());

            // This constructor does not support non-`FieldsShape::Union`
            // layouts. Fields of this shape are all placed at offset 0.
            let FieldsShape::Union(fields) = layout.fields() else {
                return Err(Err::NotYetSupported);
            };

            let fields = &def.non_enum_variant().fields;
            let fields = fields.iter_enumerated().try_fold(
                Self::uninhabited(),
                |fields, (idx, field_def)| {
                    let field_def = Def::Field(field_def);
                    let field_ty = ty_field(cx, (ty, layout), idx);
                    let field_layout = layout_of(cx, field_ty)?;
                    let field = Self::from_ty(field_ty, cx)?;
                    let trailing_padding_needed = layout.size - field_layout.size;
                    let trailing_padding = Self::padding(trailing_padding_needed.bytes_usize());
                    let field_and_padding = field.then(trailing_padding);
                    Result::<Self, Err>::Ok(fields.or(field_and_padding))
                },
            )?;

            Ok(Self::def(Def::Adt(def)).then(fields))
        }
    }

    fn ty_field<'tcx>(
        cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        (ty, layout): (Ty<'tcx>, Layout<'tcx>),
        i: FieldIdx,
    ) -> Ty<'tcx> {
        match ty.kind() {
            ty::Adt(def, args) => {
                match layout.variants {
                    Variants::Single { index } => {
                        let field = &def.variant(index).fields[i];
                        field.ty(cx.tcx, args)
                    }
                    // Discriminant field for enums (where applicable).
                    Variants::Multiple { tag, .. } => {
                        assert_eq!(i.as_usize(), 0);
                        ty::layout::PrimitiveExt::to_ty(&tag.primitive(), cx.tcx)
                    }
                }
            }
            ty::Tuple(fields) => fields[i.as_usize()],
            kind @ _ => unimplemented!(
                "only a subset of `Ty::ty_and_layout_field`'s functionality is implemented. implementation needed for {:?}",
                kind
            ),
        }
    }

    fn ty_variant<'tcx>(
        cx: LayoutCx<'tcx, TyCtxt<'tcx>>,
        (ty, layout): (Ty<'tcx>, Layout<'tcx>),
        i: VariantIdx,
    ) -> Layout<'tcx> {
        let ty = cx.tcx.erase_regions(ty);
        TyAndLayout { ty, layout }.for_variant(&cx, i).layout
    }
}