rustc_hir_analysis/collect/
predicates_of.rs

1use std::assert_matches::assert_matches;
2
3use hir::Node;
4use rustc_data_structures::fx::FxIndexSet;
5use rustc_hir as hir;
6use rustc_hir::attrs::AttributeKind;
7use rustc_hir::def::DefKind;
8use rustc_hir::def_id::{DefId, LocalDefId};
9use rustc_hir::find_attr;
10use rustc_middle::ty::{
11    self, GenericPredicates, ImplTraitInTraitData, Ty, TyCtxt, TypeVisitable, TypeVisitor, Upcast,
12};
13use rustc_middle::{bug, span_bug};
14use rustc_span::{DUMMY_SP, Ident, Span};
15use tracing::{debug, instrument, trace};
16
17use super::item_bounds::explicit_item_bounds_with_filter;
18use crate::collect::ItemCtxt;
19use crate::constrained_generic_params as cgp;
20use crate::delegation::inherit_predicates_for_delegation_item;
21use crate::hir_ty_lowering::{HirTyLowerer, PredicateFilter, RegionInferReason};
22
23/// Returns a list of all type predicates (explicit and implicit) for the definition with
24/// ID `def_id`. This includes all predicates returned by `explicit_predicates_of`, plus
25/// inferred constraints concerning which regions outlive other regions.
26#[instrument(level = "debug", skip(tcx))]
27pub(super) fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
28    let mut result = tcx.explicit_predicates_of(def_id);
29    debug!("predicates_of: explicit_predicates_of({:?}) = {:?}", def_id, result);
30
31    let inferred_outlives = tcx.inferred_outlives_of(def_id);
32    if !inferred_outlives.is_empty() {
33        debug!("predicates_of: inferred_outlives_of({:?}) = {:?}", def_id, inferred_outlives,);
34        let inferred_outlives_iter =
35            inferred_outlives.iter().map(|(clause, span)| ((*clause).upcast(tcx), *span));
36        if result.predicates.is_empty() {
37            result.predicates = tcx.arena.alloc_from_iter(inferred_outlives_iter);
38        } else {
39            result.predicates = tcx.arena.alloc_from_iter(
40                result.predicates.into_iter().copied().chain(inferred_outlives_iter),
41            );
42        }
43    }
44
45    if tcx.is_trait(def_id) {
46        // For traits, add `Self: Trait` predicate. This is
47        // not part of the predicates that a user writes, but it
48        // is something that one must prove in order to invoke a
49        // method or project an associated type.
50        //
51        // In the chalk setup, this predicate is not part of the
52        // "predicates" for a trait item. But it is useful in
53        // rustc because if you directly (e.g.) invoke a trait
54        // method like `Trait::method(...)`, you must naturally
55        // prove that the trait applies to the types that were
56        // used, and adding the predicate into this list ensures
57        // that this is done.
58        //
59        // We use a DUMMY_SP here as a way to signal trait bounds that come
60        // from the trait itself that *shouldn't* be shown as the source of
61        // an obligation and instead be skipped. Otherwise we'd use
62        // `tcx.def_span(def_id);`
63        let span = DUMMY_SP;
64
65        result.predicates = tcx.arena.alloc_from_iter(
66            result
67                .predicates
68                .iter()
69                .copied()
70                .chain(std::iter::once((ty::TraitRef::identity(tcx, def_id).upcast(tcx), span))),
71        );
72    }
73
74    debug!("predicates_of({:?}) = {:?}", def_id, result);
75    result
76}
77
78/// Returns a list of user-specified type predicates for the definition with ID `def_id`.
79/// N.B., this does not include any implied/inferred constraints.
80#[instrument(level = "trace", skip(tcx), ret)]
81fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::GenericPredicates<'_> {
82    use rustc_hir::*;
83
84    match tcx.opt_rpitit_info(def_id.to_def_id()) {
85        Some(ImplTraitInTraitData::Trait { fn_def_id, .. }) => {
86            let mut predicates = Vec::new();
87
88            // RPITITs should inherit the predicates of their parent. This is
89            // both to ensure that the RPITITs are only instantiated when the
90            // parent predicates would hold, and also so that the param-env
91            // inherits these predicates as assumptions.
92            let identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
93            predicates
94                .extend(tcx.explicit_predicates_of(fn_def_id).instantiate_own(tcx, identity_args));
95
96            // We also install bidirectional outlives predicates for the RPITIT
97            // to keep the duplicates lifetimes from opaque lowering in sync.
98            // We only need to compute bidirectional outlives for the duplicated
99            // opaque lifetimes, which explains the slicing below.
100            compute_bidirectional_outlives_predicates(
101                tcx,
102                &tcx.generics_of(def_id.to_def_id()).own_params
103                    [tcx.generics_of(fn_def_id).own_params.len()..],
104                &mut predicates,
105            );
106
107            return ty::GenericPredicates {
108                parent: Some(tcx.parent(def_id.to_def_id())),
109                predicates: tcx.arena.alloc_from_iter(predicates),
110            };
111        }
112
113        Some(ImplTraitInTraitData::Impl { fn_def_id }) => {
114            let assoc_item = tcx.associated_item(def_id);
115            let trait_assoc_predicates =
116                tcx.explicit_predicates_of(assoc_item.trait_item_def_id.unwrap());
117
118            let impl_assoc_identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
119            let impl_def_id = tcx.parent(fn_def_id);
120            let impl_trait_ref_args =
121                tcx.impl_trait_ref(impl_def_id).unwrap().instantiate_identity().args;
122
123            let impl_assoc_args =
124                impl_assoc_identity_args.rebase_onto(tcx, impl_def_id, impl_trait_ref_args);
125
126            let impl_predicates = trait_assoc_predicates.instantiate_own(tcx, impl_assoc_args);
127
128            return ty::GenericPredicates {
129                parent: Some(impl_def_id),
130                predicates: tcx.arena.alloc_from_iter(impl_predicates),
131            };
132        }
133
134        None => {}
135    }
136
137    let hir_id = tcx.local_def_id_to_hir_id(def_id);
138    let node = tcx.hir_node(hir_id);
139
140    if let Some(sig) = node.fn_sig()
141        && let Some(sig_id) = sig.decl.opt_delegation_sig_id()
142    {
143        return inherit_predicates_for_delegation_item(tcx, def_id, sig_id);
144    }
145
146    let mut is_trait = None;
147    let mut is_default_impl_trait = None;
148
149    let icx = ItemCtxt::new(tcx, def_id);
150
151    const NO_GENERICS: &hir::Generics<'_> = hir::Generics::empty();
152
153    // We use an `IndexSet` to preserve order of insertion.
154    // Preserving the order of insertion is important here so as not to break UI tests.
155    let mut predicates: FxIndexSet<(ty::Clause<'_>, Span)> = FxIndexSet::default();
156
157    let hir_generics = node.generics().unwrap_or(NO_GENERICS);
158    if let Node::Item(item) = node {
159        match item.kind {
160            ItemKind::Impl(impl_) => {
161                if impl_.defaultness.is_default() {
162                    is_default_impl_trait = tcx
163                        .impl_trait_ref(def_id)
164                        .map(|t| ty::Binder::dummy(t.instantiate_identity()));
165                }
166            }
167            ItemKind::Trait(_, _, _, _, _, self_bounds, ..)
168            | ItemKind::TraitAlias(_, _, self_bounds) => {
169                is_trait = Some((self_bounds, item.span));
170            }
171            _ => {}
172        }
173    };
174
175    if let Node::TraitItem(item) = node {
176        let mut bounds = Vec::new();
177        icx.lowerer().add_default_trait_item_bounds(item, &mut bounds);
178        predicates.extend(bounds);
179    }
180
181    let generics = tcx.generics_of(def_id);
182
183    // Below we'll consider the bounds on the type parameters (including `Self`)
184    // and the explicit where-clauses, but to get the full set of predicates
185    // on a trait we must also consider the bounds that follow the trait's name,
186    // like `trait Foo: A + B + C`.
187    if let Some((self_bounds, span)) = is_trait {
188        let mut bounds = Vec::new();
189        icx.lowerer().lower_bounds(
190            tcx.types.self_param,
191            self_bounds,
192            &mut bounds,
193            ty::List::empty(),
194            PredicateFilter::All,
195        );
196        icx.lowerer().add_sizedness_bounds(
197            &mut bounds,
198            tcx.types.self_param,
199            self_bounds,
200            None,
201            Some(def_id),
202            span,
203        );
204        icx.lowerer().add_default_super_traits(
205            def_id,
206            &mut bounds,
207            self_bounds,
208            hir_generics,
209            span,
210        );
211        predicates.extend(bounds);
212    }
213
214    // In default impls, we can assume that the self type implements
215    // the trait. So in:
216    //
217    //     default impl Foo for Bar { .. }
218    //
219    // we add a default where clause `Bar: Foo`. We do a similar thing for traits
220    // (see below). Recall that a default impl is not itself an impl, but rather a
221    // set of defaults that can be incorporated into another impl.
222    if let Some(trait_ref) = is_default_impl_trait {
223        predicates.insert((trait_ref.upcast(tcx), tcx.def_span(def_id)));
224    }
225
226    // Add implicit predicates that should be treated as if the user has written them,
227    // including the implicit `T: Sized` for all generic parameters, and `ConstArgHasType`
228    // for const params.
229    for param in hir_generics.params {
230        match param.kind {
231            GenericParamKind::Lifetime { .. } => (),
232            GenericParamKind::Type { .. } => {
233                let param_ty = icx.lowerer().lower_ty_param(param.hir_id);
234                let mut bounds = Vec::new();
235                // Implicit bounds are added to type params unless a `?Trait` bound is found
236                icx.lowerer().add_sizedness_bounds(
237                    &mut bounds,
238                    param_ty,
239                    &[],
240                    Some((param.def_id, hir_generics.predicates)),
241                    None,
242                    param.span,
243                );
244                icx.lowerer().add_default_traits(
245                    &mut bounds,
246                    param_ty,
247                    &[],
248                    Some((param.def_id, hir_generics.predicates)),
249                    param.span,
250                );
251                trace!(?bounds);
252                predicates.extend(bounds);
253                trace!(?predicates);
254            }
255            hir::GenericParamKind::Const { .. } => {
256                let param_def_id = param.def_id.to_def_id();
257                let ct_ty = tcx.type_of(param_def_id).instantiate_identity();
258                let ct = icx.lowerer().lower_const_param(param_def_id, param.hir_id);
259                predicates
260                    .insert((ty::ClauseKind::ConstArgHasType(ct, ct_ty).upcast(tcx), param.span));
261            }
262        }
263    }
264
265    trace!(?predicates);
266    // Add inline `<T: Foo>` bounds and bounds in the where clause.
267    for predicate in hir_generics.predicates {
268        match predicate.kind {
269            hir::WherePredicateKind::BoundPredicate(bound_pred) => {
270                let ty = icx.lowerer().lower_ty_maybe_return_type_notation(bound_pred.bounded_ty);
271                let bound_vars = tcx.late_bound_vars(predicate.hir_id);
272
273                // This is a `where Ty:` (sic!).
274                if bound_pred.bounds.is_empty() {
275                    if let ty::Param(_) = ty.kind() {
276                        // We can skip the predicate because type parameters are trivially WF.
277                    } else {
278                        // Keep the type around in a dummy predicate. That way, it's not a complete
279                        // noop (see #53696) and `Ty` is still checked for WF.
280
281                        let span = bound_pred.bounded_ty.span;
282                        let predicate = ty::Binder::bind_with_vars(
283                            ty::ClauseKind::WellFormed(ty.into()),
284                            bound_vars,
285                        );
286                        predicates.insert((predicate.upcast(tcx), span));
287                    }
288                }
289
290                let mut bounds = Vec::new();
291                icx.lowerer().lower_bounds(
292                    ty,
293                    bound_pred.bounds,
294                    &mut bounds,
295                    bound_vars,
296                    PredicateFilter::All,
297                );
298                predicates.extend(bounds);
299            }
300
301            hir::WherePredicateKind::RegionPredicate(region_pred) => {
302                let r1 = icx
303                    .lowerer()
304                    .lower_lifetime(region_pred.lifetime, RegionInferReason::RegionPredicate);
305                predicates.extend(region_pred.bounds.iter().map(|bound| {
306                    let (r2, span) = match bound {
307                        hir::GenericBound::Outlives(lt) => (
308                            icx.lowerer().lower_lifetime(lt, RegionInferReason::RegionPredicate),
309                            lt.ident.span,
310                        ),
311                        bound => {
312                            span_bug!(
313                                bound.span(),
314                                "lifetime param bounds must be outlives, but found {bound:?}"
315                            )
316                        }
317                    };
318                    let pred =
319                        ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(r1, r2)).upcast(tcx);
320                    (pred, span)
321                }))
322            }
323
324            hir::WherePredicateKind::EqPredicate(..) => {
325                // FIXME(#20041)
326            }
327        }
328    }
329
330    if tcx.features().generic_const_exprs() {
331        predicates.extend(const_evaluatable_predicates_of(tcx, def_id, &predicates));
332    }
333
334    let attrs = tcx.hir_attrs(tcx.local_def_id_to_hir_id(def_id));
335    // FIXME(staged_api): We might want to look at the normal stability attributes too but
336    // first we would need a way to let std/core use APIs with unstable feature bounds from
337    // within stable APIs.
338    let allow_unstable_feature_attr =
339        find_attr!(attrs, AttributeKind::UnstableFeatureBound(i) => i)
340            .map(|i| i.as_slice())
341            .unwrap_or_default();
342
343    for (feat_name, span) in allow_unstable_feature_attr {
344        predicates.insert((ty::ClauseKind::UnstableFeature(*feat_name).upcast(tcx), *span));
345    }
346
347    let mut predicates: Vec<_> = predicates.into_iter().collect();
348
349    // Subtle: before we store the predicates into the tcx, we
350    // sort them so that predicates like `T: Foo<Item=U>` come
351    // before uses of `U`. This avoids false ambiguity errors
352    // in trait checking. See `setup_constraining_predicates`
353    // for details.
354    if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
355        let self_ty = tcx.type_of(def_id).instantiate_identity();
356        let trait_ref = tcx.impl_trait_ref(def_id).map(ty::EarlyBinder::instantiate_identity);
357        cgp::setup_constraining_predicates(
358            tcx,
359            &mut predicates,
360            trait_ref,
361            &mut cgp::parameters_for_impl(tcx, self_ty, trait_ref),
362        );
363    }
364
365    // Opaque types duplicate some of their generic parameters.
366    // We create bi-directional Outlives predicates between the original
367    // and the duplicated parameter, to ensure that they do not get out of sync.
368    if let Node::OpaqueTy(..) = node {
369        compute_bidirectional_outlives_predicates(tcx, &generics.own_params, &mut predicates);
370        debug!(?predicates);
371    }
372
373    ty::GenericPredicates {
374        parent: generics.parent,
375        predicates: tcx.arena.alloc_from_iter(predicates),
376    }
377}
378
379/// Opaques have duplicated lifetimes and we need to compute bidirectional outlives predicates to
380/// enforce that these lifetimes stay in sync.
381fn compute_bidirectional_outlives_predicates<'tcx>(
382    tcx: TyCtxt<'tcx>,
383    opaque_own_params: &[ty::GenericParamDef],
384    predicates: &mut Vec<(ty::Clause<'tcx>, Span)>,
385) {
386    for param in opaque_own_params {
387        let orig_lifetime = tcx.map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local());
388        if let ty::ReEarlyParam(..) = orig_lifetime.kind() {
389            let dup_lifetime = ty::Region::new_early_param(
390                tcx,
391                ty::EarlyParamRegion { index: param.index, name: param.name },
392            );
393            let span = tcx.def_span(param.def_id);
394            predicates.push((
395                ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(orig_lifetime, dup_lifetime))
396                    .upcast(tcx),
397                span,
398            ));
399            predicates.push((
400                ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(dup_lifetime, orig_lifetime))
401                    .upcast(tcx),
402                span,
403            ));
404        }
405    }
406}
407
408#[instrument(level = "debug", skip(tcx, predicates), ret)]
409fn const_evaluatable_predicates_of<'tcx>(
410    tcx: TyCtxt<'tcx>,
411    def_id: LocalDefId,
412    predicates: &FxIndexSet<(ty::Clause<'tcx>, Span)>,
413) -> FxIndexSet<(ty::Clause<'tcx>, Span)> {
414    struct ConstCollector<'tcx> {
415        tcx: TyCtxt<'tcx>,
416        preds: FxIndexSet<(ty::Clause<'tcx>, Span)>,
417    }
418
419    fn is_const_param_default(tcx: TyCtxt<'_>, def: LocalDefId) -> bool {
420        let hir_id = tcx.local_def_id_to_hir_id(def);
421        let (_, parent_node) = tcx
422            .hir_parent_iter(hir_id)
423            .skip_while(|(_, n)| matches!(n, Node::ConstArg(..)))
424            .next()
425            .unwrap();
426        matches!(
427            parent_node,
428            Node::GenericParam(hir::GenericParam { kind: hir::GenericParamKind::Const { .. }, .. })
429        )
430    }
431
432    impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ConstCollector<'tcx> {
433        fn visit_const(&mut self, c: ty::Const<'tcx>) {
434            if let ty::ConstKind::Unevaluated(uv) = c.kind() {
435                if let Some(local) = uv.def.as_local()
436                    && is_const_param_default(self.tcx, local)
437                {
438                    // Do not look into const param defaults,
439                    // these get checked when they are actually instantiated.
440                    //
441                    // We do not want the following to error:
442                    //
443                    //     struct Foo<const N: usize, const M: usize = { N + 1 }>;
444                    //     struct Bar<const N: usize>(Foo<N, 3>);
445                    return;
446                }
447
448                let span = self.tcx.def_span(uv.def);
449                self.preds.insert((ty::ClauseKind::ConstEvaluatable(c).upcast(self.tcx), span));
450            }
451        }
452    }
453
454    let hir_id = tcx.local_def_id_to_hir_id(def_id);
455    let node = tcx.hir_node(hir_id);
456
457    let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
458
459    for (clause, _sp) in predicates {
460        clause.visit_with(&mut collector);
461    }
462
463    if let hir::Node::Item(item) = node
464        && let hir::ItemKind::Impl(_) = item.kind
465    {
466        if let Some(of_trait) = tcx.impl_trait_ref(def_id) {
467            debug!("visit impl trait_ref");
468            of_trait.instantiate_identity().visit_with(&mut collector);
469        }
470
471        debug!("visit self_ty");
472        let self_ty = tcx.type_of(def_id);
473        self_ty.instantiate_identity().visit_with(&mut collector);
474    }
475
476    if let Some(_) = tcx.hir_fn_sig_by_hir_id(hir_id) {
477        debug!("visit fn sig");
478        let fn_sig = tcx.fn_sig(def_id);
479        let fn_sig = fn_sig.instantiate_identity();
480        debug!(?fn_sig);
481        fn_sig.visit_with(&mut collector);
482    }
483
484    collector.preds
485}
486
487pub(super) fn trait_explicit_predicates_and_bounds(
488    tcx: TyCtxt<'_>,
489    def_id: LocalDefId,
490) -> ty::GenericPredicates<'_> {
491    assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
492    gather_explicit_predicates_of(tcx, def_id)
493}
494
495pub(super) fn explicit_predicates_of<'tcx>(
496    tcx: TyCtxt<'tcx>,
497    def_id: LocalDefId,
498) -> ty::GenericPredicates<'tcx> {
499    let def_kind = tcx.def_kind(def_id);
500    if let DefKind::Trait = def_kind {
501        // Remove bounds on associated types from the predicates, they will be
502        // returned by `explicit_item_bounds`.
503        let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id);
504        let trait_identity_args = ty::GenericArgs::identity_for_item(tcx, def_id);
505
506        let is_assoc_item_ty = |ty: Ty<'tcx>| {
507            // For a predicate from a where clause to become a bound on an
508            // associated type:
509            // * It must use the identity args of the item.
510            //   * We're in the scope of the trait, so we can't name any
511            //     parameters of the GAT. That means that all we need to
512            //     check are that the args of the projection are the
513            //     identity args of the trait.
514            // * It must be an associated type for this trait (*not* a
515            //   supertrait).
516            if let ty::Alias(ty::Projection, projection) = ty.kind() {
517                projection.args == trait_identity_args
518                    // FIXME(return_type_notation): This check should be more robust
519                    && !tcx.is_impl_trait_in_trait(projection.def_id)
520                    && tcx.associated_item(projection.def_id).container_id(tcx)
521                        == def_id.to_def_id()
522            } else {
523                false
524            }
525        };
526
527        let predicates: Vec<_> = predicates_and_bounds
528            .predicates
529            .iter()
530            .copied()
531            .filter(|(pred, _)| match pred.kind().skip_binder() {
532                ty::ClauseKind::Trait(tr) => !is_assoc_item_ty(tr.self_ty()),
533                ty::ClauseKind::Projection(proj) => {
534                    !is_assoc_item_ty(proj.projection_term.self_ty())
535                }
536                ty::ClauseKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
537                _ => true,
538            })
539            .collect();
540        if predicates.len() == predicates_and_bounds.predicates.len() {
541            predicates_and_bounds
542        } else {
543            ty::GenericPredicates {
544                parent: predicates_and_bounds.parent,
545                predicates: tcx.arena.alloc_slice(&predicates),
546            }
547        }
548    } else {
549        if matches!(def_kind, DefKind::AnonConst)
550            && tcx.features().generic_const_exprs()
551            && let Some(defaulted_param_def_id) =
552                tcx.hir_opt_const_param_default_param_def_id(tcx.local_def_id_to_hir_id(def_id))
553        {
554            // In `generics_of` we set the generics' parent to be our parent's parent which means that
555            // we lose out on the predicates of our actual parent if we dont return those predicates here.
556            // (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
557            //
558            // struct Foo<T, const N: usize = { <T as Trait>::ASSOC }>(T) where T: Trait;
559            //        ^^^                     ^^^^^^^^^^^^^^^^^^^^^^^ the def id we are calling
560            //        ^^^                                             explicit_predicates_of on
561            //        parent item we dont have set as the
562            //        parent of generics returned by `generics_of`
563            //
564            // In the above code we want the anon const to have predicates in its param env for `T: Trait`
565            // and we would be calling `explicit_predicates_of(Foo)` here
566            let parent_def_id = tcx.local_parent(def_id);
567            let parent_preds = tcx.explicit_predicates_of(parent_def_id);
568
569            // If we dont filter out `ConstArgHasType` predicates then every single defaulted const parameter
570            // will ICE because of #106994. FIXME(generic_const_exprs): remove this when a more general solution
571            // to #106994 is implemented.
572            let filtered_predicates = parent_preds
573                .predicates
574                .into_iter()
575                .filter(|(pred, _)| {
576                    if let ty::ClauseKind::ConstArgHasType(ct, _) = pred.kind().skip_binder() {
577                        match ct.kind() {
578                            ty::ConstKind::Param(param_const) => {
579                                let defaulted_param_idx = tcx
580                                    .generics_of(parent_def_id)
581                                    .param_def_id_to_index[&defaulted_param_def_id.to_def_id()];
582                                param_const.index < defaulted_param_idx
583                            }
584                            _ => bug!(
585                                "`ConstArgHasType` in `predicates_of`\
586                                 that isn't a `Param` const"
587                            ),
588                        }
589                    } else {
590                        true
591                    }
592                })
593                .cloned();
594            return GenericPredicates {
595                parent: parent_preds.parent,
596                predicates: { tcx.arena.alloc_from_iter(filtered_predicates) },
597            };
598        }
599        gather_explicit_predicates_of(tcx, def_id)
600    }
601}
602
603/// Ensures that the super-predicates of the trait with a `DefId`
604/// of `trait_def_id` are lowered and stored. This also ensures that
605/// the transitive super-predicates are lowered.
606pub(super) fn explicit_super_predicates_of<'tcx>(
607    tcx: TyCtxt<'tcx>,
608    trait_def_id: LocalDefId,
609) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
610    implied_predicates_with_filter(tcx, trait_def_id.to_def_id(), PredicateFilter::SelfOnly)
611}
612
613pub(super) fn explicit_supertraits_containing_assoc_item<'tcx>(
614    tcx: TyCtxt<'tcx>,
615    (trait_def_id, assoc_ident): (DefId, Ident),
616) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
617    implied_predicates_with_filter(
618        tcx,
619        trait_def_id,
620        PredicateFilter::SelfTraitThatDefines(assoc_ident),
621    )
622}
623
624pub(super) fn explicit_implied_predicates_of<'tcx>(
625    tcx: TyCtxt<'tcx>,
626    trait_def_id: LocalDefId,
627) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
628    implied_predicates_with_filter(
629        tcx,
630        trait_def_id.to_def_id(),
631        if tcx.is_trait_alias(trait_def_id.to_def_id()) {
632            PredicateFilter::All
633        } else {
634            PredicateFilter::SelfAndAssociatedTypeBounds
635        },
636    )
637}
638
639/// Ensures that the super-predicates of the trait with a `DefId`
640/// of `trait_def_id` are lowered and stored. This also ensures that
641/// the transitive super-predicates are lowered.
642pub(super) fn implied_predicates_with_filter<'tcx>(
643    tcx: TyCtxt<'tcx>,
644    trait_def_id: DefId,
645    filter: PredicateFilter,
646) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
647    let Some(trait_def_id) = trait_def_id.as_local() else {
648        // if `assoc_ident` is None, then the query should've been redirected to an
649        // external provider
650        assert_matches!(filter, PredicateFilter::SelfTraitThatDefines(_));
651        return tcx.explicit_super_predicates_of(trait_def_id);
652    };
653
654    let Node::Item(item) = tcx.hir_node_by_def_id(trait_def_id) else {
655        bug!("trait_def_id {trait_def_id:?} is not an item");
656    };
657
658    let (generics, superbounds) = match item.kind {
659        hir::ItemKind::Trait(.., generics, supertraits, _) => (generics, supertraits),
660        hir::ItemKind::TraitAlias(_, generics, supertraits) => (generics, supertraits),
661        _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
662    };
663
664    let icx = ItemCtxt::new(tcx, trait_def_id);
665
666    let self_param_ty = tcx.types.self_param;
667    let mut bounds = Vec::new();
668    icx.lowerer().lower_bounds(self_param_ty, superbounds, &mut bounds, ty::List::empty(), filter);
669    match filter {
670        PredicateFilter::All
671        | PredicateFilter::SelfOnly
672        | PredicateFilter::SelfTraitThatDefines(_)
673        | PredicateFilter::SelfAndAssociatedTypeBounds => {
674            icx.lowerer().add_default_super_traits(
675                trait_def_id,
676                &mut bounds,
677                superbounds,
678                generics,
679                item.span,
680            );
681        }
682        //`ConstIfConst` is only interested in `[const]` bounds.
683        PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {}
684    }
685
686    let where_bounds_that_match =
687        icx.probe_ty_param_bounds_in_generics(generics, item.owner_id.def_id, filter);
688
689    // Combine the two lists to form the complete set of superbounds:
690    let implied_bounds =
691        &*tcx.arena.alloc_from_iter(bounds.into_iter().chain(where_bounds_that_match));
692    debug!(?implied_bounds);
693
694    // Now require that immediate supertraits are lowered, which will, in
695    // turn, reach indirect supertraits, so we detect cycles now instead of
696    // overflowing during elaboration. Same for implied predicates, which
697    // make sure we walk into associated type bounds.
698    match filter {
699        PredicateFilter::SelfOnly => {
700            for &(pred, span) in implied_bounds {
701                debug!("superbound: {:?}", pred);
702                if let ty::ClauseKind::Trait(bound) = pred.kind().skip_binder()
703                    && bound.polarity == ty::PredicatePolarity::Positive
704                {
705                    tcx.at(span).explicit_super_predicates_of(bound.def_id());
706                }
707            }
708        }
709        PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {
710            for &(pred, span) in implied_bounds {
711                debug!("superbound: {:?}", pred);
712                if let ty::ClauseKind::Trait(bound) = pred.kind().skip_binder()
713                    && bound.polarity == ty::PredicatePolarity::Positive
714                {
715                    tcx.at(span).explicit_implied_predicates_of(bound.def_id());
716                }
717            }
718        }
719        _ => {}
720    }
721
722    assert_only_contains_predicates_from(filter, implied_bounds, tcx.types.self_param);
723
724    ty::EarlyBinder::bind(implied_bounds)
725}
726
727// Make sure when elaborating supertraits, probing for associated types, etc.,
728// we really truly are elaborating clauses that have `ty` as their self type.
729// This is very important since downstream code relies on this being correct.
730pub(super) fn assert_only_contains_predicates_from<'tcx>(
731    filter: PredicateFilter,
732    bounds: &'tcx [(ty::Clause<'tcx>, Span)],
733    ty: Ty<'tcx>,
734) {
735    if !cfg!(debug_assertions) {
736        return;
737    }
738
739    match filter {
740        PredicateFilter::SelfOnly => {
741            for (clause, _) in bounds {
742                match clause.kind().skip_binder() {
743                    ty::ClauseKind::Trait(trait_predicate) => {
744                        assert_eq!(
745                            trait_predicate.self_ty(),
746                            ty,
747                            "expected `Self` predicate when computing \
748                            `{filter:?}` implied bounds: {clause:?}"
749                        );
750                    }
751                    ty::ClauseKind::Projection(projection_predicate) => {
752                        assert_eq!(
753                            projection_predicate.self_ty(),
754                            ty,
755                            "expected `Self` predicate when computing \
756                            `{filter:?}` implied bounds: {clause:?}"
757                        );
758                    }
759                    ty::ClauseKind::TypeOutlives(outlives_predicate) => {
760                        assert_eq!(
761                            outlives_predicate.0, ty,
762                            "expected `Self` predicate when computing \
763                            `{filter:?}` implied bounds: {clause:?}"
764                        );
765                    }
766                    ty::ClauseKind::HostEffect(host_effect_predicate) => {
767                        assert_eq!(
768                            host_effect_predicate.self_ty(),
769                            ty,
770                            "expected `Self` predicate when computing \
771                            `{filter:?}` implied bounds: {clause:?}"
772                        );
773                    }
774
775                    ty::ClauseKind::RegionOutlives(_)
776                    | ty::ClauseKind::ConstArgHasType(_, _)
777                    | ty::ClauseKind::WellFormed(_)
778                    | ty::ClauseKind::UnstableFeature(_)
779                    | ty::ClauseKind::ConstEvaluatable(_) => {
780                        bug!(
781                            "unexpected non-`Self` predicate when computing \
782                            `{filter:?}` implied bounds: {clause:?}"
783                        );
784                    }
785                }
786            }
787        }
788        PredicateFilter::SelfTraitThatDefines(_) => {
789            for (clause, _) in bounds {
790                match clause.kind().skip_binder() {
791                    ty::ClauseKind::Trait(trait_predicate) => {
792                        assert_eq!(
793                            trait_predicate.self_ty(),
794                            ty,
795                            "expected `Self` predicate when computing \
796                            `{filter:?}` implied bounds: {clause:?}"
797                        );
798                    }
799
800                    ty::ClauseKind::Projection(_)
801                    | ty::ClauseKind::TypeOutlives(_)
802                    | ty::ClauseKind::RegionOutlives(_)
803                    | ty::ClauseKind::ConstArgHasType(_, _)
804                    | ty::ClauseKind::WellFormed(_)
805                    | ty::ClauseKind::ConstEvaluatable(_)
806                    | ty::ClauseKind::UnstableFeature(_)
807                    | ty::ClauseKind::HostEffect(..) => {
808                        bug!(
809                            "unexpected non-`Self` predicate when computing \
810                            `{filter:?}` implied bounds: {clause:?}"
811                        );
812                    }
813                }
814            }
815        }
816        PredicateFilter::ConstIfConst => {
817            for (clause, _) in bounds {
818                match clause.kind().skip_binder() {
819                    ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
820                        trait_ref: _,
821                        constness: ty::BoundConstness::Maybe,
822                    }) => {}
823                    _ => {
824                        bug!(
825                            "unexpected non-`HostEffect` predicate when computing \
826                            `{filter:?}` implied bounds: {clause:?}"
827                        );
828                    }
829                }
830            }
831        }
832        PredicateFilter::SelfConstIfConst => {
833            for (clause, _) in bounds {
834                match clause.kind().skip_binder() {
835                    ty::ClauseKind::HostEffect(pred) => {
836                        assert_eq!(
837                            pred.constness,
838                            ty::BoundConstness::Maybe,
839                            "expected `[const]` predicate when computing `{filter:?}` \
840                            implied bounds: {clause:?}",
841                        );
842                        assert_eq!(
843                            pred.trait_ref.self_ty(),
844                            ty,
845                            "expected `Self` predicate when computing `{filter:?}` \
846                            implied bounds: {clause:?}"
847                        );
848                    }
849                    _ => {
850                        bug!(
851                            "unexpected non-`HostEffect` predicate when computing \
852                            `{filter:?}` implied bounds: {clause:?}"
853                        );
854                    }
855                }
856            }
857        }
858        PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {}
859    }
860}
861
862/// Returns the predicates defined on `item_def_id` of the form
863/// `X: Foo` where `X` is the type parameter `def_id`.
864#[instrument(level = "trace", skip(tcx))]
865pub(super) fn type_param_predicates<'tcx>(
866    tcx: TyCtxt<'tcx>,
867    (item_def_id, def_id, assoc_ident): (LocalDefId, LocalDefId, Ident),
868) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> {
869    match tcx.opt_rpitit_info(item_def_id.to_def_id()) {
870        Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => {
871            return tcx.type_param_predicates((opaque_def_id.expect_local(), def_id, assoc_ident));
872        }
873        Some(ty::ImplTraitInTraitData::Impl { .. }) => {
874            unreachable!("should not be lowering bounds on RPITIT in impl")
875        }
876        None => {}
877    }
878
879    // In the HIR, bounds can derive from two places. Either
880    // written inline like `<T: Foo>` or in a where-clause like
881    // `where T: Foo`.
882
883    let param_id = tcx.local_def_id_to_hir_id(def_id);
884    let param_owner = tcx.hir_ty_param_owner(def_id);
885
886    // Don't look for bounds where the type parameter isn't in scope.
887    let parent = if item_def_id == param_owner {
888        // FIXME: Shouldn't this be unreachable?
889        None
890    } else {
891        tcx.generics_of(item_def_id).parent.map(|def_id| def_id.expect_local())
892    };
893
894    let result = if let Some(parent) = parent {
895        let icx = ItemCtxt::new(tcx, parent);
896        icx.probe_ty_param_bounds(DUMMY_SP, def_id, assoc_ident)
897    } else {
898        ty::EarlyBinder::bind(&[] as &[_])
899    };
900    let mut extend = None;
901
902    let item_hir_id = tcx.local_def_id_to_hir_id(item_def_id);
903
904    let hir_node = tcx.hir_node(item_hir_id);
905    let Some(hir_generics) = hir_node.generics() else {
906        return result;
907    };
908
909    if let Node::Item(item) = hir_node
910        && let hir::ItemKind::Trait(..) = item.kind
911        // Implied `Self: Trait` and supertrait bounds.
912        && param_id == item_hir_id
913    {
914        let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id.to_def_id());
915        extend = Some((identity_trait_ref.upcast(tcx), item.span));
916    }
917
918    let icx = ItemCtxt::new(tcx, item_def_id);
919    let extra_predicates = extend.into_iter().chain(icx.probe_ty_param_bounds_in_generics(
920        hir_generics,
921        def_id,
922        PredicateFilter::SelfTraitThatDefines(assoc_ident),
923    ));
924
925    let bounds =
926        &*tcx.arena.alloc_from_iter(result.skip_binder().iter().copied().chain(extra_predicates));
927
928    // Double check that the bounds *only* contain `SelfTy: Trait` preds.
929    let self_ty = match tcx.def_kind(def_id) {
930        DefKind::TyParam => Ty::new_param(
931            tcx,
932            tcx.generics_of(item_def_id)
933                .param_def_id_to_index(tcx, def_id.to_def_id())
934                .expect("expected generic param to be owned by item"),
935            tcx.item_name(def_id.to_def_id()),
936        ),
937        DefKind::Trait | DefKind::TraitAlias => tcx.types.self_param,
938        _ => unreachable!(),
939    };
940    assert_only_contains_predicates_from(
941        PredicateFilter::SelfTraitThatDefines(assoc_ident),
942        bounds,
943        self_ty,
944    );
945
946    ty::EarlyBinder::bind(bounds)
947}
948
949impl<'tcx> ItemCtxt<'tcx> {
950    /// Finds bounds from `hir::Generics`.
951    ///
952    /// This requires scanning through the HIR.
953    /// We do this to avoid having to lower *all* the bounds, which would create artificial cycles.
954    /// Instead, we can only lower the bounds for a type parameter `X` if `X::Foo` is used.
955    #[instrument(level = "trace", skip(self, hir_generics))]
956    fn probe_ty_param_bounds_in_generics(
957        &self,
958        hir_generics: &'tcx hir::Generics<'tcx>,
959        param_def_id: LocalDefId,
960        filter: PredicateFilter,
961    ) -> Vec<(ty::Clause<'tcx>, Span)> {
962        let mut bounds = Vec::new();
963
964        for predicate in hir_generics.predicates {
965            let hir_id = predicate.hir_id;
966            let hir::WherePredicateKind::BoundPredicate(predicate) = predicate.kind else {
967                continue;
968            };
969
970            match filter {
971                _ if predicate.is_param_bound(param_def_id.to_def_id()) => {
972                    // Ok
973                }
974                PredicateFilter::All => {
975                    // Ok
976                }
977                PredicateFilter::SelfOnly
978                | PredicateFilter::SelfTraitThatDefines(_)
979                | PredicateFilter::SelfConstIfConst
980                | PredicateFilter::SelfAndAssociatedTypeBounds => continue,
981                PredicateFilter::ConstIfConst => unreachable!(),
982            }
983
984            let bound_ty = self.lowerer().lower_ty_maybe_return_type_notation(predicate.bounded_ty);
985
986            let bound_vars = self.tcx.late_bound_vars(hir_id);
987            self.lowerer().lower_bounds(
988                bound_ty,
989                predicate.bounds,
990                &mut bounds,
991                bound_vars,
992                filter,
993            );
994        }
995
996        bounds
997    }
998}
999
1000pub(super) fn const_conditions<'tcx>(
1001    tcx: TyCtxt<'tcx>,
1002    def_id: LocalDefId,
1003) -> ty::ConstConditions<'tcx> {
1004    if !tcx.is_conditionally_const(def_id) {
1005        bug!("const_conditions invoked for item that is not conditionally const: {def_id:?}");
1006    }
1007
1008    match tcx.opt_rpitit_info(def_id.to_def_id()) {
1009        // RPITITs inherit const conditions of their parent fn
1010        Some(
1011            ty::ImplTraitInTraitData::Impl { fn_def_id }
1012            | ty::ImplTraitInTraitData::Trait { fn_def_id, .. },
1013        ) => return tcx.const_conditions(fn_def_id),
1014        None => {}
1015    }
1016
1017    let (generics, trait_def_id_and_supertraits, has_parent) = match tcx.hir_node_by_def_id(def_id)
1018    {
1019        Node::Item(item) => match item.kind {
1020            hir::ItemKind::Impl(impl_) => (impl_.generics, None, false),
1021            hir::ItemKind::Fn { generics, .. } => (generics, None, false),
1022            hir::ItemKind::Trait(_, _, _, _, generics, supertraits, _) => {
1023                (generics, Some((item.owner_id.def_id, supertraits)), false)
1024            }
1025            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1026        },
1027        // While associated types are not really const, we do allow them to have `[const]`
1028        // bounds and where clauses. `const_conditions` is responsible for gathering
1029        // these up so we can check them in `compare_type_predicate_entailment`, and
1030        // in `HostEffect` goal computation.
1031        Node::TraitItem(item) => match item.kind {
1032            hir::TraitItemKind::Fn(_, _) | hir::TraitItemKind::Type(_, _) => {
1033                (item.generics, None, true)
1034            }
1035            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1036        },
1037        Node::ImplItem(item) => match item.kind {
1038            hir::ImplItemKind::Fn(_, _) | hir::ImplItemKind::Type(_) => {
1039                (item.generics, None, tcx.is_conditionally_const(tcx.local_parent(def_id)))
1040            }
1041            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1042        },
1043        Node::ForeignItem(item) => match item.kind {
1044            hir::ForeignItemKind::Fn(_, _, generics) => (generics, None, false),
1045            _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1046        },
1047        Node::OpaqueTy(opaque) => match opaque.origin {
1048            hir::OpaqueTyOrigin::FnReturn { parent, .. } => return tcx.const_conditions(parent),
1049            hir::OpaqueTyOrigin::AsyncFn { .. } | hir::OpaqueTyOrigin::TyAlias { .. } => {
1050                unreachable!()
1051            }
1052        },
1053        // N.B. Tuple ctors are unconditionally constant.
1054        Node::Ctor(hir::VariantData::Tuple { .. }) => return Default::default(),
1055        _ => bug!("const_conditions called on wrong item: {def_id:?}"),
1056    };
1057
1058    let icx = ItemCtxt::new(tcx, def_id);
1059    let mut bounds = Vec::new();
1060
1061    for pred in generics.predicates {
1062        match pred.kind {
1063            hir::WherePredicateKind::BoundPredicate(bound_pred) => {
1064                let ty = icx.lowerer().lower_ty_maybe_return_type_notation(bound_pred.bounded_ty);
1065                let bound_vars = tcx.late_bound_vars(pred.hir_id);
1066                icx.lowerer().lower_bounds(
1067                    ty,
1068                    bound_pred.bounds.iter(),
1069                    &mut bounds,
1070                    bound_vars,
1071                    PredicateFilter::ConstIfConst,
1072                );
1073            }
1074            _ => {}
1075        }
1076    }
1077
1078    if let Some((def_id, supertraits)) = trait_def_id_and_supertraits {
1079        // We've checked above that the trait is conditionally const.
1080        bounds.push((
1081            ty::Binder::dummy(ty::TraitRef::identity(tcx, def_id.to_def_id()))
1082                .to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
1083            DUMMY_SP,
1084        ));
1085
1086        icx.lowerer().lower_bounds(
1087            tcx.types.self_param,
1088            supertraits,
1089            &mut bounds,
1090            ty::List::empty(),
1091            PredicateFilter::ConstIfConst,
1092        );
1093    }
1094
1095    ty::ConstConditions {
1096        parent: has_parent.then(|| tcx.local_parent(def_id).to_def_id()),
1097        predicates: tcx.arena.alloc_from_iter(bounds.into_iter().map(|(clause, span)| {
1098            (
1099                clause.kind().map_bound(|clause| match clause {
1100                    ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
1101                        trait_ref,
1102                        constness: ty::BoundConstness::Maybe,
1103                    }) => trait_ref,
1104                    _ => bug!("converted {clause:?}"),
1105                }),
1106                span,
1107            )
1108        })),
1109    }
1110}
1111
1112pub(super) fn explicit_implied_const_bounds<'tcx>(
1113    tcx: TyCtxt<'tcx>,
1114    def_id: LocalDefId,
1115) -> ty::EarlyBinder<'tcx, &'tcx [(ty::PolyTraitRef<'tcx>, Span)]> {
1116    if !tcx.is_conditionally_const(def_id) {
1117        bug!(
1118            "explicit_implied_const_bounds invoked for item that is not conditionally const: {def_id:?}"
1119        );
1120    }
1121
1122    let bounds = match tcx.opt_rpitit_info(def_id.to_def_id()) {
1123        // RPITIT's bounds are the same as opaque type bounds, but with
1124        // a projection self type.
1125        Some(ty::ImplTraitInTraitData::Trait { .. }) => {
1126            explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::ConstIfConst)
1127        }
1128        Some(ty::ImplTraitInTraitData::Impl { .. }) => {
1129            span_bug!(tcx.def_span(def_id), "RPITIT in impl should not have item bounds")
1130        }
1131        None => match tcx.hir_node_by_def_id(def_id) {
1132            Node::Item(hir::Item { kind: hir::ItemKind::Trait(..), .. }) => {
1133                implied_predicates_with_filter(
1134                    tcx,
1135                    def_id.to_def_id(),
1136                    PredicateFilter::SelfConstIfConst,
1137                )
1138            }
1139            Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Type(..), .. })
1140            | Node::OpaqueTy(_) => {
1141                explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::ConstIfConst)
1142            }
1143            _ => bug!("explicit_implied_const_bounds called on wrong item: {def_id:?}"),
1144        },
1145    };
1146
1147    bounds.map_bound(|bounds| {
1148        &*tcx.arena.alloc_from_iter(bounds.iter().copied().map(|(clause, span)| {
1149            (
1150                clause.kind().map_bound(|clause| match clause {
1151                    ty::ClauseKind::HostEffect(ty::HostEffectPredicate {
1152                        trait_ref,
1153                        constness: ty::BoundConstness::Maybe,
1154                    }) => trait_ref,
1155                    _ => bug!("converted {clause:?}"),
1156                }),
1157                span,
1158            )
1159        }))
1160    })
1161}