1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
//! MIR datatypes and passes. See the [rustc dev guide] for more info.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::fmt::{self, Debug, Formatter};
use std::ops::{Index, IndexMut};
use std::{iter, mem};
pub use basic_blocks::BasicBlocks;
use either::Either;
use polonius_engine::Atom;
pub use rustc_ast::Mutability;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::graph::dominators::Dominators;
use rustc_errors::{DiagArgName, DiagArgValue, DiagMessage, ErrorGuaranteed, IntoDiagArg};
use rustc_hir::def::{CtorKind, Namespace};
use rustc_hir::def_id::{DefId, CRATE_DEF_ID};
use rustc_hir::{
self as hir, BindingMode, ByRef, CoroutineDesugaring, CoroutineKind, HirId, ImplicitSelfKind,
};
use rustc_index::bit_set::BitSet;
use rustc_index::{Idx, IndexSlice, IndexVec};
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_serialize::{Decodable, Encodable};
use rustc_session::Session;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{FieldIdx, VariantIdx};
use tracing::trace;
pub use self::query::*;
use self::visit::TyContext;
use crate::mir::interpret::{AllocRange, Scalar};
use crate::mir::visit::MirVisitable;
use crate::ty::codec::{TyDecoder, TyEncoder};
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable};
use crate::ty::print::{pretty_print_const, with_no_trimmed_paths, FmtPrinter, Printer};
use crate::ty::visit::TypeVisitableExt;
use crate::ty::{
self, AdtDef, GenericArg, GenericArgsRef, Instance, InstanceKind, List, Ty, TyCtxt,
UserTypeAnnotationIndex,
};
mod basic_blocks;
mod consts;
pub mod coverage;
mod generic_graph;
pub mod generic_graphviz;
pub mod graphviz;
pub mod interpret;
pub mod mono;
pub mod patch;
pub mod pretty;
mod query;
mod statement;
mod syntax;
pub mod tcx;
mod terminator;
pub mod traversal;
mod type_foldable;
pub mod visit;
pub use consts::*;
use pretty::pretty_print_const_value;
pub use statement::*;
pub use syntax::*;
pub use terminator::*;
pub use self::generic_graph::graphviz_safe_def_name;
pub use self::graphviz::write_mir_graphviz;
pub use self::pretty::{
create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty, PassWhere,
};
/// Types for locals
pub type LocalDecls<'tcx> = IndexSlice<Local, LocalDecl<'tcx>>;
pub trait HasLocalDecls<'tcx> {
fn local_decls(&self) -> &LocalDecls<'tcx>;
}
impl<'tcx> HasLocalDecls<'tcx> for IndexVec<Local, LocalDecl<'tcx>> {
#[inline]
fn local_decls(&self) -> &LocalDecls<'tcx> {
self
}
}
impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
#[inline]
fn local_decls(&self) -> &LocalDecls<'tcx> {
self
}
}
impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
#[inline]
fn local_decls(&self) -> &LocalDecls<'tcx> {
&self.local_decls
}
}
thread_local! {
static PASS_NAMES: RefCell<FxHashMap<&'static str, &'static str>> = {
RefCell::new(FxHashMap::default())
};
}
/// Converts a MIR pass name into a snake case form to match the profiling naming style.
fn to_profiler_name(type_name: &'static str) -> &'static str {
PASS_NAMES.with(|names| match names.borrow_mut().entry(type_name) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(e) => {
let snake_case: String = type_name
.chars()
.flat_map(|c| {
if c.is_ascii_uppercase() {
vec!['_', c.to_ascii_lowercase()]
} else if c == '-' {
vec!['_']
} else {
vec![c]
}
})
.collect();
let result = &*String::leak(format!("mir_pass{}", snake_case));
e.insert(result);
result
}
})
}
/// A streamlined trait that you can implement to create a pass; the
/// pass will be named after the type, and it will consist of a main
/// loop that goes over each available MIR and applies `run_pass`.
pub trait MirPass<'tcx> {
fn name(&self) -> &'static str {
// FIXME Simplify the implementation once more `str` methods get const-stable.
// See copypaste in `MirLint`
const {
let name = std::any::type_name::<Self>();
crate::util::common::c_name(name)
}
}
fn profiler_name(&self) -> &'static str {
to_profiler_name(self.name())
}
/// Returns `true` if this pass is enabled with the current combination of compiler flags.
fn is_enabled(&self, _sess: &Session) -> bool {
true
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>);
fn is_mir_dump_enabled(&self) -> bool {
true
}
}
impl MirPhase {
/// Gets the index of the current MirPhase within the set of all `MirPhase`s.
///
/// FIXME(JakobDegen): Return a `(usize, usize)` instead.
pub fn phase_index(&self) -> usize {
const BUILT_PHASE_COUNT: usize = 1;
const ANALYSIS_PHASE_COUNT: usize = 2;
match self {
MirPhase::Built => 1,
MirPhase::Analysis(analysis_phase) => {
1 + BUILT_PHASE_COUNT + (*analysis_phase as usize)
}
MirPhase::Runtime(runtime_phase) => {
1 + BUILT_PHASE_COUNT + ANALYSIS_PHASE_COUNT + (*runtime_phase as usize)
}
}
}
/// Parses an `MirPhase` from a pair of strings. Panics if this isn't possible for any reason.
pub fn parse(dialect: String, phase: Option<String>) -> Self {
match &*dialect.to_ascii_lowercase() {
"built" => {
assert!(phase.is_none(), "Cannot specify a phase for `Built` MIR");
MirPhase::Built
}
"analysis" => Self::Analysis(AnalysisPhase::parse(phase)),
"runtime" => Self::Runtime(RuntimePhase::parse(phase)),
_ => bug!("Unknown MIR dialect: '{}'", dialect),
}
}
}
impl AnalysisPhase {
pub fn parse(phase: Option<String>) -> Self {
let Some(phase) = phase else {
return Self::Initial;
};
match &*phase.to_ascii_lowercase() {
"initial" => Self::Initial,
"post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
_ => bug!("Unknown analysis phase: '{}'", phase),
}
}
}
impl RuntimePhase {
pub fn parse(phase: Option<String>) -> Self {
let Some(phase) = phase else {
return Self::Initial;
};
match &*phase.to_ascii_lowercase() {
"initial" => Self::Initial,
"post_cleanup" | "post-cleanup" | "postcleanup" => Self::PostCleanup,
"optimized" => Self::Optimized,
_ => bug!("Unknown runtime phase: '{}'", phase),
}
}
}
/// Where a specific `mir::Body` comes from.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable, TypeVisitable)]
pub struct MirSource<'tcx> {
pub instance: InstanceKind<'tcx>,
/// If `Some`, this is a promoted rvalue within the parent function.
pub promoted: Option<Promoted>,
}
impl<'tcx> MirSource<'tcx> {
pub fn item(def_id: DefId) -> Self {
MirSource { instance: InstanceKind::Item(def_id), promoted: None }
}
pub fn from_instance(instance: InstanceKind<'tcx>) -> Self {
MirSource { instance, promoted: None }
}
#[inline]
pub fn def_id(&self) -> DefId {
self.instance.def_id()
}
}
/// Additional information carried by a MIR body when it is lowered from a coroutine.
/// This information is modified as it is lowered during the `StateTransform` MIR pass,
/// so not all fields will be active at a given time. For example, the `yield_ty` is
/// taken out of the field after yields are turned into returns, and the `coroutine_drop`
/// body is only populated after the state transform pass.
#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct CoroutineInfo<'tcx> {
/// The yield type of the function. This field is removed after the state transform pass.
pub yield_ty: Option<Ty<'tcx>>,
/// The resume type of the function. This field is removed after the state transform pass.
pub resume_ty: Option<Ty<'tcx>>,
/// Coroutine drop glue. This field is populated after the state transform pass.
pub coroutine_drop: Option<Body<'tcx>>,
/// The layout of a coroutine. This field is populated after the state transform pass.
pub coroutine_layout: Option<CoroutineLayout<'tcx>>,
/// If this is a coroutine then record the type of source expression that caused this coroutine
/// to be created.
pub coroutine_kind: CoroutineKind,
}
impl<'tcx> CoroutineInfo<'tcx> {
// Sets up `CoroutineInfo` for a pre-coroutine-transform MIR body.
pub fn initial(
coroutine_kind: CoroutineKind,
yield_ty: Ty<'tcx>,
resume_ty: Ty<'tcx>,
) -> CoroutineInfo<'tcx> {
CoroutineInfo {
coroutine_kind,
yield_ty: Some(yield_ty),
resume_ty: Some(resume_ty),
coroutine_drop: None,
coroutine_layout: None,
}
}
}
/// Some item that needs to monomorphize successfully for a MIR body to be considered well-formed.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, HashStable, TyEncodable, TyDecodable)]
#[derive(TypeFoldable, TypeVisitable)]
pub enum MentionedItem<'tcx> {
/// A function that gets called. We don't necessarily know its precise type yet, since it can be
/// hidden behind a generic.
Fn(Ty<'tcx>),
/// A type that has its drop shim called.
Drop(Ty<'tcx>),
/// Unsizing casts might require vtables, so we have to record them.
UnsizeCast { source_ty: Ty<'tcx>, target_ty: Ty<'tcx> },
/// A closure that is coerced to a function pointer.
Closure(Ty<'tcx>),
}
/// The lowered representation of a single function.
#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct Body<'tcx> {
/// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
/// that indexes into this vector.
pub basic_blocks: BasicBlocks<'tcx>,
/// Records how far through the "desugaring and optimization" process this particular
/// MIR has traversed. This is particularly useful when inlining, since in that context
/// we instantiate the promoted constants and add them to our promoted vector -- but those
/// promoted items have already been optimized, whereas ours have not. This field allows
/// us to see the difference and forego optimization on the inlined promoted items.
pub phase: MirPhase,
/// How many passses we have executed since starting the current phase. Used for debug output.
pub pass_count: usize,
pub source: MirSource<'tcx>,
/// A list of source scopes; these are referenced by statements
/// and used for debuginfo. Indexed by a `SourceScope`.
pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
/// Additional information carried by a MIR body when it is lowered from a coroutine.
///
/// Note that the coroutine drop shim, any promoted consts, and other synthetic MIR
/// bodies that come from processing a coroutine body are not typically coroutines
/// themselves, and should probably set this to `None` to avoid carrying redundant
/// information.
pub coroutine: Option<Box<CoroutineInfo<'tcx>>>,
/// Declarations of locals.
///
/// The first local is the return value pointer, followed by `arg_count`
/// locals for the function arguments, followed by any user-declared
/// variables and temporaries.
pub local_decls: IndexVec<Local, LocalDecl<'tcx>>,
/// User type annotations.
pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
/// The number of arguments this function takes.
///
/// Starting at local 1, `arg_count` locals will be provided by the caller
/// and can be assumed to be initialized.
///
/// If this MIR was built for a constant, this will be 0.
pub arg_count: usize,
/// Mark an argument local (which must be a tuple) as getting passed as
/// its individual components at the LLVM level.
///
/// This is used for the "rust-call" ABI.
pub spread_arg: Option<Local>,
/// Debug information pertaining to user variables, including captures.
pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
/// A span representing this MIR, for error reporting.
pub span: Span,
/// Constants that are required to evaluate successfully for this MIR to be well-formed.
/// We hold in this field all the constants we are not able to evaluate yet.
/// `None` indicates that the list has not been computed yet.
///
/// This is soundness-critical, we make a guarantee that all consts syntactically mentioned in a
/// function have successfully evaluated if the function ever gets executed at runtime.
pub required_consts: Option<Vec<ConstOperand<'tcx>>>,
/// Further items that were mentioned in this function and hence *may* become monomorphized,
/// depending on optimizations. We use this to avoid optimization-dependent compile errors: the
/// collector recursively traverses all "mentioned" items and evaluates all their
/// `required_consts`.
/// `None` indicates that the list has not been computed yet.
///
/// This is *not* soundness-critical and the contents of this list are *not* a stable guarantee.
/// All that's relevant is that this set is optimization-level-independent, and that it includes
/// everything that the collector would consider "used". (For example, we currently compute this
/// set after drop elaboration, so some drop calls that can never be reached are not considered
/// "mentioned".) See the documentation of `CollectionMode` in
/// `compiler/rustc_monomorphize/src/collector.rs` for more context.
pub mentioned_items: Option<Vec<Spanned<MentionedItem<'tcx>>>>,
/// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
///
/// Note that this does not actually mean that this body is not computable right now.
/// The repeat count in the following example is polymorphic, but can still be evaluated
/// without knowing anything about the type parameter `T`.
///
/// ```rust
/// fn test<T>() {
/// let _ = [0; std::mem::size_of::<*mut T>()];
/// }
/// ```
///
/// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
/// removed the last mention of all generic params. We do not want to rely on optimizations and
/// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
pub is_polymorphic: bool,
/// The phase at which this MIR should be "injected" into the compilation process.
///
/// Everything that comes before this `MirPhase` should be skipped.
///
/// This is only `Some` if the function that this body comes from was annotated with `rustc_custom_mir`.
pub injection_phase: Option<MirPhase>,
pub tainted_by_errors: Option<ErrorGuaranteed>,
/// Coverage information collected from THIR/MIR during MIR building,
/// to be used by the `InstrumentCoverage` pass.
///
/// Only present if coverage is enabled and this function is eligible.
/// Boxed to limit space overhead in non-coverage builds.
pub coverage_info_hi: Option<Box<coverage::CoverageInfoHi>>,
/// Per-function coverage information added by the `InstrumentCoverage`
/// pass, to be used in conjunction with the coverage statements injected
/// into this body's blocks.
///
/// If `-Cinstrument-coverage` is not active, or if an individual function
/// is not eligible for coverage, then this should always be `None`.
pub function_coverage_info: Option<Box<coverage::FunctionCoverageInfo>>,
}
impl<'tcx> Body<'tcx> {
pub fn new(
source: MirSource<'tcx>,
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
arg_count: usize,
var_debug_info: Vec<VarDebugInfo<'tcx>>,
span: Span,
coroutine: Option<Box<CoroutineInfo<'tcx>>>,
tainted_by_errors: Option<ErrorGuaranteed>,
) -> Self {
// We need `arg_count` locals, and one for the return place.
assert!(
local_decls.len() > arg_count,
"expected at least {} locals, got {}",
arg_count + 1,
local_decls.len()
);
let mut body = Body {
phase: MirPhase::Built,
pass_count: 0,
source,
basic_blocks: BasicBlocks::new(basic_blocks),
source_scopes,
coroutine,
local_decls,
user_type_annotations,
arg_count,
spread_arg: None,
var_debug_info,
span,
required_consts: None,
mentioned_items: None,
is_polymorphic: false,
injection_phase: None,
tainted_by_errors,
coverage_info_hi: None,
function_coverage_info: None,
};
body.is_polymorphic = body.has_non_region_param();
body
}
/// Returns a partially initialized MIR body containing only a list of basic blocks.
///
/// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
/// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
/// crate.
pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
let mut body = Body {
phase: MirPhase::Built,
pass_count: 0,
source: MirSource::item(CRATE_DEF_ID.to_def_id()),
basic_blocks: BasicBlocks::new(basic_blocks),
source_scopes: IndexVec::new(),
coroutine: None,
local_decls: IndexVec::new(),
user_type_annotations: IndexVec::new(),
arg_count: 0,
spread_arg: None,
span: DUMMY_SP,
required_consts: None,
mentioned_items: None,
var_debug_info: Vec::new(),
is_polymorphic: false,
injection_phase: None,
tainted_by_errors: None,
coverage_info_hi: None,
function_coverage_info: None,
};
body.is_polymorphic = body.has_non_region_param();
body
}
#[inline]
pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
self.basic_blocks.as_mut()
}
#[inline]
pub fn local_kind(&self, local: Local) -> LocalKind {
let index = local.as_usize();
if index == 0 {
debug_assert!(
self.local_decls[local].mutability == Mutability::Mut,
"return place should be mutable"
);
LocalKind::ReturnPointer
} else if index < self.arg_count + 1 {
LocalKind::Arg
} else {
LocalKind::Temp
}
}
/// Returns an iterator over all user-declared mutable locals.
#[inline]
pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
(self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
let local = Local::new(index);
let decl = &self.local_decls[local];
(decl.is_user_variable() && decl.mutability.is_mut()).then_some(local)
})
}
/// Returns an iterator over all user-declared mutable arguments and locals.
#[inline]
pub fn mut_vars_and_args_iter<'a>(
&'a self,
) -> impl Iterator<Item = Local> + Captures<'tcx> + 'a {
(1..self.local_decls.len()).filter_map(move |index| {
let local = Local::new(index);
let decl = &self.local_decls[local];
if (decl.is_user_variable() || index < self.arg_count + 1)
&& decl.mutability == Mutability::Mut
{
Some(local)
} else {
None
}
})
}
/// Returns an iterator over all function arguments.
#[inline]
pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
(1..self.arg_count + 1).map(Local::new)
}
/// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
/// locals that are neither arguments nor the return place).
#[inline]
pub fn vars_and_temps_iter(
&self,
) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
(self.arg_count + 1..self.local_decls.len()).map(Local::new)
}
#[inline]
pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator<Item = LocalDecl<'tcx>> + 'a {
self.local_decls.drain(self.arg_count + 1..)
}
/// Returns the source info associated with `location`.
pub fn source_info(&self, location: Location) -> &SourceInfo {
let block = &self[location.block];
let stmts = &block.statements;
let idx = location.statement_index;
if idx < stmts.len() {
&stmts[idx].source_info
} else {
assert_eq!(idx, stmts.len());
&block.terminator().source_info
}
}
pub fn span_for_ty_context(&self, ty_context: TyContext) -> Span {
match ty_context {
TyContext::UserTy(span) => span,
TyContext::ReturnTy(source_info)
| TyContext::LocalDecl { source_info, .. }
| TyContext::YieldTy(source_info)
| TyContext::ResumeTy(source_info) => source_info.span,
TyContext::Location(loc) => self.source_info(loc).span,
}
}
/// Returns the return type; it always return first element from `local_decls` array.
#[inline]
pub fn return_ty(&self) -> Ty<'tcx> {
self.local_decls[RETURN_PLACE].ty
}
/// Returns the return type; it always return first element from `local_decls` array.
#[inline]
pub fn bound_return_ty(&self) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
ty::EarlyBinder::bind(self.local_decls[RETURN_PLACE].ty)
}
/// Gets the location of the terminator for the given block.
#[inline]
pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
Location { block: bb, statement_index: self[bb].statements.len() }
}
pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
let Location { block, statement_index } = location;
let block_data = &self.basic_blocks[block];
block_data
.statements
.get(statement_index)
.map(Either::Left)
.unwrap_or_else(|| Either::Right(block_data.terminator()))
}
#[inline]
pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
self.coroutine.as_ref().and_then(|coroutine| coroutine.yield_ty)
}
#[inline]
pub fn resume_ty(&self) -> Option<Ty<'tcx>> {
self.coroutine.as_ref().and_then(|coroutine| coroutine.resume_ty)
}
/// Prefer going through [`TyCtxt::coroutine_layout`] rather than using this directly.
#[inline]
pub fn coroutine_layout_raw(&self) -> Option<&CoroutineLayout<'tcx>> {
self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_layout.as_ref())
}
#[inline]
pub fn coroutine_drop(&self) -> Option<&Body<'tcx>> {
self.coroutine.as_ref().and_then(|coroutine| coroutine.coroutine_drop.as_ref())
}
#[inline]
pub fn coroutine_kind(&self) -> Option<CoroutineKind> {
self.coroutine.as_ref().map(|coroutine| coroutine.coroutine_kind)
}
#[inline]
pub fn should_skip(&self) -> bool {
let Some(injection_phase) = self.injection_phase else {
return false;
};
injection_phase > self.phase
}
#[inline]
pub fn is_custom_mir(&self) -> bool {
self.injection_phase.is_some()
}
/// If this basic block ends with a [`TerminatorKind::SwitchInt`] for which we can evaluate the
/// dimscriminant in monomorphization, we return the discriminant bits and the
/// [`SwitchTargets`], just so the caller doesn't also have to match on the terminator.
fn try_const_mono_switchint<'a>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
block: &'a BasicBlockData<'tcx>,
) -> Option<(u128, &'a SwitchTargets)> {
// There are two places here we need to evaluate a constant.
let eval_mono_const = |constant: &ConstOperand<'tcx>| {
let env = ty::ParamEnv::reveal_all();
let mono_literal = instance.instantiate_mir_and_normalize_erasing_regions(
tcx,
env,
crate::ty::EarlyBinder::bind(constant.const_),
);
mono_literal.try_eval_bits(tcx, env)
};
let TerminatorKind::SwitchInt { discr, targets } = &block.terminator().kind else {
return None;
};
// If this is a SwitchInt(const _), then we can just evaluate the constant and return.
let discr = match discr {
Operand::Constant(constant) => {
let bits = eval_mono_const(constant)?;
return Some((bits, targets));
}
Operand::Move(place) | Operand::Copy(place) => place,
};
// MIR for `if false` actually looks like this:
// _1 = const _
// SwitchInt(_1)
//
// And MIR for if intrinsics::ub_checks() looks like this:
// _1 = UbChecks()
// SwitchInt(_1)
//
// So we're going to try to recognize this pattern.
//
// If we have a SwitchInt on a non-const place, we find the most recent statement that
// isn't a storage marker. If that statement is an assignment of a const to our
// discriminant place, we evaluate and return the const, as if we've const-propagated it
// into the SwitchInt.
let last_stmt = block.statements.iter().rev().find(|stmt| {
!matches!(stmt.kind, StatementKind::StorageDead(_) | StatementKind::StorageLive(_))
})?;
let (place, rvalue) = last_stmt.kind.as_assign()?;
if discr != place {
return None;
}
match rvalue {
Rvalue::NullaryOp(NullOp::UbChecks, _) => Some((tcx.sess.ub_checks() as u128, targets)),
Rvalue::Use(Operand::Constant(constant)) => {
let bits = eval_mono_const(constant)?;
Some((bits, targets))
}
_ => None,
}
}
/// For a `Location` in this scope, determine what the "caller location" at that point is. This
/// is interesting because of inlining: the `#[track_caller]` attribute of inlined functions
/// must be honored. Falls back to the `tracked_caller` value for `#[track_caller]` functions,
/// or the function's scope.
pub fn caller_location_span<T>(
&self,
mut source_info: SourceInfo,
caller_location: Option<T>,
tcx: TyCtxt<'tcx>,
from_span: impl FnOnce(Span) -> T,
) -> T {
loop {
let scope_data = &self.source_scopes[source_info.scope];
if let Some((callee, callsite_span)) = scope_data.inlined {
// Stop inside the most nested non-`#[track_caller]` function,
// before ever reaching its caller (which is irrelevant).
if !callee.def.requires_caller_location(tcx) {
return from_span(source_info.span);
}
source_info.span = callsite_span;
}
// Skip past all of the parents with `inlined: None`.
match scope_data.inlined_parent_scope {
Some(parent) => source_info.scope = parent,
None => break,
}
}
// No inlined `SourceScope`s, or all of them were `#[track_caller]`.
caller_location.unwrap_or_else(|| from_span(source_info.span))
}
#[track_caller]
pub fn set_required_consts(&mut self, required_consts: Vec<ConstOperand<'tcx>>) {
assert!(
self.required_consts.is_none(),
"required_consts for {:?} have already been set",
self.source.def_id()
);
self.required_consts = Some(required_consts);
}
#[track_caller]
pub fn required_consts(&self) -> &[ConstOperand<'tcx>] {
match &self.required_consts {
Some(l) => l,
None => panic!("required_consts for {:?} have not yet been set", self.source.def_id()),
}
}
#[track_caller]
pub fn set_mentioned_items(&mut self, mentioned_items: Vec<Spanned<MentionedItem<'tcx>>>) {
assert!(
self.mentioned_items.is_none(),
"mentioned_items for {:?} have already been set",
self.source.def_id()
);
self.mentioned_items = Some(mentioned_items);
}
#[track_caller]
pub fn mentioned_items(&self) -> &[Spanned<MentionedItem<'tcx>>] {
match &self.mentioned_items {
Some(l) => l,
None => panic!("mentioned_items for {:?} have not yet been set", self.source.def_id()),
}
}
}
impl<'tcx> Index<BasicBlock> for Body<'tcx> {
type Output = BasicBlockData<'tcx>;
#[inline]
fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
&self.basic_blocks[index]
}
}
impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
#[inline]
fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
&mut self.basic_blocks.as_mut()[index]
}
}
#[derive(Copy, Clone, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub enum ClearCrossCrate<T> {
Clear,
Set(T),
}
impl<T> ClearCrossCrate<T> {
pub fn as_ref(&self) -> ClearCrossCrate<&T> {
match self {
ClearCrossCrate::Clear => ClearCrossCrate::Clear,
ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
}
}
pub fn as_mut(&mut self) -> ClearCrossCrate<&mut T> {
match self {
ClearCrossCrate::Clear => ClearCrossCrate::Clear,
ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
}
}
pub fn assert_crate_local(self) -> T {
match self {
ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
ClearCrossCrate::Set(v) => v,
}
}
}
const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
impl<E: TyEncoder, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
#[inline]
fn encode(&self, e: &mut E) {
if E::CLEAR_CROSS_CRATE {
return;
}
match *self {
ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
ClearCrossCrate::Set(ref val) => {
TAG_CLEAR_CROSS_CRATE_SET.encode(e);
val.encode(e);
}
}
}
}
impl<D: TyDecoder, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
#[inline]
fn decode(d: &mut D) -> ClearCrossCrate<T> {
if D::CLEAR_CROSS_CRATE {
return ClearCrossCrate::Clear;
}
let discr = u8::decode(d);
match discr {
TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
TAG_CLEAR_CROSS_CRATE_SET => {
let val = T::decode(d);
ClearCrossCrate::Set(val)
}
tag => panic!("Invalid tag for ClearCrossCrate: {tag:?}"),
}
}
}
/// Grouped information about the source code origin of a MIR entity.
/// Intended to be inspected by diagnostics and debuginfo.
/// Most passes can work with it as a whole, within a single function.
// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
// `Hash`. Please ping @bjorn3 if removing them.
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
pub struct SourceInfo {
/// The source span for the AST pertaining to this MIR entity.
pub span: Span,
/// The source scope, keeping track of which bindings can be
/// seen by debuginfo, active lint levels, etc.
pub scope: SourceScope,
}
impl SourceInfo {
#[inline]
pub fn outermost(span: Span) -> Self {
SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
}
}
///////////////////////////////////////////////////////////////////////////
// Variables and temps
rustc_index::newtype_index! {
#[derive(HashStable)]
#[encodable]
#[orderable]
#[debug_format = "_{}"]
pub struct Local {
const RETURN_PLACE = 0;
}
}
impl Atom for Local {
fn index(self) -> usize {
Idx::index(self)
}
}
/// Classifies locals into categories. See `Body::local_kind`.
#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
pub enum LocalKind {
/// User-declared variable binding or compiler-introduced temporary.
Temp,
/// Function argument.
Arg,
/// Location of function's return value.
ReturnPointer,
}
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct VarBindingForm<'tcx> {
/// Is variable bound via `x`, `mut x`, `ref x`, `ref mut x`, `mut ref x`, or `mut ref mut x`?
pub binding_mode: BindingMode,
/// If an explicit type was provided for this variable binding,
/// this holds the source Span of that type.
///
/// NOTE: if you want to change this to a `HirId`, be wary that
/// doing so breaks incremental compilation (as of this writing),
/// while a `Span` does not cause our tests to fail.
pub opt_ty_info: Option<Span>,
/// Place of the RHS of the =, or the subject of the `match` where this
/// variable is initialized. None in the case of `let PATTERN;`.
/// Some((None, ..)) in the case of and `let [mut] x = ...` because
/// (a) the right-hand side isn't evaluated as a place expression.
/// (b) it gives a way to separate this case from the remaining cases
/// for diagnostics.
pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
/// The span of the pattern in which this variable was bound.
pub pat_span: Span,
}
#[derive(Clone, Debug, TyEncodable, TyDecodable)]
pub enum BindingForm<'tcx> {
/// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
Var(VarBindingForm<'tcx>),
/// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
ImplicitSelf(ImplicitSelfKind),
/// Reference used in a guard expression to ensure immutability.
RefForGuard,
}
TrivialTypeTraversalImpls! { BindingForm<'tcx> }
mod binding_form_impl {
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_query_system::ich::StableHashingContext;
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
use super::BindingForm::*;
std::mem::discriminant(self).hash_stable(hcx, hasher);
match self {
Var(binding) => binding.hash_stable(hcx, hasher),
ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
RefForGuard => (),
}
}
}
}
/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
/// created during evaluation of expressions in a block tail
/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
///
/// It is used to improve diagnostics when such temporaries are
/// involved in borrow_check errors, e.g., explanations of where the
/// temporaries come from, when their destructors are run, and/or how
/// one might revise the code to satisfy the borrow checker's rules.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct BlockTailInfo {
/// If `true`, then the value resulting from evaluating this tail
/// expression is ignored by the block's expression context.
///
/// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
/// but not e.g., `let _x = { ...; tail };`
pub tail_result_is_ignored: bool,
/// `Span` of the tail expression.
pub span: Span,
}
/// A MIR local.
///
/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
/// argument, or the return place.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct LocalDecl<'tcx> {
/// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
///
/// Temporaries and the return place are always mutable.
pub mutability: Mutability,
// FIXME(matthewjasper) Don't store in this in `Body`
pub local_info: ClearCrossCrate<Box<LocalInfo<'tcx>>>,
/// The type of this local.
pub ty: Ty<'tcx>,
/// If the user manually ascribed a type to this variable,
/// e.g., via `let x: T`, then we carry that type here. The MIR
/// borrow checker needs this information since it can affect
/// region inference.
// FIXME(matthewjasper) Don't store in this in `Body`
pub user_ty: Option<Box<UserTypeProjections>>,
/// The *syntactic* (i.e., not visibility) source scope the local is defined
/// in. If the local was defined in a let-statement, this
/// is *within* the let-statement, rather than outside
/// of it.
///
/// This is needed because the visibility source scope of locals within
/// a let-statement is weird.
///
/// The reason is that we want the local to be *within* the let-statement
/// for lint purposes, but we want the local to be *after* the let-statement
/// for names-in-scope purposes.
///
/// That's it, if we have a let-statement like the one in this
/// function:
///
/// ```
/// fn foo(x: &str) {
/// #[allow(unused_mut)]
/// let mut x: u32 = { // <- one unused mut
/// let mut y: u32 = x.parse().unwrap();
/// y + 2
/// };
/// drop(x);
/// }
/// ```
///
/// Then, from a lint point of view, the declaration of `x: u32`
/// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
/// lint scopes are the same as the AST/HIR nesting.
///
/// However, from a name lookup point of view, the scopes look more like
/// as if the let-statements were `match` expressions:
///
/// ```
/// fn foo(x: &str) {
/// match {
/// match x.parse::<u32>().unwrap() {
/// y => y + 2
/// }
/// } {
/// x => drop(x)
/// };
/// }
/// ```
///
/// We care about the name-lookup scopes for debuginfo - if the
/// debuginfo instruction pointer is at the call to `x.parse()`, we
/// want `x` to refer to `x: &str`, but if it is at the call to
/// `drop(x)`, we want it to refer to `x: u32`.
///
/// To allow both uses to work, we need to have more than a single scope
/// for a local. We have the `source_info.scope` represent the "syntactic"
/// lint scope (with a variable being under its let block) while the
/// `var_debug_info.source_info.scope` represents the "local variable"
/// scope (where the "rest" of a block is under all prior let-statements).
///
/// The end result looks like this:
///
/// ```text
/// ROOT SCOPE
/// │{ argument x: &str }
/// │
/// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
/// │ │ // in practice because I'm lazy.
/// │ │
/// │ │← x.source_info.scope
/// │ │← `x.parse().unwrap()`
/// │ │
/// │ │ │← y.source_info.scope
/// │ │
/// │ │ │{ let y: u32 }
/// │ │ │
/// │ │ │← y.var_debug_info.source_info.scope
/// │ │ │← `y + 2`
/// │
/// │ │{ let x: u32 }
/// │ │← x.var_debug_info.source_info.scope
/// │ │← `drop(x)` // This accesses `x: u32`.
/// ```
pub source_info: SourceInfo,
}
/// Extra information about a some locals that's used for diagnostics and for
/// classifying variables into local variables, statics, etc, which is needed e.g.
/// for borrow checking.
///
/// Not used for non-StaticRef temporaries, the return place, or anonymous
/// function parameters.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub enum LocalInfo<'tcx> {
/// A user-defined local variable or function parameter
///
/// The `BindingForm` is solely used for local diagnostics when generating
/// warnings/errors when compiling the current crate, and therefore it need
/// not be visible across crates.
User(BindingForm<'tcx>),
/// A temporary created that references the static with the given `DefId`.
StaticRef { def_id: DefId, is_thread_local: bool },
/// A temporary created that references the const with the given `DefId`
ConstRef { def_id: DefId },
/// A temporary created during the creation of an aggregate
/// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
AggregateTemp,
/// A temporary created for evaluation of some subexpression of some block's tail expression
/// (with no intervening statement context).
// FIXME(matthewjasper) Don't store in this in `Body`
BlockTailTemp(BlockTailInfo),
/// A temporary created during the pass `Derefer` to avoid it's retagging
DerefTemp,
/// A temporary created for borrow checking.
FakeBorrow,
/// A local without anything interesting about it.
Boring,
}
impl<'tcx> LocalDecl<'tcx> {
pub fn local_info(&self) -> &LocalInfo<'tcx> {
self.local_info.as_ref().assert_crate_local()
}
/// Returns `true` only if local is a binding that can itself be
/// made mutable via the addition of the `mut` keyword, namely
/// something like the occurrences of `x` in:
/// - `fn foo(x: Type) { ... }`,
/// - `let x = ...`,
/// - or `match ... { C(x) => ... }`
pub fn can_be_made_mutable(&self) -> bool {
matches!(
self.local_info(),
LocalInfo::User(
BindingForm::Var(VarBindingForm {
binding_mode: BindingMode(ByRef::No, _),
opt_ty_info: _,
opt_match_place: _,
pat_span: _,
}) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
)
)
}
/// Returns `true` if local is definitely not a `ref ident` or
/// `ref mut ident` binding. (Such bindings cannot be made into
/// mutable bindings, but the inverse does not necessarily hold).
pub fn is_nonref_binding(&self) -> bool {
matches!(
self.local_info(),
LocalInfo::User(
BindingForm::Var(VarBindingForm {
binding_mode: BindingMode(ByRef::No, _),
opt_ty_info: _,
opt_match_place: _,
pat_span: _,
}) | BindingForm::ImplicitSelf(_),
)
)
}
/// Returns `true` if this variable is a named variable or function
/// parameter declared by the user.
#[inline]
pub fn is_user_variable(&self) -> bool {
matches!(self.local_info(), LocalInfo::User(_))
}
/// Returns `true` if this is a reference to a variable bound in a `match`
/// expression that is used to access said variable for the guard of the
/// match arm.
pub fn is_ref_for_guard(&self) -> bool {
matches!(self.local_info(), LocalInfo::User(BindingForm::RefForGuard))
}
/// Returns `Some` if this is a reference to a static item that is used to
/// access that static.
pub fn is_ref_to_static(&self) -> bool {
matches!(self.local_info(), LocalInfo::StaticRef { .. })
}
/// Returns `Some` if this is a reference to a thread-local static item that is used to
/// access that static.
pub fn is_ref_to_thread_local(&self) -> bool {
match self.local_info() {
LocalInfo::StaticRef { is_thread_local, .. } => *is_thread_local,
_ => false,
}
}
/// Returns `true` if this is a DerefTemp
pub fn is_deref_temp(&self) -> bool {
match self.local_info() {
LocalInfo::DerefTemp => return true,
_ => (),
}
return false;
}
/// Returns `true` is the local is from a compiler desugaring, e.g.,
/// `__next` from a `for` loop.
#[inline]
pub fn from_compiler_desugaring(&self) -> bool {
self.source_info.span.desugaring_kind().is_some()
}
/// Creates a new `LocalDecl` for a temporary, mutable.
#[inline]
pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
Self::with_source_info(ty, SourceInfo::outermost(span))
}
/// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
#[inline]
pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
LocalDecl {
mutability: Mutability::Mut,
local_info: ClearCrossCrate::Set(Box::new(LocalInfo::Boring)),
ty,
user_ty: None,
source_info,
}
}
/// Converts `self` into same `LocalDecl` except tagged as immutable.
#[inline]
pub fn immutable(mut self) -> Self {
self.mutability = Mutability::Not;
self
}
}
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub enum VarDebugInfoContents<'tcx> {
/// This `Place` only contains projection which satisfy `can_use_in_debuginfo`.
Place(Place<'tcx>),
Const(ConstOperand<'tcx>),
}
impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
match self {
VarDebugInfoContents::Const(c) => write!(fmt, "{c}"),
VarDebugInfoContents::Place(p) => write!(fmt, "{p:?}"),
}
}
}
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct VarDebugInfoFragment<'tcx> {
/// Type of the original user variable.
/// This cannot contain a union or an enum.
pub ty: Ty<'tcx>,
/// Where in the composite user variable this fragment is,
/// represented as a "projection" into the composite variable.
/// At lower levels, this corresponds to a byte/bit range.
///
/// This can only contain `PlaceElem::Field`.
// FIXME support this for `enum`s by either using DWARF's
// more advanced control-flow features (unsupported by LLVM?)
// to match on the discriminant, or by using custom type debuginfo
// with non-overlapping variants for the composite variable.
pub projection: Vec<PlaceElem<'tcx>>,
}
/// Debug information pertaining to a user variable.
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct VarDebugInfo<'tcx> {
pub name: Symbol,
/// Source info of the user variable, including the scope
/// within which the variable is visible (to debuginfo)
/// (see `LocalDecl`'s `source_info` field for more details).
pub source_info: SourceInfo,
/// The user variable's data is split across several fragments,
/// each described by a `VarDebugInfoFragment`.
/// See DWARF 5's "2.6.1.2 Composite Location Descriptions"
/// and LLVM's `DW_OP_LLVM_fragment` for more details on
/// the underlying debuginfo feature this relies on.
pub composite: Option<Box<VarDebugInfoFragment<'tcx>>>,
/// Where the data for this user variable is to be found.
pub value: VarDebugInfoContents<'tcx>,
/// When present, indicates what argument number this variable is in the function that it
/// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
/// argument number in the original function before it was inlined.
pub argument_index: Option<u16>,
}
///////////////////////////////////////////////////////////////////////////
// BasicBlock
rustc_index::newtype_index! {
/// A node in the MIR [control-flow graph][CFG].
///
/// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
/// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
/// as an edge in a graph between basic blocks.
///
/// Basic blocks consist of a series of [statements][Statement], ending with a
/// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
/// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
/// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
/// needed because some analyses require that there are no critical edges in the CFG.
///
/// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
/// the actual data that a basic block holds is in [`BasicBlockData`].
///
/// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
///
/// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
/// [data-flow analyses]:
/// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
/// [`CriticalCallEdges`]: ../../rustc_mir_transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
/// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
#[derive(HashStable)]
#[encodable]
#[orderable]
#[debug_format = "bb{}"]
pub struct BasicBlock {
const START_BLOCK = 0;
}
}
impl BasicBlock {
pub fn start_location(self) -> Location {
Location { block: self, statement_index: 0 }
}
}
///////////////////////////////////////////////////////////////////////////
// BasicBlockData
/// Data for a basic block, including a list of its statements.
///
/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct BasicBlockData<'tcx> {
/// List of statements in this block.
pub statements: Vec<Statement<'tcx>>,
/// Terminator for this block.
///
/// N.B., this should generally ONLY be `None` during construction.
/// Therefore, you should generally access it via the
/// `terminator()` or `terminator_mut()` methods. The only
/// exception is that certain passes, such as `simplify_cfg`, swap
/// out the terminator temporarily with `None` while they continue
/// to recurse over the set of basic blocks.
pub terminator: Option<Terminator<'tcx>>,
/// If true, this block lies on an unwind path. This is used
/// during codegen where distinct kinds of basic blocks may be
/// generated (particularly for MSVC cleanup). Unwind blocks must
/// only branch to other unwind blocks.
pub is_cleanup: bool,
}
impl<'tcx> BasicBlockData<'tcx> {
pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
BasicBlockData { statements: vec![], terminator, is_cleanup: false }
}
/// Accessor for terminator.
///
/// Terminator may not be None after construction of the basic block is complete. This accessor
/// provides a convenient way to reach the terminator.
#[inline]
pub fn terminator(&self) -> &Terminator<'tcx> {
self.terminator.as_ref().expect("invalid terminator state")
}
#[inline]
pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
self.terminator.as_mut().expect("invalid terminator state")
}
pub fn retain_statements<F>(&mut self, mut f: F)
where
F: FnMut(&mut Statement<'_>) -> bool,
{
for s in &mut self.statements {
if !f(s) {
s.make_nop();
}
}
}
pub fn expand_statements<F, I>(&mut self, mut f: F)
where
F: FnMut(&mut Statement<'tcx>) -> Option<I>,
I: iter::TrustedLen<Item = Statement<'tcx>>,
{
// Gather all the iterators we'll need to splice in, and their positions.
let mut splices: Vec<(usize, I)> = vec![];
let mut extra_stmts = 0;
for (i, s) in self.statements.iter_mut().enumerate() {
if let Some(mut new_stmts) = f(s) {
if let Some(first) = new_stmts.next() {
// We can already store the first new statement.
*s = first;
// Save the other statements for optimized splicing.
let remaining = new_stmts.size_hint().0;
if remaining > 0 {
splices.push((i + 1 + extra_stmts, new_stmts));
extra_stmts += remaining;
}
} else {
s.make_nop();
}
}
}
// Splice in the new statements, from the end of the block.
// FIXME(eddyb) This could be more efficient with a "gap buffer"
// where a range of elements ("gap") is left uninitialized, with
// splicing adding new elements to the end of that gap and moving
// existing elements from before the gap to the end of the gap.
// For now, this is safe code, emulating a gap but initializing it.
let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
self.statements.resize(
gap.end,
Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
);
for (splice_start, new_stmts) in splices.into_iter().rev() {
let splice_end = splice_start + new_stmts.size_hint().0;
while gap.end > splice_end {
gap.start -= 1;
gap.end -= 1;
self.statements.swap(gap.start, gap.end);
}
self.statements.splice(splice_start..splice_end, new_stmts);
gap.end = splice_start;
}
}
pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
}
/// Does the block have no statements and an unreachable terminator?
#[inline]
pub fn is_empty_unreachable(&self) -> bool {
self.statements.is_empty() && matches!(self.terminator().kind, TerminatorKind::Unreachable)
}
}
///////////////////////////////////////////////////////////////////////////
// Scopes
rustc_index::newtype_index! {
#[derive(HashStable)]
#[encodable]
#[debug_format = "scope[{}]"]
pub struct SourceScope {
const OUTERMOST_SOURCE_SCOPE = 0;
}
}
impl SourceScope {
/// Finds the original HirId this MIR item came from.
/// This is necessary after MIR optimizations, as otherwise we get a HirId
/// from the function that was inlined instead of the function call site.
pub fn lint_root(
self,
source_scopes: &IndexSlice<SourceScope, SourceScopeData<'_>>,
) -> Option<HirId> {
let mut data = &source_scopes[self];
// FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
// does not work as I thought it would. Needs more investigation and documentation.
while data.inlined.is_some() {
trace!(?data);
data = &source_scopes[data.parent_scope.unwrap()];
}
trace!(?data);
match &data.local_data {
ClearCrossCrate::Set(data) => Some(data.lint_root),
ClearCrossCrate::Clear => None,
}
}
/// The instance this source scope was inlined from, if any.
#[inline]
pub fn inlined_instance<'tcx>(
self,
source_scopes: &IndexSlice<SourceScope, SourceScopeData<'tcx>>,
) -> Option<ty::Instance<'tcx>> {
let scope_data = &source_scopes[self];
if let Some((inlined_instance, _)) = scope_data.inlined {
Some(inlined_instance)
} else if let Some(inlined_scope) = scope_data.inlined_parent_scope {
Some(source_scopes[inlined_scope].inlined.unwrap().0)
} else {
None
}
}
}
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct SourceScopeData<'tcx> {
pub span: Span,
pub parent_scope: Option<SourceScope>,
/// Whether this scope is the root of a scope tree of another body,
/// inlined into this body by the MIR inliner.
/// `ty::Instance` is the callee, and the `Span` is the call site.
pub inlined: Option<(ty::Instance<'tcx>, Span)>,
/// Nearest (transitive) parent scope (if any) which is inlined.
/// This is an optimization over walking up `parent_scope`
/// until a scope with `inlined: Some(...)` is found.
pub inlined_parent_scope: Option<SourceScope>,
/// Crate-local information for this source scope, that can't (and
/// needn't) be tracked across crates.
pub local_data: ClearCrossCrate<SourceScopeLocalData>,
}
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
pub struct SourceScopeLocalData {
/// An `HirId` with lint levels equivalent to this scope's lint levels.
pub lint_root: HirId,
}
/// A collection of projections into user types.
///
/// They are projections because a binding can occur a part of a
/// parent pattern that has been ascribed a type.
///
/// It's a collection because there can be multiple type ascriptions on
/// the path from the root of the pattern down to the binding itself.
///
/// An example:
///
/// ```ignore (illustrative)
/// struct S<'a>((i32, &'a str), String);
/// let S((_, w): (i32, &'static str), _): S = ...;
/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
/// // --------------------------------- ^ (2)
/// ```
///
/// The highlights labelled `(1)` show the subpattern `(_, w)` being
/// ascribed the type `(i32, &'static str)`.
///
/// The highlights labelled `(2)` show the whole pattern being
/// ascribed the type `S`.
///
/// In this example, when we descend to `w`, we will have built up the
/// following two projected types:
///
/// * base: `S`, projection: `(base.0).1`
/// * base: `(i32, &'static str)`, projection: `base.1`
///
/// The first will lead to the constraint `w: &'1 str` (for some
/// inferred region `'1`). The second will lead to the constraint `w:
/// &'static str`.
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct UserTypeProjections {
pub contents: Vec<(UserTypeProjection, Span)>,
}
impl<'tcx> UserTypeProjections {
pub fn none() -> Self {
UserTypeProjections { contents: vec![] }
}
pub fn is_empty(&self) -> bool {
self.contents.is_empty()
}
pub fn projections_and_spans(
&self,
) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
self.contents.iter()
}
pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
self.contents.iter().map(|&(ref user_type, _span)| user_type)
}
pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
self.contents.push((user_ty.clone(), span));
self
}
fn map_projections(
mut self,
mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
) -> Self {
self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect();
self
}
pub fn index(self) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.index())
}
pub fn subslice(self, from: u64, to: u64) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
}
pub fn deref(self) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
}
pub fn leaf(self, field: FieldIdx) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
}
pub fn variant(
self,
adt_def: AdtDef<'tcx>,
variant_index: VariantIdx,
field_index: FieldIdx,
) -> Self {
self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field_index))
}
}
/// Encodes the effect of a user-supplied type annotation on the
/// subcomponents of a pattern. The effect is determined by applying the
/// given list of projections to some underlying base type. Often,
/// the projection element list `projs` is empty, in which case this
/// directly encodes a type in `base`. But in the case of complex patterns with
/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
/// in which case the `projs` vector is used.
///
/// Examples:
///
/// * `let x: T = ...` -- here, the `projs` vector is empty.
///
/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
/// `field[0]` (aka `.0`), indicating that the type of `s` is
/// determined by finding the type of the `.0` field from `T`.
#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
#[derive(TypeFoldable, TypeVisitable)]
pub struct UserTypeProjection {
pub base: UserTypeAnnotationIndex,
pub projs: Vec<ProjectionKind>,
}
impl UserTypeProjection {
pub(crate) fn index(mut self) -> Self {
self.projs.push(ProjectionElem::Index(()));
self
}
pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
self
}
pub(crate) fn deref(mut self) -> Self {
self.projs.push(ProjectionElem::Deref);
self
}
pub(crate) fn leaf(mut self, field: FieldIdx) -> Self {
self.projs.push(ProjectionElem::Field(field, ()));
self
}
pub(crate) fn variant(
mut self,
adt_def: AdtDef<'_>,
variant_index: VariantIdx,
field_index: FieldIdx,
) -> Self {
self.projs.push(ProjectionElem::Downcast(
Some(adt_def.variant(variant_index).name),
variant_index,
));
self.projs.push(ProjectionElem::Field(field_index, ()));
self
}
}
rustc_index::newtype_index! {
#[derive(HashStable)]
#[encodable]
#[orderable]
#[debug_format = "promoted[{}]"]
pub struct Promoted {}
}
/// `Location` represents the position of the start of the statement; or, if
/// `statement_index` equals the number of statements, then the start of the
/// terminator.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
pub struct Location {
/// The block that the location is within.
pub block: BasicBlock,
pub statement_index: usize,
}
impl fmt::Debug for Location {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "{:?}[{}]", self.block, self.statement_index)
}
}
impl Location {
pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
/// Returns the location immediately after this one within the enclosing block.
///
/// Note that if this location represents a terminator, then the
/// resulting location would be out of bounds and invalid.
#[inline]
pub fn successor_within_block(&self) -> Location {
Location { block: self.block, statement_index: self.statement_index + 1 }
}
/// Returns `true` if `other` is earlier in the control flow graph than `self`.
pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
// If we are in the same block as the other location and are an earlier statement
// then we are a predecessor of `other`.
if self.block == other.block && self.statement_index < other.statement_index {
return true;
}
let predecessors = body.basic_blocks.predecessors();
// If we're in another block, then we want to check that block is a predecessor of `other`.
let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
let mut visited = FxHashSet::default();
while let Some(block) = queue.pop() {
// If we haven't visited this block before, then make sure we visit its predecessors.
if visited.insert(block) {
queue.extend(predecessors[block].iter().cloned());
} else {
continue;
}
// If we found the block that `self` is in, then we are a predecessor of `other` (since
// we found that block by looking at the predecessors of `other`).
if self.block == block {
return true;
}
}
false
}
#[inline]
pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
if self.block == other.block {
self.statement_index <= other.statement_index
} else {
dominators.dominates(self.block, other.block)
}
}
}
/// `DefLocation` represents the location of a definition - either an argument or an assignment
/// within MIR body.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DefLocation {
Argument,
Assignment(Location),
CallReturn { call: BasicBlock, target: Option<BasicBlock> },
}
impl DefLocation {
#[inline]
pub fn dominates(self, location: Location, dominators: &Dominators<BasicBlock>) -> bool {
match self {
DefLocation::Argument => true,
DefLocation::Assignment(def) => {
def.successor_within_block().dominates(location, dominators)
}
DefLocation::CallReturn { target: None, .. } => false,
DefLocation::CallReturn { call, target: Some(target) } => {
// The definition occurs on the call -> target edge. The definition dominates a use
// if and only if the edge is on all paths from the entry to the use.
//
// Note that a call terminator has only one edge that can reach the target, so when
// the call strongly dominates the target, all paths from the entry to the target
// go through the call -> target edge.
call != target
&& dominators.dominates(call, target)
&& dominators.dominates(target, location.block)
}
}
}
}
// Some nodes are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
use rustc_data_structures::static_assert_size;
use super::*;
// tidy-alphabetical-start
static_assert_size!(BasicBlockData<'_>, 128);
static_assert_size!(LocalDecl<'_>, 40);
static_assert_size!(SourceScopeData<'_>, 64);
static_assert_size!(Statement<'_>, 32);
static_assert_size!(Terminator<'_>, 96);
static_assert_size!(VarDebugInfo<'_>, 88);
// tidy-alphabetical-end
}