1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
//! The data that we will serialize and deserialize.
//!
//! Notionally, the dep-graph is a sequence of NodeInfo with the dependencies
//! specified inline. The total number of nodes and edges are stored as the last
//! 16 bytes of the file, so we can find them easily at decoding time.
//!
//! The serialisation is performed on-demand when each node is emitted. Using this
//! scheme, we do not need to keep the current graph in memory.
//!
//! The deserialization is performed manually, in order to convert from the stored
//! sequence of NodeInfos to the different arrays in SerializedDepGraph. Since the
//! node and edge count are stored at the end of the file, all the arrays can be
//! pre-allocated with the right length.
//!
//! The encoding of the de-pgraph is generally designed around the fact that fixed-size
//! reads of encoded data are generally faster than variable-sized reads. Ergo we adopt
//! essentially the same varint encoding scheme used in the rmeta format; the edge lists
//! for each node on the graph store a 2-bit integer which is the number of bytes per edge
//! index in that node's edge list. We effectively ignore that an edge index of 0 could be
//! encoded with 0 bytes in order to not require 3 bits to store the byte width of the edges.
//! The overhead of calculating the correct byte width for each edge is mitigated by
//! building edge lists with [`EdgesVec`] which keeps a running max of the edges in a node.
//!
//! When we decode this data, we do not immediately create [`SerializedDepNodeIndex`] and
//! instead keep the data in its denser serialized form which lets us turn our on-disk size
//! efficiency directly into a peak memory reduction. When we convert these encoded-in-memory
//! values into their fully-deserialized type, we use a fixed-size read of the encoded array
//! then mask off any errant bytes we read. The array of edge index bytes is padded to permit this.
//!
//! We also encode and decode the entire rest of each node using [`SerializedNodeHeader`]
//! to let this encoding and decoding be done in one fixed-size operation. These headers contain
//! two [`Fingerprint`]s along with the serialized [`DepKind`], and the number of edge indices
//! in the node and the number of bytes used to encode the edge indices for this node. The
//! [`DepKind`], number of edges, and bytes per edge are all bit-packed together, if they fit.
//! If the number of edges in this node does not fit in the bits available in the header, we
//! store it directly after the header with leb128.

use super::query::DepGraphQuery;
use super::{DepKind, DepNode, DepNodeIndex, Deps};
use crate::dep_graph::edges::EdgesVec;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fingerprint::PackedFingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::profiling::SelfProfilerRef;
use rustc_data_structures::sync::Lock;
use rustc_data_structures::unhash::UnhashMap;
use rustc_index::{Idx, IndexVec};
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder, IntEncodedWithFixedSize, MemDecoder};
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::iter;
use std::marker::PhantomData;

// The maximum value of `SerializedDepNodeIndex` leaves the upper two bits
// unused so that we can store multiple index types in `CompressedHybridIndex`,
// and use those bits to encode which index type it contains.
rustc_index::newtype_index! {
    #[encodable]
    #[max = 0x7FFF_FFFF]
    pub struct SerializedDepNodeIndex {}
}

const DEP_NODE_SIZE: usize = std::mem::size_of::<SerializedDepNodeIndex>();
/// Amount of padding we need to add to the edge list data so that we can retrieve every
/// SerializedDepNodeIndex with a fixed-size read then mask.
const DEP_NODE_PAD: usize = DEP_NODE_SIZE - 1;
/// Number of bits we need to store the number of used bytes in a SerializedDepNodeIndex.
/// Note that wherever we encode byte widths like this we actually store the number of bytes used
/// minus 1; for a 4-byte value we technically would have 5 widths to store, but using one byte to
/// store zeroes (which are relatively rare) is a decent tradeoff to save a bit in our bitfields.
const DEP_NODE_WIDTH_BITS: usize = DEP_NODE_SIZE / 2;

/// Data for use when recompiling the **current crate**.
#[derive(Debug, Default)]
pub struct SerializedDepGraph {
    /// The set of all DepNodes in the graph
    nodes: IndexVec<SerializedDepNodeIndex, DepNode>,
    /// The set of all Fingerprints in the graph. Each Fingerprint corresponds to
    /// the DepNode at the same index in the nodes vector.
    fingerprints: IndexVec<SerializedDepNodeIndex, Fingerprint>,
    /// For each DepNode, stores the list of edges originating from that
    /// DepNode. Encoded as a [start, end) pair indexing into edge_list_data,
    /// which holds the actual DepNodeIndices of the target nodes.
    edge_list_indices: IndexVec<SerializedDepNodeIndex, EdgeHeader>,
    /// A flattened list of all edge targets in the graph, stored in the same
    /// varint encoding that we use on disk. Edge sources are implicit in edge_list_indices.
    edge_list_data: Vec<u8>,
    /// Stores a map from fingerprints to nodes per dep node kind.
    /// This is the reciprocal of `nodes`.
    index: Vec<UnhashMap<PackedFingerprint, SerializedDepNodeIndex>>,
}

impl SerializedDepGraph {
    #[inline]
    pub fn edge_targets_from(
        &self,
        source: SerializedDepNodeIndex,
    ) -> impl Iterator<Item = SerializedDepNodeIndex> + '_ {
        let header = self.edge_list_indices[source];
        let mut raw = &self.edge_list_data[header.start()..];
        // Figure out where the edge list for `source` ends by getting the start index of the next
        // edge list, or the end of the array if this is the last edge.
        let end = self
            .edge_list_indices
            .get(source + 1)
            .map(|h| h.start())
            .unwrap_or_else(|| self.edge_list_data.len() - DEP_NODE_PAD);

        // The number of edges for this node is implicitly stored in the combination of the byte
        // width and the length.
        let bytes_per_index = header.bytes_per_index();
        let len = (end - header.start()) / bytes_per_index;

        // LLVM doesn't hoist EdgeHeader::mask so we do it ourselves.
        let mask = header.mask();
        (0..len).map(move |_| {
            // Doing this slicing in this order ensures that the first bounds check suffices for
            // all the others.
            let index = &raw[..DEP_NODE_SIZE];
            raw = &raw[bytes_per_index..];
            let index = u32::from_le_bytes(index.try_into().unwrap()) & mask;
            SerializedDepNodeIndex::from_u32(index)
        })
    }

    #[inline]
    pub fn index_to_node(&self, dep_node_index: SerializedDepNodeIndex) -> DepNode {
        self.nodes[dep_node_index]
    }

    #[inline]
    pub fn node_to_index_opt(&self, dep_node: &DepNode) -> Option<SerializedDepNodeIndex> {
        self.index.get(dep_node.kind.as_usize())?.get(&dep_node.hash).cloned()
    }

    #[inline]
    pub fn fingerprint_by_index(&self, dep_node_index: SerializedDepNodeIndex) -> Fingerprint {
        self.fingerprints[dep_node_index]
    }

    #[inline]
    pub fn node_count(&self) -> usize {
        self.nodes.len()
    }
}

/// A packed representation of an edge's start index and byte width.
///
/// This is packed by stealing 2 bits from the start index, which means we only accomodate edge
/// data arrays up to a quarter of our address space. Which seems fine.
#[derive(Debug, Clone, Copy)]
struct EdgeHeader {
    repr: usize,
}

impl EdgeHeader {
    #[inline]
    fn start(self) -> usize {
        self.repr >> DEP_NODE_WIDTH_BITS
    }

    #[inline]
    fn bytes_per_index(self) -> usize {
        (self.repr & mask(DEP_NODE_WIDTH_BITS)) + 1
    }

    #[inline]
    fn mask(self) -> u32 {
        mask(self.bytes_per_index() * 8) as u32
    }
}

#[inline]
fn mask(bits: usize) -> usize {
    usize::MAX >> ((std::mem::size_of::<usize>() * 8) - bits)
}

impl SerializedDepGraph {
    #[instrument(level = "debug", skip(d))]
    pub fn decode<D: Deps>(d: &mut MemDecoder<'_>) -> SerializedDepGraph {
        // The last 16 bytes are the node count and edge count.
        debug!("position: {:?}", d.position());
        let (node_count, edge_count) =
            d.with_position(d.len() - 2 * IntEncodedWithFixedSize::ENCODED_SIZE, |d| {
                debug!("position: {:?}", d.position());
                let node_count = IntEncodedWithFixedSize::decode(d).0 as usize;
                let edge_count = IntEncodedWithFixedSize::decode(d).0 as usize;
                (node_count, edge_count)
            });
        debug!("position: {:?}", d.position());

        debug!(?node_count, ?edge_count);

        let graph_bytes = d.len() - (2 * IntEncodedWithFixedSize::ENCODED_SIZE) - d.position();

        let mut nodes = IndexVec::with_capacity(node_count);
        let mut fingerprints = IndexVec::with_capacity(node_count);
        let mut edge_list_indices = IndexVec::with_capacity(node_count);
        // This estimation assumes that all of the encoded bytes are for the edge lists or for the
        // fixed-size node headers. But that's not necessarily true; if any edge list has a length
        // that spills out of the size we can bit-pack into SerializedNodeHeader then some of the
        // total serialized size is also used by leb128-encoded edge list lengths. Neglecting that
        // contribution to graph_bytes means our estimation of the bytes needed for edge_list_data
        // slightly overshoots. But it cannot overshoot by much; consider that the worse case is
        // for a node with length 64, which means the spilled 1-byte leb128 length is 1 byte of at
        // least (34 byte header + 1 byte len + 64 bytes edge data), which is ~1%. A 2-byte leb128
        // length is about the same fractional overhead and it amortizes for yet greater lengths.
        let mut edge_list_data = Vec::with_capacity(
            graph_bytes - node_count * std::mem::size_of::<SerializedNodeHeader<D>>(),
        );

        for _index in 0..node_count {
            // Decode the header for this edge; the header packs together as many of the fixed-size
            // fields as possible to limit the number of times we update decoder state.
            let node_header =
                SerializedNodeHeader::<D> { bytes: d.read_array(), _marker: PhantomData };

            let _i: SerializedDepNodeIndex = nodes.push(node_header.node());
            debug_assert_eq!(_i.index(), _index);

            let _i: SerializedDepNodeIndex = fingerprints.push(node_header.fingerprint());
            debug_assert_eq!(_i.index(), _index);

            // If the length of this node's edge list is small, the length is stored in the header.
            // If it is not, we fall back to another decoder call.
            let num_edges = node_header.len().unwrap_or_else(|| d.read_usize());

            // The edges index list uses the same varint strategy as rmeta tables; we select the
            // number of byte elements per-array not per-element. This lets us read the whole edge
            // list for a node with one decoder call and also use the on-disk format in memory.
            let edges_len_bytes = node_header.bytes_per_index() * num_edges;
            // The in-memory structure for the edges list stores the byte width of the edges on
            // this node with the offset into the global edge data array.
            let edges_header = node_header.edges_header(&edge_list_data);

            edge_list_data.extend(d.read_raw_bytes(edges_len_bytes));

            let _i: SerializedDepNodeIndex = edge_list_indices.push(edges_header);
            debug_assert_eq!(_i.index(), _index);
        }

        // When we access the edge list data, we do a fixed-size read from the edge list data then
        // mask off the bytes that aren't for that edge index, so the last read may dangle off the
        // end of the array. This padding ensure it doesn't.
        edge_list_data.extend(&[0u8; DEP_NODE_PAD]);

        // Read the number of each dep kind and use it to create an hash map with a suitable size.
        let mut index: Vec<_> = (0..(D::DEP_KIND_MAX + 1))
            .map(|_| UnhashMap::with_capacity_and_hasher(d.read_u32() as usize, Default::default()))
            .collect();

        for (idx, node) in nodes.iter_enumerated() {
            index[node.kind.as_usize()].insert(node.hash, idx);
        }

        SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data, index }
    }
}

/// A packed representation of all the fixed-size fields in a `NodeInfo`.
///
/// This stores in one byte array:
/// * The `Fingerprint` in the `NodeInfo`
/// * The `Fingerprint` in `DepNode` that is in this `NodeInfo`
/// * The `DepKind`'s discriminant (a u16, but not all bits are used...)
/// * The byte width of the encoded edges for this node
/// * In whatever bits remain, the length of the edge list for this node, if it fits
struct SerializedNodeHeader<D> {
    // 2 bytes for the DepNode
    // 16 for Fingerprint in DepNode
    // 16 for Fingerprint in NodeInfo
    bytes: [u8; 34],
    _marker: PhantomData<D>,
}

// The fields of a `SerializedNodeHeader`, this struct is an implementation detail and exists only
// to make the implementation of `SerializedNodeHeader` simpler.
struct Unpacked {
    len: Option<usize>,
    bytes_per_index: usize,
    kind: DepKind,
    hash: PackedFingerprint,
    fingerprint: Fingerprint,
}

// Bit fields, where
// M: bits used to store the length of a node's edge list
// N: bits used to store the byte width of elements of the edge list
// are
// 0..M    length of the edge
// M..M+N  bytes per index
// M+N..16 kind
impl<D: Deps> SerializedNodeHeader<D> {
    const TOTAL_BITS: usize = std::mem::size_of::<DepKind>() * 8;
    const LEN_BITS: usize = Self::TOTAL_BITS - Self::KIND_BITS - Self::WIDTH_BITS;
    const WIDTH_BITS: usize = DEP_NODE_WIDTH_BITS;
    const KIND_BITS: usize = Self::TOTAL_BITS - D::DEP_KIND_MAX.leading_zeros() as usize;
    const MAX_INLINE_LEN: usize = (u16::MAX as usize >> (Self::TOTAL_BITS - Self::LEN_BITS)) - 1;

    #[inline]
    fn new(node_info: &NodeInfo) -> Self {
        debug_assert_eq!(Self::TOTAL_BITS, Self::LEN_BITS + Self::WIDTH_BITS + Self::KIND_BITS);

        let NodeInfo { node, fingerprint, edges } = node_info;

        let mut head = node.kind.as_inner();

        let free_bytes = edges.max_index().leading_zeros() as usize / 8;
        let bytes_per_index = (DEP_NODE_SIZE - free_bytes).saturating_sub(1);
        head |= (bytes_per_index as u16) << Self::KIND_BITS;

        // Encode number of edges + 1 so that we can reserve 0 to indicate that the len doesn't fit
        // in this bitfield.
        if edges.len() <= Self::MAX_INLINE_LEN {
            head |= (edges.len() as u16 + 1) << (Self::KIND_BITS + Self::WIDTH_BITS);
        }

        let hash: Fingerprint = node.hash.into();

        // Using half-open ranges ensures an unconditional panic if we get the magic numbers wrong.
        let mut bytes = [0u8; 34];
        bytes[..2].copy_from_slice(&head.to_le_bytes());
        bytes[2..18].copy_from_slice(&hash.to_le_bytes());
        bytes[18..].copy_from_slice(&fingerprint.to_le_bytes());

        #[cfg(debug_assertions)]
        {
            let res = Self { bytes, _marker: PhantomData };
            assert_eq!(node_info.fingerprint, res.fingerprint());
            assert_eq!(node_info.node, res.node());
            if let Some(len) = res.len() {
                assert_eq!(node_info.edges.len(), len);
            }
        }
        Self { bytes, _marker: PhantomData }
    }

    #[inline]
    fn unpack(&self) -> Unpacked {
        let head = u16::from_le_bytes(self.bytes[..2].try_into().unwrap());
        let hash = self.bytes[2..18].try_into().unwrap();
        let fingerprint = self.bytes[18..].try_into().unwrap();

        let kind = head & mask(Self::KIND_BITS) as u16;
        let bytes_per_index = (head >> Self::KIND_BITS) & mask(Self::WIDTH_BITS) as u16;
        let len = (head as usize) >> (Self::WIDTH_BITS + Self::KIND_BITS);

        Unpacked {
            len: len.checked_sub(1),
            bytes_per_index: bytes_per_index as usize + 1,
            kind: DepKind::new(kind),
            hash: Fingerprint::from_le_bytes(hash).into(),
            fingerprint: Fingerprint::from_le_bytes(fingerprint),
        }
    }

    #[inline]
    fn len(&self) -> Option<usize> {
        self.unpack().len
    }

    #[inline]
    fn bytes_per_index(&self) -> usize {
        self.unpack().bytes_per_index
    }

    #[inline]
    fn fingerprint(&self) -> Fingerprint {
        self.unpack().fingerprint
    }

    #[inline]
    fn node(&self) -> DepNode {
        let Unpacked { kind, hash, .. } = self.unpack();
        DepNode { kind, hash }
    }

    #[inline]
    fn edges_header(&self, edge_list_data: &[u8]) -> EdgeHeader {
        EdgeHeader {
            repr: (edge_list_data.len() << DEP_NODE_WIDTH_BITS) | (self.bytes_per_index() - 1),
        }
    }
}

#[derive(Debug)]
struct NodeInfo {
    node: DepNode,
    fingerprint: Fingerprint,
    edges: EdgesVec,
}

impl NodeInfo {
    fn encode<D: Deps>(&self, e: &mut FileEncoder) {
        let header = SerializedNodeHeader::<D>::new(self);
        e.write_array(header.bytes);

        if header.len().is_none() {
            e.emit_usize(self.edges.len());
        }

        let bytes_per_index = header.bytes_per_index();
        for node_index in self.edges.iter() {
            e.write_with(|dest| {
                *dest = node_index.as_u32().to_le_bytes();
                bytes_per_index
            });
        }
    }
}

struct Stat {
    kind: DepKind,
    node_counter: u64,
    edge_counter: u64,
}

struct EncoderState<D: Deps> {
    encoder: FileEncoder,
    total_node_count: usize,
    total_edge_count: usize,
    stats: Option<FxHashMap<DepKind, Stat>>,

    /// Stores the number of times we've encoded each dep kind.
    kind_stats: Vec<u32>,
    marker: PhantomData<D>,
}

impl<D: Deps> EncoderState<D> {
    fn new(encoder: FileEncoder, record_stats: bool) -> Self {
        Self {
            encoder,
            total_edge_count: 0,
            total_node_count: 0,
            stats: record_stats.then(FxHashMap::default),
            kind_stats: iter::repeat(0).take(D::DEP_KIND_MAX as usize + 1).collect(),
            marker: PhantomData,
        }
    }

    fn encode_node(
        &mut self,
        node: &NodeInfo,
        record_graph: &Option<Lock<DepGraphQuery>>,
    ) -> DepNodeIndex {
        let index = DepNodeIndex::new(self.total_node_count);
        self.total_node_count += 1;
        self.kind_stats[node.node.kind.as_usize()] += 1;

        let edge_count = node.edges.len();
        self.total_edge_count += edge_count;

        if let Some(record_graph) = &record_graph {
            // Do not ICE when a query is called from within `with_query`.
            if let Some(record_graph) = &mut record_graph.try_lock() {
                record_graph.push(index, node.node, &node.edges);
            }
        }

        if let Some(stats) = &mut self.stats {
            let kind = node.node.kind;

            let stat = stats.entry(kind).or_insert(Stat { kind, node_counter: 0, edge_counter: 0 });
            stat.node_counter += 1;
            stat.edge_counter += edge_count as u64;
        }

        let encoder = &mut self.encoder;
        node.encode::<D>(encoder);
        index
    }

    fn finish(self, profiler: &SelfProfilerRef) -> FileEncodeResult {
        let Self {
            mut encoder,
            total_node_count,
            total_edge_count,
            stats: _,
            kind_stats,
            marker: _,
        } = self;

        let node_count = total_node_count.try_into().unwrap();
        let edge_count = total_edge_count.try_into().unwrap();

        // Encode the number of each dep kind encountered
        for count in kind_stats.iter() {
            count.encode(&mut encoder);
        }

        debug!(?node_count, ?edge_count);
        debug!("position: {:?}", encoder.position());
        IntEncodedWithFixedSize(node_count).encode(&mut encoder);
        IntEncodedWithFixedSize(edge_count).encode(&mut encoder);
        debug!("position: {:?}", encoder.position());
        // Drop the encoder so that nothing is written after the counts.
        let result = encoder.finish();
        if let Ok(position) = result {
            // FIXME(rylev): we hardcode the dep graph file name so we
            // don't need a dependency on rustc_incremental just for that.
            profiler.artifact_size("dep_graph", "dep-graph.bin", position as u64);
        }
        result
    }
}

pub struct GraphEncoder<D: Deps> {
    status: Lock<EncoderState<D>>,
    record_graph: Option<Lock<DepGraphQuery>>,
}

impl<D: Deps> GraphEncoder<D> {
    pub fn new(
        encoder: FileEncoder,
        prev_node_count: usize,
        record_graph: bool,
        record_stats: bool,
    ) -> Self {
        let record_graph = record_graph.then(|| Lock::new(DepGraphQuery::new(prev_node_count)));
        let status = Lock::new(EncoderState::new(encoder, record_stats));
        GraphEncoder { status, record_graph }
    }

    pub(crate) fn with_query(&self, f: impl Fn(&DepGraphQuery)) {
        if let Some(record_graph) = &self.record_graph {
            f(&record_graph.lock())
        }
    }

    pub(crate) fn print_incremental_info(
        &self,
        total_read_count: u64,
        total_duplicate_read_count: u64,
    ) {
        let status = self.status.lock();
        if let Some(record_stats) = &status.stats {
            let mut stats: Vec<_> = record_stats.values().collect();
            stats.sort_by_key(|s| -(s.node_counter as i64));

            const SEPARATOR: &str = "[incremental] --------------------------------\
                                     ----------------------------------------------\
                                     ------------";

            eprintln!("[incremental]");
            eprintln!("[incremental] DepGraph Statistics");
            eprintln!("{SEPARATOR}");
            eprintln!("[incremental]");
            eprintln!("[incremental] Total Node Count: {}", status.total_node_count);
            eprintln!("[incremental] Total Edge Count: {}", status.total_edge_count);

            if cfg!(debug_assertions) {
                eprintln!("[incremental] Total Edge Reads: {total_read_count}");
                eprintln!("[incremental] Total Duplicate Edge Reads: {total_duplicate_read_count}");
            }

            eprintln!("[incremental]");
            eprintln!(
                "[incremental]  {:<36}| {:<17}| {:<12}| {:<17}|",
                "Node Kind", "Node Frequency", "Node Count", "Avg. Edge Count"
            );
            eprintln!("{SEPARATOR}");

            for stat in stats {
                let node_kind_ratio =
                    (100.0 * (stat.node_counter as f64)) / (status.total_node_count as f64);
                let node_kind_avg_edges = (stat.edge_counter as f64) / (stat.node_counter as f64);

                eprintln!(
                    "[incremental]  {:<36}|{:>16.1}% |{:>12} |{:>17.1} |",
                    format!("{:?}", stat.kind),
                    node_kind_ratio,
                    stat.node_counter,
                    node_kind_avg_edges,
                );
            }

            eprintln!("{SEPARATOR}");
            eprintln!("[incremental]");
        }
    }

    pub(crate) fn send(
        &self,
        profiler: &SelfProfilerRef,
        node: DepNode,
        fingerprint: Fingerprint,
        edges: EdgesVec,
    ) -> DepNodeIndex {
        let _prof_timer = profiler.generic_activity("incr_comp_encode_dep_graph");
        let node = NodeInfo { node, fingerprint, edges };
        self.status.lock().encode_node(&node, &self.record_graph)
    }

    pub fn finish(self, profiler: &SelfProfilerRef) -> FileEncodeResult {
        let _prof_timer = profiler.generic_activity("incr_comp_encode_dep_graph");
        self.status.into_inner().finish(profiler)
    }
}