1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
use rustc_ast::util::{classify, parser};
use rustc_ast::Expr;
#[derive(Copy, Clone, Debug)]
pub(crate) struct FixupContext {
/// Print expression such that it can be parsed back as a statement
/// consisting of the original expression.
///
/// The effect of this is for binary operators in statement position to set
/// `leftmost_subexpression_in_stmt` when printing their left-hand operand.
///
/// ```ignore (illustrative)
/// (match x {}) - 1; // match needs parens when LHS of binary operator
///
/// match x {}; // not when its own statement
/// ```
stmt: bool,
/// This is the difference between:
///
/// ```ignore (illustrative)
/// (match x {}) - 1; // subexpression needs parens
///
/// let _ = match x {} - 1; // no parens
/// ```
///
/// There are 3 distinguishable contexts in which `print_expr` might be
/// called with the expression `$match` as its argument, where `$match`
/// represents an expression of kind `ExprKind::Match`:
///
/// - stmt=false leftmost_subexpression_in_stmt=false
///
/// Example: `let _ = $match - 1;`
///
/// No parentheses required.
///
/// - stmt=false leftmost_subexpression_in_stmt=true
///
/// Example: `$match - 1;`
///
/// Must parenthesize `($match)`, otherwise parsing back the output as a
/// statement would terminate the statement after the closing brace of
/// the match, parsing `-1;` as a separate statement.
///
/// - stmt=true leftmost_subexpression_in_stmt=false
///
/// Example: `$match;`
///
/// No parentheses required.
leftmost_subexpression_in_stmt: bool,
/// Print expression such that it can be parsed as a match arm.
///
/// This is almost equivalent to `stmt`, but the grammar diverges a tiny bit
/// between statements and match arms when it comes to braced macro calls.
/// Macro calls with brace delimiter terminate a statement without a
/// semicolon, but do not terminate a match-arm without comma.
///
/// ```ignore (illustrative)
/// m! {} - 1; // two statements: a macro call followed by -1 literal
///
/// match () {
/// _ => m! {} - 1, // binary subtraction operator
/// }
/// ```
match_arm: bool,
/// This is almost equivalent to `leftmost_subexpression_in_stmt`, other
/// than for braced macro calls.
///
/// If we have `m! {} - 1` as an expression, the leftmost subexpression
/// `m! {}` will need to be parenthesized in the statement case but not the
/// match-arm case.
///
/// ```ignore (illustrative)
/// (m! {}) - 1; // subexpression needs parens
///
/// match () {
/// _ => m! {} - 1, // no parens
/// }
/// ```
leftmost_subexpression_in_match_arm: bool,
/// This is the difference between:
///
/// ```ignore (illustrative)
/// if let _ = (Struct {}) {} // needs parens
///
/// match () {
/// () if let _ = Struct {} => {} // no parens
/// }
/// ```
parenthesize_exterior_struct_lit: bool,
}
/// The default amount of fixing is minimal fixing. Fixups should be turned on
/// in a targeted fashion where needed.
impl Default for FixupContext {
fn default() -> Self {
FixupContext {
stmt: false,
leftmost_subexpression_in_stmt: false,
match_arm: false,
leftmost_subexpression_in_match_arm: false,
parenthesize_exterior_struct_lit: false,
}
}
}
impl FixupContext {
/// Create the initial fixup for printing an expression in statement
/// position.
pub(crate) fn new_stmt() -> Self {
FixupContext { stmt: true, ..FixupContext::default() }
}
/// Create the initial fixup for printing an expression as the right-hand
/// side of a match arm.
pub(crate) fn new_match_arm() -> Self {
FixupContext { match_arm: true, ..FixupContext::default() }
}
/// Create the initial fixup for printing an expression as the "condition"
/// of an `if` or `while`. There are a few other positions which are
/// grammatically equivalent and also use this, such as the iterator
/// expression in `for` and the scrutinee in `match`.
pub(crate) fn new_cond() -> Self {
FixupContext { parenthesize_exterior_struct_lit: true, ..FixupContext::default() }
}
/// Transform this fixup into the one that should apply when printing the
/// leftmost subexpression of the current expression.
///
/// The leftmost subexpression is any subexpression that has the same first
/// token as the current expression, but has a different last token.
///
/// For example in `$a + $b` and `$a.method()`, the subexpression `$a` is a
/// leftmost subexpression.
///
/// Not every expression has a leftmost subexpression. For example neither
/// `-$a` nor `[$a]` have one.
pub(crate) fn leftmost_subexpression(self) -> Self {
FixupContext {
stmt: false,
leftmost_subexpression_in_stmt: self.stmt || self.leftmost_subexpression_in_stmt,
match_arm: false,
leftmost_subexpression_in_match_arm: self.match_arm
|| self.leftmost_subexpression_in_match_arm,
..self
}
}
/// Transform this fixup into the one that should apply when printing any
/// subexpression that is neither a leftmost subexpression nor surrounded in
/// delimiters.
///
/// This is for any subexpression that has a different first token than the
/// current expression, and is not surrounded by a paren/bracket/brace. For
/// example the `$b` in `$a + $b` and `-$b`, but not the one in `[$b]` or
/// `$a.f($b)`.
pub(crate) fn subsequent_subexpression(self) -> Self {
FixupContext {
stmt: false,
leftmost_subexpression_in_stmt: false,
match_arm: false,
leftmost_subexpression_in_match_arm: false,
..self
}
}
/// Determine whether parentheses are needed around the given expression to
/// head off an unintended statement boundary.
///
/// The documentation on `FixupContext::leftmost_subexpression_in_stmt` has
/// examples.
pub(crate) fn would_cause_statement_boundary(self, expr: &Expr) -> bool {
(self.leftmost_subexpression_in_stmt && !classify::expr_requires_semi_to_be_stmt(expr))
|| (self.leftmost_subexpression_in_match_arm && classify::expr_is_complete(expr))
}
/// Determine whether parentheses are needed around the given `let`
/// scrutinee.
///
/// In `if let _ = $e {}`, some examples of `$e` that would need parentheses
/// are:
///
/// - `Struct {}.f()`, because otherwise the `{` would be misinterpreted
/// as the opening of the if's then-block.
///
/// - `true && false`, because otherwise this would be misinterpreted as a
/// "let chain".
pub(crate) fn needs_par_as_let_scrutinee(self, expr: &Expr) -> bool {
self.parenthesize_exterior_struct_lit && parser::contains_exterior_struct_lit(expr)
|| parser::needs_par_as_let_scrutinee(expr.precedence().order())
}
}