rustc_metadata/rmeta/
encoder.rs

1use std::borrow::Borrow;
2use std::collections::hash_map::Entry;
3use std::fs::File;
4use std::io::{Read, Seek, Write};
5use std::path::{Path, PathBuf};
6use std::sync::Arc;
7
8use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
9use rustc_data_structures::memmap::{Mmap, MmapMut};
10use rustc_data_structures::sync::{join, par_for_each_in};
11use rustc_data_structures::temp_dir::MaybeTempDir;
12use rustc_data_structures::thousands::usize_with_underscores;
13use rustc_feature::Features;
14use rustc_hir as hir;
15use rustc_hir::attrs::{AttributeKind, EncodeCrossCrate};
16use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId, LocalDefIdSet};
17use rustc_hir::definitions::DefPathData;
18use rustc_hir::find_attr;
19use rustc_hir_pretty::id_to_string;
20use rustc_middle::dep_graph::WorkProductId;
21use rustc_middle::middle::dependency_format::Linkage;
22use rustc_middle::middle::exported_symbols::metadata_symbol_name;
23use rustc_middle::mir::interpret;
24use rustc_middle::query::Providers;
25use rustc_middle::traits::specialization_graph;
26use rustc_middle::ty::codec::TyEncoder;
27use rustc_middle::ty::fast_reject::{self, TreatParams};
28use rustc_middle::ty::{AssocItemContainer, SymbolName};
29use rustc_middle::{bug, span_bug};
30use rustc_serialize::{Decodable, Decoder, Encodable, Encoder, opaque};
31use rustc_session::config::{CrateType, OptLevel, TargetModifier};
32use rustc_span::hygiene::HygieneEncodeContext;
33use rustc_span::{
34    ByteSymbol, ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId,
35    Symbol, SyntaxContext, sym,
36};
37use tracing::{debug, instrument, trace};
38
39use crate::errors::{FailCreateFileEncoder, FailWriteFile};
40use crate::rmeta::*;
41
42pub(super) struct EncodeContext<'a, 'tcx> {
43    opaque: opaque::FileEncoder,
44    tcx: TyCtxt<'tcx>,
45    feat: &'tcx rustc_feature::Features,
46    tables: TableBuilders,
47
48    lazy_state: LazyState,
49    span_shorthands: FxHashMap<Span, usize>,
50    type_shorthands: FxHashMap<Ty<'tcx>, usize>,
51    predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
52
53    interpret_allocs: FxIndexSet<interpret::AllocId>,
54
55    // This is used to speed up Span encoding.
56    // The `usize` is an index into the `MonotonicVec`
57    // that stores the `SourceFile`
58    source_file_cache: (Arc<SourceFile>, usize),
59    // The indices (into the `SourceMap`'s `MonotonicVec`)
60    // of all of the `SourceFiles` that we need to serialize.
61    // When we serialize a `Span`, we insert the index of its
62    // `SourceFile` into the `FxIndexSet`.
63    // The order inside the `FxIndexSet` is used as on-disk
64    // order of `SourceFiles`, and encoded inside `Span`s.
65    required_source_files: Option<FxIndexSet<usize>>,
66    is_proc_macro: bool,
67    hygiene_ctxt: &'a HygieneEncodeContext,
68    // Used for both `Symbol`s and `ByteSymbol`s.
69    symbol_index_table: FxHashMap<u32, usize>,
70}
71
72/// If the current crate is a proc-macro, returns early with `LazyArray::default()`.
73/// This is useful for skipping the encoding of things that aren't needed
74/// for proc-macro crates.
75macro_rules! empty_proc_macro {
76    ($self:ident) => {
77        if $self.is_proc_macro {
78            return LazyArray::default();
79        }
80    };
81}
82
83macro_rules! encoder_methods {
84    ($($name:ident($ty:ty);)*) => {
85        $(fn $name(&mut self, value: $ty) {
86            self.opaque.$name(value)
87        })*
88    }
89}
90
91impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
92    encoder_methods! {
93        emit_usize(usize);
94        emit_u128(u128);
95        emit_u64(u64);
96        emit_u32(u32);
97        emit_u16(u16);
98        emit_u8(u8);
99
100        emit_isize(isize);
101        emit_i128(i128);
102        emit_i64(i64);
103        emit_i32(i32);
104        emit_i16(i16);
105
106        emit_raw_bytes(&[u8]);
107    }
108}
109
110impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyValue<T> {
111    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
112        e.emit_lazy_distance(self.position);
113    }
114}
115
116impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyArray<T> {
117    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
118        e.emit_usize(self.num_elems);
119        if self.num_elems > 0 {
120            e.emit_lazy_distance(self.position)
121        }
122    }
123}
124
125impl<'a, 'tcx, I, T> Encodable<EncodeContext<'a, 'tcx>> for LazyTable<I, T> {
126    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
127        e.emit_usize(self.width);
128        e.emit_usize(self.len);
129        e.emit_lazy_distance(self.position);
130    }
131}
132
133impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex {
134    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
135        s.emit_u32(self.as_u32());
136    }
137}
138
139impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> {
140    fn encode_crate_num(&mut self, crate_num: CrateNum) {
141        if crate_num != LOCAL_CRATE && self.is_proc_macro {
142            panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate");
143        }
144        self.emit_u32(crate_num.as_u32());
145    }
146
147    fn encode_def_index(&mut self, def_index: DefIndex) {
148        self.emit_u32(def_index.as_u32());
149    }
150
151    fn encode_def_id(&mut self, def_id: DefId) {
152        def_id.krate.encode(self);
153        def_id.index.encode(self);
154    }
155
156    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) {
157        rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self);
158    }
159
160    fn encode_expn_id(&mut self, expn_id: ExpnId) {
161        if expn_id.krate == LOCAL_CRATE {
162            // We will only write details for local expansions. Non-local expansions will fetch
163            // data from the corresponding crate's metadata.
164            // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external
165            // metadata from proc-macro crates.
166            self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id);
167        }
168        expn_id.krate.encode(self);
169        expn_id.local_id.encode(self);
170    }
171
172    fn encode_span(&mut self, span: Span) {
173        match self.span_shorthands.entry(span) {
174            Entry::Occupied(o) => {
175                // If an offset is smaller than the absolute position, we encode with the offset.
176                // This saves space since smaller numbers encode in less bits.
177                let last_location = *o.get();
178                // This cannot underflow. Metadata is written with increasing position(), so any
179                // previously saved offset must be smaller than the current position.
180                let offset = self.opaque.position() - last_location;
181                if offset < last_location {
182                    let needed = bytes_needed(offset);
183                    SpanTag::indirect(true, needed as u8).encode(self);
184                    self.opaque.write_with(|dest| {
185                        *dest = offset.to_le_bytes();
186                        needed
187                    });
188                } else {
189                    let needed = bytes_needed(last_location);
190                    SpanTag::indirect(false, needed as u8).encode(self);
191                    self.opaque.write_with(|dest| {
192                        *dest = last_location.to_le_bytes();
193                        needed
194                    });
195                }
196            }
197            Entry::Vacant(v) => {
198                let position = self.opaque.position();
199                v.insert(position);
200                // Data is encoded with a SpanTag prefix (see below).
201                span.data().encode(self);
202            }
203        }
204    }
205
206    fn encode_symbol(&mut self, sym: Symbol) {
207        self.encode_symbol_or_byte_symbol(sym.as_u32(), |this| this.emit_str(sym.as_str()));
208    }
209
210    fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol) {
211        self.encode_symbol_or_byte_symbol(byte_sym.as_u32(), |this| {
212            this.emit_byte_str(byte_sym.as_byte_str())
213        });
214    }
215}
216
217fn bytes_needed(n: usize) -> usize {
218    (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize
219}
220
221impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SpanData {
222    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
223        // Don't serialize any `SyntaxContext`s from a proc-macro crate,
224        // since we don't load proc-macro dependencies during serialization.
225        // This means that any hygiene information from macros used *within*
226        // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
227        // definition) will be lost.
228        //
229        // This can show up in two ways:
230        //
231        // 1. Any hygiene information associated with identifier of
232        // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
233        // Since proc-macros can only be invoked from a different crate,
234        // real code should never need to care about this.
235        //
236        // 2. Using `Span::def_site` or `Span::mixed_site` will not
237        // include any hygiene information associated with the definition
238        // site. This means that a proc-macro cannot emit a `$crate`
239        // identifier which resolves to one of its dependencies,
240        // which also should never come up in practice.
241        //
242        // Additionally, this affects `Span::parent`, and any other
243        // span inspection APIs that would otherwise allow traversing
244        // the `SyntaxContexts` associated with a span.
245        //
246        // None of these user-visible effects should result in any
247        // cross-crate inconsistencies (getting one behavior in the same
248        // crate, and a different behavior in another crate) due to the
249        // limited surface that proc-macros can expose.
250        //
251        // IMPORTANT: If this is ever changed, be sure to update
252        // `rustc_span::hygiene::raw_encode_expn_id` to handle
253        // encoding `ExpnData` for proc-macro crates.
254        let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt };
255
256        if self.is_dummy() {
257            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
258            tag.encode(s);
259            if tag.context().is_none() {
260                ctxt.encode(s);
261            }
262            return;
263        }
264
265        // The Span infrastructure should make sure that this invariant holds:
266        debug_assert!(self.lo <= self.hi);
267
268        if !s.source_file_cache.0.contains(self.lo) {
269            let source_map = s.tcx.sess.source_map();
270            let source_file_index = source_map.lookup_source_file_idx(self.lo);
271            s.source_file_cache =
272                (Arc::clone(&source_map.files()[source_file_index]), source_file_index);
273        }
274        let (ref source_file, source_file_index) = s.source_file_cache;
275        debug_assert!(source_file.contains(self.lo));
276
277        if !source_file.contains(self.hi) {
278            // Unfortunately, macro expansion still sometimes generates Spans
279            // that malformed in this way.
280            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
281            tag.encode(s);
282            if tag.context().is_none() {
283                ctxt.encode(s);
284            }
285            return;
286        }
287
288        // There are two possible cases here:
289        // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
290        // crate we are writing metadata for. When the metadata for *this* crate gets
291        // deserialized, the deserializer will need to know which crate it originally came
292        // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
293        // be deserialized after the rest of the span data, which tells the deserializer
294        // which crate contains the source map information.
295        // 2. This span comes from our own crate. No special handling is needed - we just
296        // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
297        // our own source map information.
298        //
299        // If we're a proc-macro crate, we always treat this as a local `Span`.
300        // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
301        // if we're a proc-macro crate.
302        // This allows us to avoid loading the dependencies of proc-macro crates: all of
303        // the information we need to decode `Span`s is stored in the proc-macro crate.
304        let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro {
305            // To simplify deserialization, we 'rebase' this span onto the crate it originally came
306            // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi'
307            // values are relative to the source map information for the 'foreign' crate whose
308            // CrateNum we write into the metadata. This allows `imported_source_files` to binary
309            // search through the 'foreign' crate's source map information, using the
310            // deserialized 'lo' and 'hi' values directly.
311            //
312            // All of this logic ensures that the final result of deserialization is a 'normal'
313            // Span that can be used without any additional trouble.
314            let metadata_index = {
315                // Introduce a new scope so that we drop the 'read()' temporary
316                match &*source_file.external_src.read() {
317                    ExternalSource::Foreign { metadata_index, .. } => *metadata_index,
318                    src => panic!("Unexpected external source {src:?}"),
319                }
320            };
321
322            (SpanKind::Foreign, metadata_index)
323        } else {
324            // Record the fact that we need to encode the data for this `SourceFile`
325            let source_files =
326                s.required_source_files.as_mut().expect("Already encoded SourceMap!");
327            let (metadata_index, _) = source_files.insert_full(source_file_index);
328            let metadata_index: u32 =
329                metadata_index.try_into().expect("cannot export more than U32_MAX files");
330
331            (SpanKind::Local, metadata_index)
332        };
333
334        // Encode the start position relative to the file start, so we profit more from the
335        // variable-length integer encoding.
336        let lo = self.lo - source_file.start_pos;
337
338        // Encode length which is usually less than span.hi and profits more
339        // from the variable-length integer encoding that we use.
340        let len = self.hi - self.lo;
341
342        let tag = SpanTag::new(kind, ctxt, len.0 as usize);
343        tag.encode(s);
344        if tag.context().is_none() {
345            ctxt.encode(s);
346        }
347        lo.encode(s);
348        if tag.length().is_none() {
349            len.encode(s);
350        }
351
352        // Encode the index of the `SourceFile` for the span, in order to make decoding faster.
353        metadata_index.encode(s);
354
355        if kind == SpanKind::Foreign {
356            // This needs to be two lines to avoid holding the `s.source_file_cache`
357            // while calling `cnum.encode(s)`
358            let cnum = s.source_file_cache.0.cnum;
359            cnum.encode(s);
360        }
361    }
362}
363
364impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for [u8] {
365    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
366        Encoder::emit_usize(e, self.len());
367        e.emit_raw_bytes(self);
368    }
369}
370
371impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> {
372    const CLEAR_CROSS_CRATE: bool = true;
373
374    fn position(&self) -> usize {
375        self.opaque.position()
376    }
377
378    fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
379        &mut self.type_shorthands
380    }
381
382    fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
383        &mut self.predicate_shorthands
384    }
385
386    fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) {
387        let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
388
389        index.encode(self);
390    }
391}
392
393// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would
394// normally need extra variables to avoid errors about multiple mutable borrows.
395macro_rules! record {
396    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
397        {
398            let value = $value;
399            let lazy = $self.lazy(value);
400            $self.$tables.$table.set_some($def_id.index, lazy);
401        }
402    }};
403}
404
405// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would
406// normally need extra variables to avoid errors about multiple mutable borrows.
407macro_rules! record_array {
408    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
409        {
410            let value = $value;
411            let lazy = $self.lazy_array(value);
412            $self.$tables.$table.set_some($def_id.index, lazy);
413        }
414    }};
415}
416
417macro_rules! record_defaulted_array {
418    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
419        {
420            let value = $value;
421            let lazy = $self.lazy_array(value);
422            $self.$tables.$table.set($def_id.index, lazy);
423        }
424    }};
425}
426
427impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
428    fn emit_lazy_distance(&mut self, position: NonZero<usize>) {
429        let pos = position.get();
430        let distance = match self.lazy_state {
431            LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
432            LazyState::NodeStart(start) => {
433                let start = start.get();
434                assert!(pos <= start);
435                start - pos
436            }
437            LazyState::Previous(last_pos) => {
438                assert!(
439                    last_pos <= position,
440                    "make sure that the calls to `lazy*` \
441                     are in the same order as the metadata fields",
442                );
443                position.get() - last_pos.get()
444            }
445        };
446        self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap());
447        self.emit_usize(distance);
448    }
449
450    fn lazy<T: ParameterizedOverTcx, B: Borrow<T::Value<'tcx>>>(&mut self, value: B) -> LazyValue<T>
451    where
452        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
453    {
454        let pos = NonZero::new(self.position()).unwrap();
455
456        assert_eq!(self.lazy_state, LazyState::NoNode);
457        self.lazy_state = LazyState::NodeStart(pos);
458        value.borrow().encode(self);
459        self.lazy_state = LazyState::NoNode;
460
461        assert!(pos.get() <= self.position());
462
463        LazyValue::from_position(pos)
464    }
465
466    fn lazy_array<T: ParameterizedOverTcx, I: IntoIterator<Item = B>, B: Borrow<T::Value<'tcx>>>(
467        &mut self,
468        values: I,
469    ) -> LazyArray<T>
470    where
471        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
472    {
473        let pos = NonZero::new(self.position()).unwrap();
474
475        assert_eq!(self.lazy_state, LazyState::NoNode);
476        self.lazy_state = LazyState::NodeStart(pos);
477        let len = values.into_iter().map(|value| value.borrow().encode(self)).count();
478        self.lazy_state = LazyState::NoNode;
479
480        assert!(pos.get() <= self.position());
481
482        LazyArray::from_position_and_num_elems(pos, len)
483    }
484
485    fn encode_symbol_or_byte_symbol(
486        &mut self,
487        index: u32,
488        emit_str_or_byte_str: impl Fn(&mut Self),
489    ) {
490        // if symbol/byte symbol is predefined, emit tag and symbol index
491        if Symbol::is_predefined(index) {
492            self.opaque.emit_u8(SYMBOL_PREDEFINED);
493            self.opaque.emit_u32(index);
494        } else {
495            // otherwise write it as string or as offset to it
496            match self.symbol_index_table.entry(index) {
497                Entry::Vacant(o) => {
498                    self.opaque.emit_u8(SYMBOL_STR);
499                    let pos = self.opaque.position();
500                    o.insert(pos);
501                    emit_str_or_byte_str(self);
502                }
503                Entry::Occupied(o) => {
504                    let x = *o.get();
505                    self.emit_u8(SYMBOL_OFFSET);
506                    self.emit_usize(x);
507                }
508            }
509        }
510    }
511
512    fn encode_def_path_table(&mut self) {
513        let table = self.tcx.def_path_table();
514        if self.is_proc_macro {
515            for def_index in std::iter::once(CRATE_DEF_INDEX)
516                .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index))
517            {
518                let def_key = self.lazy(table.def_key(def_index));
519                let def_path_hash = table.def_path_hash(def_index);
520                self.tables.def_keys.set_some(def_index, def_key);
521                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
522            }
523        } else {
524            for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
525                let def_key = self.lazy(def_key);
526                self.tables.def_keys.set_some(def_index, def_key);
527                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
528            }
529        }
530    }
531
532    fn encode_def_path_hash_map(&mut self) -> LazyValue<DefPathHashMapRef<'static>> {
533        self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map()))
534    }
535
536    fn encode_source_map(&mut self) -> LazyTable<u32, Option<LazyValue<rustc_span::SourceFile>>> {
537        let source_map = self.tcx.sess.source_map();
538        let all_source_files = source_map.files();
539
540        // By replacing the `Option` with `None`, we ensure that we can't
541        // accidentally serialize any more `Span`s after the source map encoding
542        // is done.
543        let required_source_files = self.required_source_files.take().unwrap();
544
545        let working_directory = &self.tcx.sess.opts.working_dir;
546
547        let mut adapted = TableBuilder::default();
548
549        let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE);
550
551        // Only serialize `SourceFile`s that were used during the encoding of a `Span`.
552        //
553        // The order in which we encode source files is important here: the on-disk format for
554        // `Span` contains the index of the corresponding `SourceFile`.
555        for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() {
556            let source_file = &all_source_files[source_file_index];
557            // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate.
558            assert!(!source_file.is_imported() || self.is_proc_macro);
559
560            // At export time we expand all source file paths to absolute paths because
561            // downstream compilation sessions can have a different compiler working
562            // directory, so relative paths from this or any other upstream crate
563            // won't be valid anymore.
564            //
565            // At this point we also erase the actual on-disk path and only keep
566            // the remapped version -- as is necessary for reproducible builds.
567            let mut adapted_source_file = (**source_file).clone();
568
569            match source_file.name {
570                FileName::Real(ref original_file_name) => {
571                    let adapted_file_name = source_map
572                        .path_mapping()
573                        .to_embeddable_absolute_path(original_file_name.clone(), working_directory);
574
575                    adapted_source_file.name = FileName::Real(adapted_file_name);
576                }
577                _ => {
578                    // expanded code, not from a file
579                }
580            };
581
582            // We're serializing this `SourceFile` into our crate metadata,
583            // so mark it as coming from this crate.
584            // This also ensures that we don't try to deserialize the
585            // `CrateNum` for a proc-macro dependency - since proc macro
586            // dependencies aren't loaded when we deserialize a proc-macro,
587            // trying to remap the `CrateNum` would fail.
588            if self.is_proc_macro {
589                adapted_source_file.cnum = LOCAL_CRATE;
590            }
591
592            // Update the `StableSourceFileId` to make sure it incorporates the
593            // id of the current crate. This way it will be unique within the
594            // crate graph during downstream compilation sessions.
595            adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export(
596                &adapted_source_file.name,
597                local_crate_stable_id,
598            );
599
600            let on_disk_index: u32 =
601                on_disk_index.try_into().expect("cannot export more than U32_MAX files");
602            adapted.set_some(on_disk_index, self.lazy(adapted_source_file));
603        }
604
605        adapted.encode(&mut self.opaque)
606    }
607
608    fn encode_crate_root(&mut self) -> LazyValue<CrateRoot> {
609        let tcx = self.tcx;
610        let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32);
611
612        macro_rules! stat {
613            ($label:literal, $f:expr) => {{
614                let orig_pos = self.position();
615                let res = $f();
616                stats.push(($label, self.position() - orig_pos));
617                res
618            }};
619        }
620
621        // We have already encoded some things. Get their combined size from the current position.
622        stats.push(("preamble", self.position()));
623
624        let (crate_deps, dylib_dependency_formats) =
625            stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats()));
626
627        let lib_features = stat!("lib-features", || self.encode_lib_features());
628
629        let stability_implications =
630            stat!("stability-implications", || self.encode_stability_implications());
631
632        let (lang_items, lang_items_missing) = stat!("lang-items", || {
633            (self.encode_lang_items(), self.encode_lang_items_missing())
634        });
635
636        let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items());
637
638        let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items());
639
640        let native_libraries = stat!("native-libs", || self.encode_native_libraries());
641
642        let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules());
643
644        _ = stat!("def-path-table", || self.encode_def_path_table());
645
646        // Encode the def IDs of traits, for rustdoc and diagnostics.
647        let traits = stat!("traits", || self.encode_traits());
648
649        // Encode the def IDs of impls, for coherence checking.
650        let impls = stat!("impls", || self.encode_impls());
651
652        let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls());
653
654        _ = stat!("mir", || self.encode_mir());
655
656        _ = stat!("def-ids", || self.encode_def_ids());
657
658        let interpret_alloc_index = stat!("interpret-alloc-index", || {
659            let mut interpret_alloc_index = Vec::new();
660            let mut n = 0;
661            trace!("beginning to encode alloc ids");
662            loop {
663                let new_n = self.interpret_allocs.len();
664                // if we have found new ids, serialize those, too
665                if n == new_n {
666                    // otherwise, abort
667                    break;
668                }
669                trace!("encoding {} further alloc ids", new_n - n);
670                for idx in n..new_n {
671                    let id = self.interpret_allocs[idx];
672                    let pos = self.position() as u64;
673                    interpret_alloc_index.push(pos);
674                    interpret::specialized_encode_alloc_id(self, tcx, id);
675                }
676                n = new_n;
677            }
678            self.lazy_array(interpret_alloc_index)
679        });
680
681        // Encode the proc macro data. This affects `tables`, so we need to do this before we
682        // encode the tables. This overwrites def_keys, so it must happen after
683        // encode_def_path_table.
684        let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros());
685
686        let tables = stat!("tables", || self.tables.encode(&mut self.opaque));
687
688        let debugger_visualizers =
689            stat!("debugger-visualizers", || self.encode_debugger_visualizers());
690
691        let exportable_items = stat!("exportable-items", || self.encode_exportable_items());
692
693        let stable_order_of_exportable_impls =
694            stat!("exportable-items", || self.encode_stable_order_of_exportable_impls());
695
696        // Encode exported symbols info. This is prefetched in `encode_metadata`.
697        let (exported_non_generic_symbols, exported_generic_symbols) =
698            stat!("exported-symbols", || {
699                (
700                    self.encode_exported_symbols(tcx.exported_non_generic_symbols(LOCAL_CRATE)),
701                    self.encode_exported_symbols(tcx.exported_generic_symbols(LOCAL_CRATE)),
702                )
703            });
704
705        // Encode the hygiene data.
706        // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The
707        // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from
708        // the incremental cache. If this causes us to deserialize a `Span`, then we may load
709        // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode
710        // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used.
711        let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene());
712
713        let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map());
714
715        // Encode source_map. This needs to be done last, because encoding `Span`s tells us which
716        // `SourceFiles` we actually need to encode.
717        let source_map = stat!("source-map", || self.encode_source_map());
718        let target_modifiers = stat!("target-modifiers", || self.encode_target_modifiers());
719
720        let root = stat!("final", || {
721            let attrs = tcx.hir_krate_attrs();
722            self.lazy(CrateRoot {
723                header: CrateHeader {
724                    name: tcx.crate_name(LOCAL_CRATE),
725                    triple: tcx.sess.opts.target_triple.clone(),
726                    hash: tcx.crate_hash(LOCAL_CRATE),
727                    is_proc_macro_crate: proc_macro_data.is_some(),
728                    is_stub: false,
729                },
730                extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
731                stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(),
732                required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE),
733                panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop,
734                edition: tcx.sess.edition(),
735                has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
736                has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE),
737                has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
738                has_default_lib_allocator: ast::attr::contains_name(
739                    attrs,
740                    sym::default_lib_allocator,
741                ),
742                proc_macro_data,
743                debugger_visualizers,
744                compiler_builtins: ast::attr::contains_name(attrs, sym::compiler_builtins),
745                needs_allocator: ast::attr::contains_name(attrs, sym::needs_allocator),
746                needs_panic_runtime: ast::attr::contains_name(attrs, sym::needs_panic_runtime),
747                no_builtins: ast::attr::contains_name(attrs, sym::no_builtins),
748                panic_runtime: ast::attr::contains_name(attrs, sym::panic_runtime),
749                profiler_runtime: ast::attr::contains_name(attrs, sym::profiler_runtime),
750                symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(),
751
752                crate_deps,
753                dylib_dependency_formats,
754                lib_features,
755                stability_implications,
756                lang_items,
757                diagnostic_items,
758                lang_items_missing,
759                stripped_cfg_items,
760                native_libraries,
761                foreign_modules,
762                source_map,
763                target_modifiers,
764                traits,
765                impls,
766                incoherent_impls,
767                exportable_items,
768                stable_order_of_exportable_impls,
769                exported_non_generic_symbols,
770                exported_generic_symbols,
771                interpret_alloc_index,
772                tables,
773                syntax_contexts,
774                expn_data,
775                expn_hashes,
776                def_path_hash_map,
777                specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE),
778            })
779        });
780
781        let total_bytes = self.position();
782
783        let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum();
784        assert_eq!(total_bytes, computed_total_bytes);
785
786        if tcx.sess.opts.unstable_opts.meta_stats {
787            use std::fmt::Write;
788
789            self.opaque.flush();
790
791            // Rewind and re-read all the metadata to count the zero bytes we wrote.
792            let pos_before_rewind = self.opaque.file().stream_position().unwrap();
793            let mut zero_bytes = 0;
794            self.opaque.file().rewind().unwrap();
795            let file = std::io::BufReader::new(self.opaque.file());
796            for e in file.bytes() {
797                if e.unwrap() == 0 {
798                    zero_bytes += 1;
799                }
800            }
801            assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind);
802
803            stats.sort_by_key(|&(_, usize)| usize);
804            stats.reverse(); // bigger items first
805
806            let prefix = "meta-stats";
807            let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64;
808
809            let section_w = 23;
810            let size_w = 10;
811            let banner_w = 64;
812
813            // We write all the text into a string and print it with a single
814            // `eprint!`. This is an attempt to minimize interleaved text if multiple
815            // rustc processes are printing macro-stats at the same time (e.g. with
816            // `RUSTFLAGS='-Zmeta-stats' cargo build`). It still doesn't guarantee
817            // non-interleaving, though.
818            let mut s = String::new();
819            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
820            _ = writeln!(s, "{prefix} METADATA STATS: {}", tcx.crate_name(LOCAL_CRATE));
821            _ = writeln!(s, "{prefix} {:<section_w$}{:>size_w$}", "Section", "Size");
822            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
823            for (label, size) in stats {
824                _ = writeln!(
825                    s,
826                    "{prefix} {:<section_w$}{:>size_w$} ({:4.1}%)",
827                    label,
828                    usize_with_underscores(size),
829                    perc(size)
830                );
831            }
832            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
833            _ = writeln!(
834                s,
835                "{prefix} {:<section_w$}{:>size_w$} (of which {:.1}% are zero bytes)",
836                "Total",
837                usize_with_underscores(total_bytes),
838                perc(zero_bytes)
839            );
840            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
841            eprint!("{s}");
842        }
843
844        root
845    }
846}
847
848struct AnalyzeAttrState<'a> {
849    is_exported: bool,
850    is_doc_hidden: bool,
851    features: &'a Features,
852}
853
854/// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and
855/// useful in downstream crates. Local-only attributes are an obvious example, but some
856/// rustdoc-specific attributes can equally be of use while documenting the current crate only.
857///
858/// Removing these superfluous attributes speeds up compilation by making the metadata smaller.
859///
860/// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public
861/// visibility: this is a piece of data that can be computed once per defid, and not once per
862/// attribute. Some attributes would only be usable downstream if they are public.
863#[inline]
864fn analyze_attr(attr: &hir::Attribute, state: &mut AnalyzeAttrState<'_>) -> bool {
865    let mut should_encode = false;
866    if let hir::Attribute::Parsed(p) = attr
867        && p.encode_cross_crate() == EncodeCrossCrate::No
868    {
869        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
870    } else if let Some(name) = attr.name()
871        && !rustc_feature::encode_cross_crate(name)
872    {
873        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
874    } else if attr.doc_str().is_some() {
875        // We keep all doc comments reachable to rustdoc because they might be "imported" into
876        // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into
877        // their own.
878        if state.is_exported {
879            should_encode = true;
880        }
881    } else if attr.has_name(sym::doc) {
882        // If this is a `doc` attribute that doesn't have anything except maybe `inline` (as in
883        // `#[doc(inline)]`), then we can remove it. It won't be inlinable in downstream crates.
884        if let Some(item_list) = attr.meta_item_list() {
885            for item in item_list {
886                if !item.has_name(sym::inline) {
887                    should_encode = true;
888                    if item.has_name(sym::hidden) {
889                        state.is_doc_hidden = true;
890                        break;
891                    }
892                }
893            }
894        }
895    } else if let &[sym::diagnostic, seg] = &*attr.path() {
896        should_encode = rustc_feature::is_stable_diagnostic_attribute(seg, state.features);
897    } else {
898        should_encode = true;
899    }
900    should_encode
901}
902
903fn should_encode_span(def_kind: DefKind) -> bool {
904    match def_kind {
905        DefKind::Mod
906        | DefKind::Struct
907        | DefKind::Union
908        | DefKind::Enum
909        | DefKind::Variant
910        | DefKind::Trait
911        | DefKind::TyAlias
912        | DefKind::ForeignTy
913        | DefKind::TraitAlias
914        | DefKind::AssocTy
915        | DefKind::TyParam
916        | DefKind::ConstParam
917        | DefKind::LifetimeParam
918        | DefKind::Fn
919        | DefKind::Const
920        | DefKind::Static { .. }
921        | DefKind::Ctor(..)
922        | DefKind::AssocFn
923        | DefKind::AssocConst
924        | DefKind::Macro(_)
925        | DefKind::ExternCrate
926        | DefKind::Use
927        | DefKind::AnonConst
928        | DefKind::InlineConst
929        | DefKind::OpaqueTy
930        | DefKind::Field
931        | DefKind::Impl { .. }
932        | DefKind::Closure
933        | DefKind::SyntheticCoroutineBody => true,
934        DefKind::ForeignMod | DefKind::GlobalAsm => false,
935    }
936}
937
938fn should_encode_attrs(def_kind: DefKind) -> bool {
939    match def_kind {
940        DefKind::Mod
941        | DefKind::Struct
942        | DefKind::Union
943        | DefKind::Enum
944        | DefKind::Variant
945        | DefKind::Trait
946        | DefKind::TyAlias
947        | DefKind::ForeignTy
948        | DefKind::TraitAlias
949        | DefKind::AssocTy
950        | DefKind::Fn
951        | DefKind::Const
952        | DefKind::Static { nested: false, .. }
953        | DefKind::AssocFn
954        | DefKind::AssocConst
955        | DefKind::Macro(_)
956        | DefKind::Field
957        | DefKind::Impl { .. } => true,
958        // Tools may want to be able to detect their tool lints on
959        // closures from upstream crates, too. This is used by
960        // https://github.com/model-checking/kani and is not a performance
961        // or maintenance issue for us.
962        DefKind::Closure => true,
963        DefKind::SyntheticCoroutineBody => false,
964        DefKind::TyParam
965        | DefKind::ConstParam
966        | DefKind::Ctor(..)
967        | DefKind::ExternCrate
968        | DefKind::Use
969        | DefKind::ForeignMod
970        | DefKind::AnonConst
971        | DefKind::InlineConst
972        | DefKind::OpaqueTy
973        | DefKind::LifetimeParam
974        | DefKind::Static { nested: true, .. }
975        | DefKind::GlobalAsm => false,
976    }
977}
978
979fn should_encode_expn_that_defined(def_kind: DefKind) -> bool {
980    match def_kind {
981        DefKind::Mod
982        | DefKind::Struct
983        | DefKind::Union
984        | DefKind::Enum
985        | DefKind::Variant
986        | DefKind::Trait
987        | DefKind::Impl { .. } => true,
988        DefKind::TyAlias
989        | DefKind::ForeignTy
990        | DefKind::TraitAlias
991        | DefKind::AssocTy
992        | DefKind::TyParam
993        | DefKind::Fn
994        | DefKind::Const
995        | DefKind::ConstParam
996        | DefKind::Static { .. }
997        | DefKind::Ctor(..)
998        | DefKind::AssocFn
999        | DefKind::AssocConst
1000        | DefKind::Macro(_)
1001        | DefKind::ExternCrate
1002        | DefKind::Use
1003        | DefKind::ForeignMod
1004        | DefKind::AnonConst
1005        | DefKind::InlineConst
1006        | DefKind::OpaqueTy
1007        | DefKind::Field
1008        | DefKind::LifetimeParam
1009        | DefKind::GlobalAsm
1010        | DefKind::Closure
1011        | DefKind::SyntheticCoroutineBody => false,
1012    }
1013}
1014
1015fn should_encode_visibility(def_kind: DefKind) -> bool {
1016    match def_kind {
1017        DefKind::Mod
1018        | DefKind::Struct
1019        | DefKind::Union
1020        | DefKind::Enum
1021        | DefKind::Variant
1022        | DefKind::Trait
1023        | DefKind::TyAlias
1024        | DefKind::ForeignTy
1025        | DefKind::TraitAlias
1026        | DefKind::AssocTy
1027        | DefKind::Fn
1028        | DefKind::Const
1029        | DefKind::Static { nested: false, .. }
1030        | DefKind::Ctor(..)
1031        | DefKind::AssocFn
1032        | DefKind::AssocConst
1033        | DefKind::Macro(..)
1034        | DefKind::Field => true,
1035        DefKind::Use
1036        | DefKind::ForeignMod
1037        | DefKind::TyParam
1038        | DefKind::ConstParam
1039        | DefKind::LifetimeParam
1040        | DefKind::AnonConst
1041        | DefKind::InlineConst
1042        | DefKind::Static { nested: true, .. }
1043        | DefKind::OpaqueTy
1044        | DefKind::GlobalAsm
1045        | DefKind::Impl { .. }
1046        | DefKind::Closure
1047        | DefKind::ExternCrate
1048        | DefKind::SyntheticCoroutineBody => false,
1049    }
1050}
1051
1052fn should_encode_stability(def_kind: DefKind) -> bool {
1053    match def_kind {
1054        DefKind::Mod
1055        | DefKind::Ctor(..)
1056        | DefKind::Variant
1057        | DefKind::Field
1058        | DefKind::Struct
1059        | DefKind::AssocTy
1060        | DefKind::AssocFn
1061        | DefKind::AssocConst
1062        | DefKind::TyParam
1063        | DefKind::ConstParam
1064        | DefKind::Static { .. }
1065        | DefKind::Const
1066        | DefKind::Fn
1067        | DefKind::ForeignMod
1068        | DefKind::TyAlias
1069        | DefKind::OpaqueTy
1070        | DefKind::Enum
1071        | DefKind::Union
1072        | DefKind::Impl { .. }
1073        | DefKind::Trait
1074        | DefKind::TraitAlias
1075        | DefKind::Macro(..)
1076        | DefKind::ForeignTy => true,
1077        DefKind::Use
1078        | DefKind::LifetimeParam
1079        | DefKind::AnonConst
1080        | DefKind::InlineConst
1081        | DefKind::GlobalAsm
1082        | DefKind::Closure
1083        | DefKind::ExternCrate
1084        | DefKind::SyntheticCoroutineBody => false,
1085    }
1086}
1087
1088/// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM.
1089///
1090/// Computing, optimizing and encoding the MIR is a relatively expensive operation.
1091/// We want to avoid this work when not required. Therefore:
1092/// - we only compute `mir_for_ctfe` on items with const-eval semantics;
1093/// - we skip `optimized_mir` for check runs.
1094/// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that
1095///   is either generic or has inline hint, and is reachable from the other crates (contained
1096///   in reachable set).
1097///
1098/// Note: Reachable set describes definitions that might be generated or referenced from other
1099/// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand,
1100/// the reachable set doesn't have much to say about which definitions might be evaluated at compile
1101/// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is
1102/// unreachable and yet it can be evaluated in other crates:
1103///
1104/// ```
1105/// const fn f() -> usize { 0 }
1106/// pub struct S { pub a: [usize; f()] }
1107/// ```
1108fn should_encode_mir(
1109    tcx: TyCtxt<'_>,
1110    reachable_set: &LocalDefIdSet,
1111    def_id: LocalDefId,
1112) -> (bool, bool) {
1113    match tcx.def_kind(def_id) {
1114        // Constructors
1115        DefKind::Ctor(_, _) => {
1116            let mir_opt_base = tcx.sess.opts.output_types.should_codegen()
1117                || tcx.sess.opts.unstable_opts.always_encode_mir;
1118            (true, mir_opt_base)
1119        }
1120        // Constants
1121        DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => {
1122            (true, false)
1123        }
1124        // Coroutines require optimized MIR to compute layout.
1125        DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true),
1126        DefKind::SyntheticCoroutineBody => (false, true),
1127        // Full-fledged functions + closures
1128        DefKind::AssocFn | DefKind::Fn | DefKind::Closure => {
1129            let generics = tcx.generics_of(def_id);
1130            let opt = tcx.sess.opts.unstable_opts.always_encode_mir
1131                || (tcx.sess.opts.output_types.should_codegen()
1132                    && reachable_set.contains(&def_id)
1133                    && (generics.requires_monomorphization(tcx)
1134                        || tcx.cross_crate_inlinable(def_id)));
1135            // The function has a `const` modifier or is in a `const trait`.
1136            let is_const_fn = tcx.is_const_fn(def_id.to_def_id())
1137                || tcx.is_const_default_method(def_id.to_def_id());
1138            (is_const_fn, opt)
1139        }
1140        // The others don't have MIR.
1141        _ => (false, false),
1142    }
1143}
1144
1145fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1146    match def_kind {
1147        DefKind::Struct
1148        | DefKind::Union
1149        | DefKind::Enum
1150        | DefKind::OpaqueTy
1151        | DefKind::Fn
1152        | DefKind::Ctor(..)
1153        | DefKind::AssocFn => true,
1154        DefKind::AssocTy => {
1155            // Only encode variances for RPITITs (for traits)
1156            matches!(tcx.opt_rpitit_info(def_id), Some(ty::ImplTraitInTraitData::Trait { .. }))
1157        }
1158        DefKind::Mod
1159        | DefKind::Variant
1160        | DefKind::Field
1161        | DefKind::AssocConst
1162        | DefKind::TyParam
1163        | DefKind::ConstParam
1164        | DefKind::Static { .. }
1165        | DefKind::Const
1166        | DefKind::ForeignMod
1167        | DefKind::Impl { .. }
1168        | DefKind::Trait
1169        | DefKind::TraitAlias
1170        | DefKind::Macro(..)
1171        | DefKind::ForeignTy
1172        | DefKind::Use
1173        | DefKind::LifetimeParam
1174        | DefKind::AnonConst
1175        | DefKind::InlineConst
1176        | DefKind::GlobalAsm
1177        | DefKind::Closure
1178        | DefKind::ExternCrate
1179        | DefKind::SyntheticCoroutineBody => false,
1180        DefKind::TyAlias => tcx.type_alias_is_lazy(def_id),
1181    }
1182}
1183
1184fn should_encode_generics(def_kind: DefKind) -> bool {
1185    match def_kind {
1186        DefKind::Struct
1187        | DefKind::Union
1188        | DefKind::Enum
1189        | DefKind::Variant
1190        | DefKind::Trait
1191        | DefKind::TyAlias
1192        | DefKind::ForeignTy
1193        | DefKind::TraitAlias
1194        | DefKind::AssocTy
1195        | DefKind::Fn
1196        | DefKind::Const
1197        | DefKind::Static { .. }
1198        | DefKind::Ctor(..)
1199        | DefKind::AssocFn
1200        | DefKind::AssocConst
1201        | DefKind::AnonConst
1202        | DefKind::InlineConst
1203        | DefKind::OpaqueTy
1204        | DefKind::Impl { .. }
1205        | DefKind::Field
1206        | DefKind::TyParam
1207        | DefKind::Closure
1208        | DefKind::SyntheticCoroutineBody => true,
1209        DefKind::Mod
1210        | DefKind::ForeignMod
1211        | DefKind::ConstParam
1212        | DefKind::Macro(..)
1213        | DefKind::Use
1214        | DefKind::LifetimeParam
1215        | DefKind::GlobalAsm
1216        | DefKind::ExternCrate => false,
1217    }
1218}
1219
1220fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool {
1221    match def_kind {
1222        DefKind::Struct
1223        | DefKind::Union
1224        | DefKind::Enum
1225        | DefKind::Variant
1226        | DefKind::Ctor(..)
1227        | DefKind::Field
1228        | DefKind::Fn
1229        | DefKind::Const
1230        | DefKind::Static { nested: false, .. }
1231        | DefKind::TyAlias
1232        | DefKind::ForeignTy
1233        | DefKind::Impl { .. }
1234        | DefKind::AssocFn
1235        | DefKind::AssocConst
1236        | DefKind::Closure
1237        | DefKind::ConstParam
1238        | DefKind::AnonConst
1239        | DefKind::InlineConst
1240        | DefKind::SyntheticCoroutineBody => true,
1241
1242        DefKind::OpaqueTy => {
1243            let origin = tcx.local_opaque_ty_origin(def_id);
1244            if let hir::OpaqueTyOrigin::FnReturn { parent, .. }
1245            | hir::OpaqueTyOrigin::AsyncFn { parent, .. } = origin
1246                && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(parent)
1247                && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
1248            {
1249                false
1250            } else {
1251                true
1252            }
1253        }
1254
1255        DefKind::AssocTy => {
1256            let assoc_item = tcx.associated_item(def_id);
1257            match assoc_item.container {
1258                ty::AssocItemContainer::Impl => true,
1259                ty::AssocItemContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1260            }
1261        }
1262        DefKind::TyParam => {
1263            let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() };
1264            let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() };
1265            default.is_some()
1266        }
1267
1268        DefKind::Trait
1269        | DefKind::TraitAlias
1270        | DefKind::Mod
1271        | DefKind::ForeignMod
1272        | DefKind::Macro(..)
1273        | DefKind::Static { nested: true, .. }
1274        | DefKind::Use
1275        | DefKind::LifetimeParam
1276        | DefKind::GlobalAsm
1277        | DefKind::ExternCrate => false,
1278    }
1279}
1280
1281fn should_encode_fn_sig(def_kind: DefKind) -> bool {
1282    match def_kind {
1283        DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true,
1284
1285        DefKind::Struct
1286        | DefKind::Union
1287        | DefKind::Enum
1288        | DefKind::Variant
1289        | DefKind::Field
1290        | DefKind::Const
1291        | DefKind::Static { .. }
1292        | DefKind::Ctor(..)
1293        | DefKind::TyAlias
1294        | DefKind::OpaqueTy
1295        | DefKind::ForeignTy
1296        | DefKind::Impl { .. }
1297        | DefKind::AssocConst
1298        | DefKind::Closure
1299        | DefKind::ConstParam
1300        | DefKind::AnonConst
1301        | DefKind::InlineConst
1302        | DefKind::AssocTy
1303        | DefKind::TyParam
1304        | DefKind::Trait
1305        | DefKind::TraitAlias
1306        | DefKind::Mod
1307        | DefKind::ForeignMod
1308        | DefKind::Macro(..)
1309        | DefKind::Use
1310        | DefKind::LifetimeParam
1311        | DefKind::GlobalAsm
1312        | DefKind::ExternCrate
1313        | DefKind::SyntheticCoroutineBody => false,
1314    }
1315}
1316
1317fn should_encode_constness(def_kind: DefKind) -> bool {
1318    match def_kind {
1319        DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Ctor(_, CtorKind::Fn) => true,
1320
1321        DefKind::Struct
1322        | DefKind::Union
1323        | DefKind::Enum
1324        | DefKind::Field
1325        | DefKind::Const
1326        | DefKind::AssocConst
1327        | DefKind::AnonConst
1328        | DefKind::Static { .. }
1329        | DefKind::TyAlias
1330        | DefKind::OpaqueTy
1331        | DefKind::Impl { .. }
1332        | DefKind::ForeignTy
1333        | DefKind::ConstParam
1334        | DefKind::InlineConst
1335        | DefKind::AssocTy
1336        | DefKind::TyParam
1337        | DefKind::Trait
1338        | DefKind::TraitAlias
1339        | DefKind::Mod
1340        | DefKind::ForeignMod
1341        | DefKind::Macro(..)
1342        | DefKind::Use
1343        | DefKind::LifetimeParam
1344        | DefKind::GlobalAsm
1345        | DefKind::ExternCrate
1346        | DefKind::Ctor(_, CtorKind::Const)
1347        | DefKind::Variant
1348        | DefKind::SyntheticCoroutineBody => false,
1349    }
1350}
1351
1352fn should_encode_const(def_kind: DefKind) -> bool {
1353    match def_kind {
1354        DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true,
1355
1356        DefKind::Struct
1357        | DefKind::Union
1358        | DefKind::Enum
1359        | DefKind::Variant
1360        | DefKind::Ctor(..)
1361        | DefKind::Field
1362        | DefKind::Fn
1363        | DefKind::Static { .. }
1364        | DefKind::TyAlias
1365        | DefKind::OpaqueTy
1366        | DefKind::ForeignTy
1367        | DefKind::Impl { .. }
1368        | DefKind::AssocFn
1369        | DefKind::Closure
1370        | DefKind::ConstParam
1371        | DefKind::AssocTy
1372        | DefKind::TyParam
1373        | DefKind::Trait
1374        | DefKind::TraitAlias
1375        | DefKind::Mod
1376        | DefKind::ForeignMod
1377        | DefKind::Macro(..)
1378        | DefKind::Use
1379        | DefKind::LifetimeParam
1380        | DefKind::GlobalAsm
1381        | DefKind::ExternCrate
1382        | DefKind::SyntheticCoroutineBody => false,
1383    }
1384}
1385
1386impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
1387    fn encode_attrs(&mut self, def_id: LocalDefId) {
1388        let tcx = self.tcx;
1389        let mut state = AnalyzeAttrState {
1390            is_exported: tcx.effective_visibilities(()).is_exported(def_id),
1391            is_doc_hidden: false,
1392            features: &tcx.features(),
1393        };
1394        let attr_iter = tcx
1395            .hir_attrs(tcx.local_def_id_to_hir_id(def_id))
1396            .iter()
1397            .filter(|attr| analyze_attr(*attr, &mut state));
1398
1399        record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter);
1400
1401        let mut attr_flags = AttrFlags::empty();
1402        if state.is_doc_hidden {
1403            attr_flags |= AttrFlags::IS_DOC_HIDDEN;
1404        }
1405        self.tables.attr_flags.set(def_id.local_def_index, attr_flags);
1406    }
1407
1408    fn encode_def_ids(&mut self) {
1409        self.encode_info_for_mod(CRATE_DEF_ID);
1410
1411        // Proc-macro crates only export proc-macro items, which are looked
1412        // up using `proc_macro_data`
1413        if self.is_proc_macro {
1414            return;
1415        }
1416
1417        let tcx = self.tcx;
1418
1419        for local_id in tcx.iter_local_def_id() {
1420            let def_id = local_id.to_def_id();
1421            let def_kind = tcx.def_kind(local_id);
1422            self.tables.def_kind.set_some(def_id.index, def_kind);
1423
1424            // The `DefCollector` will sometimes create unnecessary `DefId`s
1425            // for trivial const arguments which are directly lowered to
1426            // `ConstArgKind::Path`. We never actually access this `DefId`
1427            // anywhere so we don't need to encode it for other crates.
1428            if def_kind == DefKind::AnonConst
1429                && match tcx.hir_node_by_def_id(local_id) {
1430                    hir::Node::ConstArg(hir::ConstArg { kind, .. }) => match kind {
1431                        // Skip encoding defs for these as they should not have had a `DefId` created
1432                        hir::ConstArgKind::Path(..) | hir::ConstArgKind::Infer(..) => true,
1433                        hir::ConstArgKind::Anon(..) => false,
1434                    },
1435                    _ => false,
1436                }
1437            {
1438                continue;
1439            }
1440
1441            if def_kind == DefKind::Field
1442                && let hir::Node::Field(field) = tcx.hir_node_by_def_id(local_id)
1443                && let Some(anon) = field.default
1444            {
1445                record!(self.tables.default_fields[def_id] <- anon.def_id.to_def_id());
1446            }
1447
1448            if should_encode_span(def_kind) {
1449                let def_span = tcx.def_span(local_id);
1450                record!(self.tables.def_span[def_id] <- def_span);
1451            }
1452            if should_encode_attrs(def_kind) {
1453                self.encode_attrs(local_id);
1454            }
1455            if should_encode_expn_that_defined(def_kind) {
1456                record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id));
1457            }
1458            if should_encode_span(def_kind)
1459                && let Some(ident_span) = tcx.def_ident_span(def_id)
1460            {
1461                record!(self.tables.def_ident_span[def_id] <- ident_span);
1462            }
1463            if def_kind.has_codegen_attrs() {
1464                record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id));
1465            }
1466            if should_encode_visibility(def_kind) {
1467                let vis =
1468                    self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index);
1469                record!(self.tables.visibility[def_id] <- vis);
1470            }
1471            if should_encode_stability(def_kind) {
1472                self.encode_stability(def_id);
1473                self.encode_const_stability(def_id);
1474                self.encode_default_body_stability(def_id);
1475                self.encode_deprecation(def_id);
1476            }
1477            if should_encode_variances(tcx, def_id, def_kind) {
1478                let v = self.tcx.variances_of(def_id);
1479                record_array!(self.tables.variances_of[def_id] <- v);
1480            }
1481            if should_encode_fn_sig(def_kind) {
1482                record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1483            }
1484            if should_encode_generics(def_kind) {
1485                let g = tcx.generics_of(def_id);
1486                record!(self.tables.generics_of[def_id] <- g);
1487                record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id));
1488                let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
1489                record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives);
1490
1491                for param in &g.own_params {
1492                    if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind {
1493                        let default = self.tcx.const_param_default(param.def_id);
1494                        record!(self.tables.const_param_default[param.def_id] <- default);
1495                    }
1496                }
1497            }
1498            if tcx.is_conditionally_const(def_id) {
1499                record!(self.tables.const_conditions[def_id] <- self.tcx.const_conditions(def_id));
1500            }
1501            if should_encode_type(tcx, local_id, def_kind) {
1502                record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id));
1503            }
1504            if should_encode_constness(def_kind) {
1505                self.tables.constness.set_some(def_id.index, self.tcx.constness(def_id));
1506            }
1507            if let DefKind::Fn | DefKind::AssocFn = def_kind {
1508                self.tables.asyncness.set_some(def_id.index, tcx.asyncness(def_id));
1509                record_array!(self.tables.fn_arg_idents[def_id] <- tcx.fn_arg_idents(def_id));
1510            }
1511            if let Some(name) = tcx.intrinsic(def_id) {
1512                record!(self.tables.intrinsic[def_id] <- name);
1513            }
1514            if let DefKind::TyParam = def_kind {
1515                let default = self.tcx.object_lifetime_default(def_id);
1516                record!(self.tables.object_lifetime_default[def_id] <- default);
1517            }
1518            if let DefKind::Trait = def_kind {
1519                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1520                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1521                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1522                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1523                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1524                let module_children = self.tcx.module_children_local(local_id);
1525                record_array!(self.tables.module_children_non_reexports[def_id] <-
1526                    module_children.iter().map(|child| child.res.def_id().index));
1527                if self.tcx.is_const_trait(def_id) {
1528                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1529                        <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1530                }
1531            }
1532            if let DefKind::TraitAlias = def_kind {
1533                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1534                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1535                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1536                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1537                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1538            }
1539            if let DefKind::Trait | DefKind::Impl { .. } = def_kind {
1540                let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1541                record_array!(self.tables.associated_item_or_field_def_ids[def_id] <-
1542                    associated_item_def_ids.iter().map(|&def_id| {
1543                        assert!(def_id.is_local());
1544                        def_id.index
1545                    })
1546                );
1547                for &def_id in associated_item_def_ids {
1548                    self.encode_info_for_assoc_item(def_id);
1549                }
1550            }
1551            if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind
1552                && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id)
1553            {
1554                self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind))
1555            }
1556            if def_kind == DefKind::Closure
1557                && tcx.type_of(def_id).skip_binder().is_coroutine_closure()
1558            {
1559                let coroutine_for_closure = self.tcx.coroutine_for_closure(def_id);
1560                self.tables
1561                    .coroutine_for_closure
1562                    .set_some(def_id.index, coroutine_for_closure.into());
1563
1564                // If this async closure has a by-move body, record it too.
1565                if tcx.needs_coroutine_by_move_body_def_id(coroutine_for_closure) {
1566                    self.tables.coroutine_by_move_body_def_id.set_some(
1567                        coroutine_for_closure.index,
1568                        self.tcx.coroutine_by_move_body_def_id(coroutine_for_closure).into(),
1569                    );
1570                }
1571            }
1572            if let DefKind::Static { .. } = def_kind {
1573                if !self.tcx.is_foreign_item(def_id) {
1574                    let data = self.tcx.eval_static_initializer(def_id).unwrap();
1575                    record!(self.tables.eval_static_initializer[def_id] <- data);
1576                }
1577            }
1578            if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind {
1579                self.encode_info_for_adt(local_id);
1580            }
1581            if let DefKind::Mod = def_kind {
1582                self.encode_info_for_mod(local_id);
1583            }
1584            if let DefKind::Macro(_) = def_kind {
1585                self.encode_info_for_macro(local_id);
1586            }
1587            if let DefKind::TyAlias = def_kind {
1588                self.tables
1589                    .type_alias_is_lazy
1590                    .set(def_id.index, self.tcx.type_alias_is_lazy(def_id));
1591            }
1592            if let DefKind::OpaqueTy = def_kind {
1593                self.encode_explicit_item_bounds(def_id);
1594                self.encode_explicit_item_self_bounds(def_id);
1595                record!(self.tables.opaque_ty_origin[def_id] <- self.tcx.opaque_ty_origin(def_id));
1596                self.encode_precise_capturing_args(def_id);
1597                if tcx.is_conditionally_const(def_id) {
1598                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1599                        <- tcx.explicit_implied_const_bounds(def_id).skip_binder());
1600                }
1601            }
1602            if let DefKind::AnonConst = def_kind {
1603                record!(self.tables.anon_const_kind[def_id] <- self.tcx.anon_const_kind(def_id));
1604            }
1605            if tcx.impl_method_has_trait_impl_trait_tys(def_id)
1606                && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id)
1607            {
1608                record!(self.tables.trait_impl_trait_tys[def_id] <- table);
1609            }
1610            if let DefKind::Impl { .. } | DefKind::Trait = def_kind {
1611                let table = tcx.associated_types_for_impl_traits_in_trait_or_impl(def_id);
1612                record!(self.tables.associated_types_for_impl_traits_in_trait_or_impl[def_id] <- table);
1613            }
1614        }
1615
1616        for (def_id, impls) in &tcx.crate_inherent_impls(()).0.inherent_impls {
1617            record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| {
1618                assert!(def_id.is_local());
1619                def_id.index
1620            }));
1621        }
1622
1623        for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions {
1624            record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map);
1625        }
1626
1627        for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope {
1628            record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits);
1629        }
1630    }
1631
1632    #[instrument(level = "trace", skip(self))]
1633    fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) {
1634        let def_id = local_def_id.to_def_id();
1635        let tcx = self.tcx;
1636        let adt_def = tcx.adt_def(def_id);
1637        record!(self.tables.repr_options[def_id] <- adt_def.repr());
1638
1639        let params_in_repr = self.tcx.params_in_repr(def_id);
1640        record!(self.tables.params_in_repr[def_id] <- params_in_repr);
1641
1642        if adt_def.is_enum() {
1643            let module_children = tcx.module_children_local(local_def_id);
1644            record_array!(self.tables.module_children_non_reexports[def_id] <-
1645                module_children.iter().map(|child| child.res.def_id().index));
1646        } else {
1647            // For non-enum, there is only one variant, and its def_id is the adt's.
1648            debug_assert_eq!(adt_def.variants().len(), 1);
1649            debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id);
1650            // Therefore, the loop over variants will encode its fields as the adt's children.
1651        }
1652
1653        for (idx, variant) in adt_def.variants().iter_enumerated() {
1654            let data = VariantData {
1655                discr: variant.discr,
1656                idx,
1657                ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)),
1658                is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1659            };
1660            record!(self.tables.variant_data[variant.def_id] <- data);
1661
1662            record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| {
1663                assert!(f.did.is_local());
1664                f.did.index
1665            }));
1666
1667            for field in &variant.fields {
1668                self.tables.safety.set_some(field.did.index, field.safety);
1669            }
1670
1671            if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor {
1672                let fn_sig = tcx.fn_sig(ctor_def_id);
1673                // FIXME only encode signature for ctor_def_id
1674                record!(self.tables.fn_sig[variant.def_id] <- fn_sig);
1675            }
1676        }
1677
1678        if let Some(destructor) = tcx.adt_destructor(local_def_id) {
1679            record!(self.tables.adt_destructor[def_id] <- destructor);
1680        }
1681
1682        if let Some(destructor) = tcx.adt_async_destructor(local_def_id) {
1683            record!(self.tables.adt_async_destructor[def_id] <- destructor);
1684        }
1685    }
1686
1687    #[instrument(level = "debug", skip(self))]
1688    fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) {
1689        let tcx = self.tcx;
1690        let def_id = local_def_id.to_def_id();
1691
1692        // If we are encoding a proc-macro crates, `encode_info_for_mod` will
1693        // only ever get called for the crate root. We still want to encode
1694        // the crate root for consistency with other crates (some of the resolver
1695        // code uses it). However, we skip encoding anything relating to child
1696        // items - we encode information about proc-macros later on.
1697        if self.is_proc_macro {
1698            // Encode this here because we don't do it in encode_def_ids.
1699            record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id));
1700        } else {
1701            let module_children = tcx.module_children_local(local_def_id);
1702
1703            record_array!(self.tables.module_children_non_reexports[def_id] <-
1704                module_children.iter().filter(|child| child.reexport_chain.is_empty())
1705                    .map(|child| child.res.def_id().index));
1706
1707            record_defaulted_array!(self.tables.module_children_reexports[def_id] <-
1708                module_children.iter().filter(|child| !child.reexport_chain.is_empty()));
1709        }
1710    }
1711
1712    fn encode_explicit_item_bounds(&mut self, def_id: DefId) {
1713        debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id);
1714        let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder();
1715        record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds);
1716    }
1717
1718    fn encode_explicit_item_self_bounds(&mut self, def_id: DefId) {
1719        debug!("EncodeContext::encode_explicit_item_self_bounds({:?})", def_id);
1720        let bounds = self.tcx.explicit_item_self_bounds(def_id).skip_binder();
1721        record_defaulted_array!(self.tables.explicit_item_self_bounds[def_id] <- bounds);
1722    }
1723
1724    #[instrument(level = "debug", skip(self))]
1725    fn encode_info_for_assoc_item(&mut self, def_id: DefId) {
1726        let tcx = self.tcx;
1727        let item = tcx.associated_item(def_id);
1728
1729        self.tables.defaultness.set_some(def_id.index, item.defaultness(tcx));
1730        self.tables.assoc_container.set_some(def_id.index, item.container);
1731
1732        match item.container {
1733            AssocItemContainer::Trait => {
1734                if item.is_type() {
1735                    self.encode_explicit_item_bounds(def_id);
1736                    self.encode_explicit_item_self_bounds(def_id);
1737                    if tcx.is_conditionally_const(def_id) {
1738                        record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1739                            <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1740                    }
1741                }
1742            }
1743            AssocItemContainer::Impl => {
1744                if let Some(trait_item_def_id) = item.trait_item_def_id {
1745                    self.tables.trait_item_def_id.set_some(def_id.index, trait_item_def_id.into());
1746                }
1747            }
1748        }
1749        if let ty::AssocKind::Type { data: ty::AssocTypeData::Rpitit(rpitit_info) } = item.kind {
1750            record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info);
1751            if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) {
1752                record_array!(
1753                    self.tables.assumed_wf_types_for_rpitit[def_id]
1754                        <- self.tcx.assumed_wf_types_for_rpitit(def_id)
1755                );
1756                self.encode_precise_capturing_args(def_id);
1757            }
1758        }
1759    }
1760
1761    fn encode_precise_capturing_args(&mut self, def_id: DefId) {
1762        let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else {
1763            return;
1764        };
1765
1766        record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args);
1767    }
1768
1769    fn encode_mir(&mut self) {
1770        if self.is_proc_macro {
1771            return;
1772        }
1773
1774        let tcx = self.tcx;
1775        let reachable_set = tcx.reachable_set(());
1776
1777        let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| {
1778            let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
1779            if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None }
1780        });
1781        for (def_id, encode_const, encode_opt) in keys_and_jobs {
1782            debug_assert!(encode_const || encode_opt);
1783
1784            debug!("EntryBuilder::encode_mir({:?})", def_id);
1785            if encode_opt {
1786                record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id));
1787                self.tables
1788                    .cross_crate_inlinable
1789                    .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id));
1790                record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()]
1791                    <- tcx.closure_saved_names_of_captured_variables(def_id));
1792
1793                if self.tcx.is_coroutine(def_id.to_def_id())
1794                    && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1795                {
1796                    record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1797                }
1798            }
1799            if encode_const {
1800                record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id));
1801
1802                // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir`
1803                let abstract_const = tcx.thir_abstract_const(def_id);
1804                if let Ok(Some(abstract_const)) = abstract_const {
1805                    record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const);
1806                }
1807
1808                if should_encode_const(tcx.def_kind(def_id)) {
1809                    let qualifs = tcx.mir_const_qualif(def_id);
1810                    record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs);
1811                    let body = tcx.hir_maybe_body_owned_by(def_id);
1812                    if let Some(body) = body {
1813                        let const_data = rendered_const(self.tcx, &body, def_id);
1814                        record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data);
1815                    }
1816                }
1817            }
1818            record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id));
1819
1820            if self.tcx.is_coroutine(def_id.to_def_id())
1821                && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1822            {
1823                record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1824            }
1825        }
1826
1827        // Encode all the deduced parameter attributes for everything that has MIR, even for items
1828        // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to
1829        // save the query traffic.
1830        if tcx.sess.opts.output_types.should_codegen()
1831            && tcx.sess.opts.optimize != OptLevel::No
1832            && tcx.sess.opts.incremental.is_none()
1833        {
1834            for &local_def_id in tcx.mir_keys(()) {
1835                if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) {
1836                    record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <-
1837                        self.tcx.deduced_param_attrs(local_def_id.to_def_id()));
1838                }
1839            }
1840        }
1841    }
1842
1843    #[instrument(level = "debug", skip(self))]
1844    fn encode_stability(&mut self, def_id: DefId) {
1845        // The query lookup can take a measurable amount of time in crates with many items. Check if
1846        // the stability attributes are even enabled before using their queries.
1847        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1848            if let Some(stab) = self.tcx.lookup_stability(def_id) {
1849                record!(self.tables.lookup_stability[def_id] <- stab)
1850            }
1851        }
1852    }
1853
1854    #[instrument(level = "debug", skip(self))]
1855    fn encode_const_stability(&mut self, def_id: DefId) {
1856        // The query lookup can take a measurable amount of time in crates with many items. Check if
1857        // the stability attributes are even enabled before using their queries.
1858        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1859            if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1860                record!(self.tables.lookup_const_stability[def_id] <- stab)
1861            }
1862        }
1863    }
1864
1865    #[instrument(level = "debug", skip(self))]
1866    fn encode_default_body_stability(&mut self, def_id: DefId) {
1867        // The query lookup can take a measurable amount of time in crates with many items. Check if
1868        // the stability attributes are even enabled before using their queries.
1869        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1870            if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) {
1871                record!(self.tables.lookup_default_body_stability[def_id] <- stab)
1872            }
1873        }
1874    }
1875
1876    #[instrument(level = "debug", skip(self))]
1877    fn encode_deprecation(&mut self, def_id: DefId) {
1878        if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1879            record!(self.tables.lookup_deprecation_entry[def_id] <- depr);
1880        }
1881    }
1882
1883    #[instrument(level = "debug", skip(self))]
1884    fn encode_info_for_macro(&mut self, def_id: LocalDefId) {
1885        let tcx = self.tcx;
1886
1887        let (_, macro_def, _) = tcx.hir_expect_item(def_id).expect_macro();
1888        self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules);
1889        record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body);
1890    }
1891
1892    fn encode_native_libraries(&mut self) -> LazyArray<NativeLib> {
1893        empty_proc_macro!(self);
1894        let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1895        self.lazy_array(used_libraries.iter())
1896    }
1897
1898    fn encode_foreign_modules(&mut self) -> LazyArray<ForeignModule> {
1899        empty_proc_macro!(self);
1900        let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1901        self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned())
1902    }
1903
1904    fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) {
1905        let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1906        let mut expn_data_table: TableBuilder<_, _> = Default::default();
1907        let mut expn_hash_table: TableBuilder<_, _> = Default::default();
1908
1909        self.hygiene_ctxt.encode(
1910            &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table),
1911            |(this, syntax_contexts, _, _), index, ctxt_data| {
1912                syntax_contexts.set_some(index, this.lazy(ctxt_data));
1913            },
1914            |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| {
1915                if let Some(index) = index.as_local() {
1916                    expn_data_table.set_some(index.as_raw(), this.lazy(expn_data));
1917                    expn_hash_table.set_some(index.as_raw(), this.lazy(hash));
1918                }
1919            },
1920        );
1921
1922        (
1923            syntax_contexts.encode(&mut self.opaque),
1924            expn_data_table.encode(&mut self.opaque),
1925            expn_hash_table.encode(&mut self.opaque),
1926        )
1927    }
1928
1929    fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1930        let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro);
1931        if is_proc_macro {
1932            let tcx = self.tcx;
1933            let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index;
1934            let stability = tcx.lookup_stability(CRATE_DEF_ID);
1935            let macros =
1936                self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index));
1937            for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() {
1938                let span = self.lazy(span);
1939                self.tables.proc_macro_quoted_spans.set_some(i, span);
1940            }
1941
1942            self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod);
1943            record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id()));
1944            self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local());
1945            let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index);
1946            record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis);
1947            if let Some(stability) = stability {
1948                record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability);
1949            }
1950            self.encode_deprecation(LOCAL_CRATE.as_def_id());
1951            if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) {
1952                record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map);
1953            }
1954            if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) {
1955                record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits);
1956            }
1957
1958            // Normally, this information is encoded when we walk the items
1959            // defined in this crate. However, we skip doing that for proc-macro crates,
1960            // so we manually encode just the information that we need
1961            for &proc_macro in &tcx.resolutions(()).proc_macros {
1962                let id = proc_macro;
1963                let proc_macro = tcx.local_def_id_to_hir_id(proc_macro);
1964                let mut name = tcx.hir_name(proc_macro);
1965                let span = tcx.hir_span(proc_macro);
1966                // Proc-macros may have attributes like `#[allow_internal_unstable]`,
1967                // so downstream crates need access to them.
1968                let attrs = tcx.hir_attrs(proc_macro);
1969                let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
1970                    MacroKind::Bang
1971                } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
1972                    MacroKind::Attr
1973                } else if let Some(trait_name) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, ..} => trait_name)
1974                {
1975                    name = *trait_name;
1976                    MacroKind::Derive
1977                } else {
1978                    bug!("Unknown proc-macro type for item {:?}", id);
1979                };
1980
1981                let mut def_key = self.tcx.hir_def_key(id);
1982                def_key.disambiguated_data.data = DefPathData::MacroNs(name);
1983
1984                let def_id = id.to_def_id();
1985                self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind));
1986                self.tables.proc_macro.set_some(def_id.index, macro_kind);
1987                self.encode_attrs(id);
1988                record!(self.tables.def_keys[def_id] <- def_key);
1989                record!(self.tables.def_ident_span[def_id] <- span);
1990                record!(self.tables.def_span[def_id] <- span);
1991                record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
1992                if let Some(stability) = stability {
1993                    record!(self.tables.lookup_stability[def_id] <- stability);
1994                }
1995            }
1996
1997            Some(ProcMacroData { proc_macro_decls_static, stability, macros })
1998        } else {
1999            None
2000        }
2001    }
2002
2003    fn encode_debugger_visualizers(&mut self) -> LazyArray<DebuggerVisualizerFile> {
2004        empty_proc_macro!(self);
2005        self.lazy_array(
2006            self.tcx
2007                .debugger_visualizers(LOCAL_CRATE)
2008                .iter()
2009                // Erase the path since it may contain privacy sensitive data
2010                // that we don't want to end up in crate metadata.
2011                // The path is only needed for the local crate because of
2012                // `--emit dep-info`.
2013                .map(DebuggerVisualizerFile::path_erased),
2014        )
2015    }
2016
2017    fn encode_crate_deps(&mut self) -> LazyArray<CrateDep> {
2018        empty_proc_macro!(self);
2019
2020        let deps = self
2021            .tcx
2022            .crates(())
2023            .iter()
2024            .map(|&cnum| {
2025                let dep = CrateDep {
2026                    name: self.tcx.crate_name(cnum),
2027                    hash: self.tcx.crate_hash(cnum),
2028                    host_hash: self.tcx.crate_host_hash(cnum),
2029                    kind: self.tcx.dep_kind(cnum),
2030                    extra_filename: self.tcx.extra_filename(cnum).clone(),
2031                    is_private: self.tcx.is_private_dep(cnum),
2032                };
2033                (cnum, dep)
2034            })
2035            .collect::<Vec<_>>();
2036
2037        {
2038            // Sanity-check the crate numbers
2039            let mut expected_cnum = 1;
2040            for &(n, _) in &deps {
2041                assert_eq!(n, CrateNum::new(expected_cnum));
2042                expected_cnum += 1;
2043            }
2044        }
2045
2046        // We're just going to write a list of crate 'name-hash-version's, with
2047        // the assumption that they are numbered 1 to n.
2048        // FIXME (#2166): This is not nearly enough to support correct versioning
2049        // but is enough to get transitive crate dependencies working.
2050        self.lazy_array(deps.iter().map(|(_, dep)| dep))
2051    }
2052
2053    fn encode_target_modifiers(&mut self) -> LazyArray<TargetModifier> {
2054        empty_proc_macro!(self);
2055        let tcx = self.tcx;
2056        self.lazy_array(tcx.sess.opts.gather_target_modifiers())
2057    }
2058
2059    fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> {
2060        empty_proc_macro!(self);
2061        let tcx = self.tcx;
2062        let lib_features = tcx.lib_features(LOCAL_CRATE);
2063        self.lazy_array(lib_features.to_sorted_vec())
2064    }
2065
2066    fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> {
2067        empty_proc_macro!(self);
2068        let tcx = self.tcx;
2069        let implications = tcx.stability_implications(LOCAL_CRATE);
2070        let sorted = implications.to_sorted_stable_ord();
2071        self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v)))
2072    }
2073
2074    fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> {
2075        empty_proc_macro!(self);
2076        let tcx = self.tcx;
2077        let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id;
2078        self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
2079    }
2080
2081    fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> {
2082        empty_proc_macro!(self);
2083        let lang_items = self.tcx.lang_items().iter();
2084        self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| {
2085            def_id.as_local().map(|id| (id.local_def_index, lang_item))
2086        }))
2087    }
2088
2089    fn encode_lang_items_missing(&mut self) -> LazyArray<LangItem> {
2090        empty_proc_macro!(self);
2091        let tcx = self.tcx;
2092        self.lazy_array(&tcx.lang_items().missing)
2093    }
2094
2095    fn encode_stripped_cfg_items(&mut self) -> LazyArray<StrippedCfgItem<DefIndex>> {
2096        self.lazy_array(
2097            self.tcx
2098                .stripped_cfg_items(LOCAL_CRATE)
2099                .into_iter()
2100                .map(|item| item.clone().map_mod_id(|def_id| def_id.index)),
2101        )
2102    }
2103
2104    fn encode_traits(&mut self) -> LazyArray<DefIndex> {
2105        empty_proc_macro!(self);
2106        self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2107    }
2108
2109    /// Encodes an index, mapping each trait to its (local) implementations.
2110    #[instrument(level = "debug", skip(self))]
2111    fn encode_impls(&mut self) -> LazyArray<TraitImpls> {
2112        empty_proc_macro!(self);
2113        let tcx = self.tcx;
2114        let mut trait_impls: FxIndexMap<DefId, Vec<(DefIndex, Option<SimplifiedType>)>> =
2115            FxIndexMap::default();
2116
2117        for id in tcx.hir_free_items() {
2118            let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else {
2119                continue;
2120            };
2121            let def_id = id.owner_id.to_def_id();
2122
2123            if of_trait && let Some(header) = tcx.impl_trait_header(def_id) {
2124                record!(self.tables.impl_trait_header[def_id] <- header);
2125
2126                self.tables.defaultness.set_some(def_id.index, tcx.defaultness(def_id));
2127
2128                let trait_ref = header.trait_ref.instantiate_identity();
2129                let simplified_self_ty = fast_reject::simplify_type(
2130                    self.tcx,
2131                    trait_ref.self_ty(),
2132                    TreatParams::InstantiateWithInfer,
2133                );
2134                trait_impls
2135                    .entry(trait_ref.def_id)
2136                    .or_default()
2137                    .push((id.owner_id.def_id.local_def_index, simplified_self_ty));
2138
2139                let trait_def = tcx.trait_def(trait_ref.def_id);
2140                if let Ok(mut an) = trait_def.ancestors(tcx, def_id)
2141                    && let Some(specialization_graph::Node::Impl(parent)) = an.nth(1)
2142                {
2143                    self.tables.impl_parent.set_some(def_id.index, parent.into());
2144                }
2145
2146                // if this is an impl of `CoerceUnsized`, create its
2147                // "unsized info", else just store None
2148                if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) {
2149                    let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap();
2150                    record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info);
2151                }
2152            }
2153        }
2154
2155        let trait_impls: Vec<_> = trait_impls
2156            .into_iter()
2157            .map(|(trait_def_id, impls)| TraitImpls {
2158                trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
2159                impls: self.lazy_array(&impls),
2160            })
2161            .collect();
2162
2163        self.lazy_array(&trait_impls)
2164    }
2165
2166    #[instrument(level = "debug", skip(self))]
2167    fn encode_incoherent_impls(&mut self) -> LazyArray<IncoherentImpls> {
2168        empty_proc_macro!(self);
2169        let tcx = self.tcx;
2170
2171        let all_impls: Vec<_> = tcx
2172            .crate_inherent_impls(())
2173            .0
2174            .incoherent_impls
2175            .iter()
2176            .map(|(&simp, impls)| IncoherentImpls {
2177                self_ty: simp,
2178                impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)),
2179            })
2180            .collect();
2181
2182        self.lazy_array(&all_impls)
2183    }
2184
2185    fn encode_exportable_items(&mut self) -> LazyArray<DefIndex> {
2186        empty_proc_macro!(self);
2187        self.lazy_array(self.tcx.exportable_items(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2188    }
2189
2190    fn encode_stable_order_of_exportable_impls(&mut self) -> LazyArray<(DefIndex, usize)> {
2191        empty_proc_macro!(self);
2192        let stable_order_of_exportable_impls =
2193            self.tcx.stable_order_of_exportable_impls(LOCAL_CRATE);
2194        self.lazy_array(
2195            stable_order_of_exportable_impls.iter().map(|(def_id, idx)| (def_id.index, *idx)),
2196        )
2197    }
2198
2199    // Encodes all symbols exported from this crate into the metadata.
2200    //
2201    // This pass is seeded off the reachability list calculated in the
2202    // middle::reachable module but filters out items that either don't have a
2203    // symbol associated with them (they weren't translated) or if they're an FFI
2204    // definition (as that's not defined in this crate).
2205    fn encode_exported_symbols(
2206        &mut self,
2207        exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)],
2208    ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> {
2209        empty_proc_macro!(self);
2210        // The metadata symbol name is special. It should not show up in
2211        // downstream crates.
2212        let metadata_symbol_name = SymbolName::new(self.tcx, &metadata_symbol_name(self.tcx));
2213
2214        self.lazy_array(
2215            exported_symbols
2216                .iter()
2217                .filter(|&(exported_symbol, _)| match *exported_symbol {
2218                    ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name,
2219                    _ => true,
2220                })
2221                .cloned(),
2222        )
2223    }
2224
2225    fn encode_dylib_dependency_formats(&mut self) -> LazyArray<Option<LinkagePreference>> {
2226        empty_proc_macro!(self);
2227        let formats = self.tcx.dependency_formats(());
2228        if let Some(arr) = formats.get(&CrateType::Dylib) {
2229            return self.lazy_array(arr.iter().skip(1 /* skip LOCAL_CRATE */).map(
2230                |slot| match *slot {
2231                    Linkage::NotLinked | Linkage::IncludedFromDylib => None,
2232
2233                    Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
2234                    Linkage::Static => Some(LinkagePreference::RequireStatic),
2235                },
2236            ));
2237        }
2238        LazyArray::default()
2239    }
2240}
2241
2242/// Used to prefetch queries which will be needed later by metadata encoding.
2243/// Only a subset of the queries are actually prefetched to keep this code smaller.
2244fn prefetch_mir(tcx: TyCtxt<'_>) {
2245    if !tcx.sess.opts.output_types.should_codegen() {
2246        // We won't emit MIR, so don't prefetch it.
2247        return;
2248    }
2249
2250    let reachable_set = tcx.reachable_set(());
2251    par_for_each_in(tcx.mir_keys(()), |&&def_id| {
2252        let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
2253
2254        if encode_const {
2255            tcx.ensure_done().mir_for_ctfe(def_id);
2256        }
2257        if encode_opt {
2258            tcx.ensure_done().optimized_mir(def_id);
2259        }
2260        if encode_opt || encode_const {
2261            tcx.ensure_done().promoted_mir(def_id);
2262        }
2263    })
2264}
2265
2266// NOTE(eddyb) The following comment was preserved for posterity, even
2267// though it's no longer relevant as EBML (which uses nested & tagged
2268// "documents") was replaced with a scheme that can't go out of bounds.
2269//
2270// And here we run into yet another obscure archive bug: in which metadata
2271// loaded from archives may have trailing garbage bytes. Awhile back one of
2272// our tests was failing sporadically on the macOS 64-bit builders (both nopt
2273// and opt) by having ebml generate an out-of-bounds panic when looking at
2274// metadata.
2275//
2276// Upon investigation it turned out that the metadata file inside of an rlib
2277// (and ar archive) was being corrupted. Some compilations would generate a
2278// metadata file which would end in a few extra bytes, while other
2279// compilations would not have these extra bytes appended to the end. These
2280// extra bytes were interpreted by ebml as an extra tag, so they ended up
2281// being interpreted causing the out-of-bounds.
2282//
2283// The root cause of why these extra bytes were appearing was never
2284// discovered, and in the meantime the solution we're employing is to insert
2285// the length of the metadata to the start of the metadata. Later on this
2286// will allow us to slice the metadata to the precise length that we just
2287// generated regardless of trailing bytes that end up in it.
2288
2289pub struct EncodedMetadata {
2290    // The declaration order matters because `full_metadata` should be dropped
2291    // before `_temp_dir`.
2292    full_metadata: Option<Mmap>,
2293    // This is an optional stub metadata containing only the crate header.
2294    // The header should be very small, so we load it directly into memory.
2295    stub_metadata: Option<Vec<u8>>,
2296    // The path containing the metadata, to record as work product.
2297    path: Option<Box<Path>>,
2298    // We need to carry MaybeTempDir to avoid deleting the temporary
2299    // directory while accessing the Mmap.
2300    _temp_dir: Option<MaybeTempDir>,
2301}
2302
2303impl EncodedMetadata {
2304    #[inline]
2305    pub fn from_path(
2306        path: PathBuf,
2307        stub_path: Option<PathBuf>,
2308        temp_dir: Option<MaybeTempDir>,
2309    ) -> std::io::Result<Self> {
2310        let file = std::fs::File::open(&path)?;
2311        let file_metadata = file.metadata()?;
2312        if file_metadata.len() == 0 {
2313            return Ok(Self {
2314                full_metadata: None,
2315                stub_metadata: None,
2316                path: None,
2317                _temp_dir: None,
2318            });
2319        }
2320        let full_mmap = unsafe { Some(Mmap::map(file)?) };
2321
2322        let stub =
2323            if let Some(stub_path) = stub_path { Some(std::fs::read(stub_path)?) } else { None };
2324
2325        Ok(Self {
2326            full_metadata: full_mmap,
2327            stub_metadata: stub,
2328            path: Some(path.into()),
2329            _temp_dir: temp_dir,
2330        })
2331    }
2332
2333    #[inline]
2334    pub fn full(&self) -> &[u8] {
2335        &self.full_metadata.as_deref().unwrap_or_default()
2336    }
2337
2338    #[inline]
2339    pub fn stub_or_full(&self) -> &[u8] {
2340        self.stub_metadata.as_deref().unwrap_or(self.full())
2341    }
2342
2343    #[inline]
2344    pub fn path(&self) -> Option<&Path> {
2345        self.path.as_deref()
2346    }
2347}
2348
2349impl<S: Encoder> Encodable<S> for EncodedMetadata {
2350    fn encode(&self, s: &mut S) {
2351        self.stub_metadata.encode(s);
2352
2353        let slice = self.full();
2354        slice.encode(s)
2355    }
2356}
2357
2358impl<D: Decoder> Decodable<D> for EncodedMetadata {
2359    fn decode(d: &mut D) -> Self {
2360        let stub = <Option<Vec<u8>>>::decode(d);
2361
2362        let len = d.read_usize();
2363        let full_metadata = if len > 0 {
2364            let mut mmap = MmapMut::map_anon(len).unwrap();
2365            mmap.copy_from_slice(d.read_raw_bytes(len));
2366            Some(mmap.make_read_only().unwrap())
2367        } else {
2368            None
2369        };
2370
2371        Self { full_metadata, stub_metadata: stub, path: None, _temp_dir: None }
2372    }
2373}
2374
2375#[instrument(level = "trace", skip(tcx))]
2376pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path, ref_path: Option<&Path>) {
2377    // Since encoding metadata is not in a query, and nothing is cached,
2378    // there's no need to do dep-graph tracking for any of it.
2379    tcx.dep_graph.assert_ignored();
2380
2381    // Generate the metadata stub manually, as that is a small file compared to full metadata.
2382    if let Some(ref_path) = ref_path {
2383        let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata_stub");
2384
2385        with_encode_metadata_header(tcx, ref_path, |ecx| {
2386            let header: LazyValue<CrateHeader> = ecx.lazy(CrateHeader {
2387                name: tcx.crate_name(LOCAL_CRATE),
2388                triple: tcx.sess.opts.target_triple.clone(),
2389                hash: tcx.crate_hash(LOCAL_CRATE),
2390                is_proc_macro_crate: false,
2391                is_stub: true,
2392            });
2393            header.position.get()
2394        })
2395    }
2396
2397    let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata");
2398
2399    let dep_node = tcx.metadata_dep_node();
2400
2401    // If the metadata dep-node is green, try to reuse the saved work product.
2402    if tcx.dep_graph.is_fully_enabled()
2403        && let work_product_id = WorkProductId::from_cgu_name("metadata")
2404        && let Some(work_product) = tcx.dep_graph.previous_work_product(&work_product_id)
2405        && tcx.try_mark_green(&dep_node)
2406    {
2407        let saved_path = &work_product.saved_files["rmeta"];
2408        let incr_comp_session_dir = tcx.sess.incr_comp_session_dir_opt().unwrap();
2409        let source_file = rustc_incremental::in_incr_comp_dir(&incr_comp_session_dir, saved_path);
2410        debug!("copying preexisting metadata from {source_file:?} to {path:?}");
2411        match rustc_fs_util::link_or_copy(&source_file, path) {
2412            Ok(_) => {}
2413            Err(err) => tcx.dcx().emit_fatal(FailCreateFileEncoder { err }),
2414        };
2415        return;
2416    };
2417
2418    if tcx.sess.threads() != 1 {
2419        // Prefetch some queries used by metadata encoding.
2420        // This is not necessary for correctness, but is only done for performance reasons.
2421        // It can be removed if it turns out to cause trouble or be detrimental to performance.
2422        join(
2423            || prefetch_mir(tcx),
2424            || {
2425                let _ = tcx.exported_non_generic_symbols(LOCAL_CRATE);
2426                let _ = tcx.exported_generic_symbols(LOCAL_CRATE);
2427            },
2428        );
2429    }
2430
2431    // Perform metadata encoding inside a task, so the dep-graph can check if any encoded
2432    // information changes, and maybe reuse the work product.
2433    tcx.dep_graph.with_task(
2434        dep_node,
2435        tcx,
2436        path,
2437        |tcx, path| {
2438            with_encode_metadata_header(tcx, path, |ecx| {
2439                // Encode all the entries and extra information in the crate,
2440                // culminating in the `CrateRoot` which points to all of it.
2441                let root = ecx.encode_crate_root();
2442
2443                // Flush buffer to ensure backing file has the correct size.
2444                ecx.opaque.flush();
2445                // Record metadata size for self-profiling
2446                tcx.prof.artifact_size(
2447                    "crate_metadata",
2448                    "crate_metadata",
2449                    ecx.opaque.file().metadata().unwrap().len(),
2450                );
2451
2452                root.position.get()
2453            })
2454        },
2455        None,
2456    );
2457}
2458
2459fn with_encode_metadata_header(
2460    tcx: TyCtxt<'_>,
2461    path: &Path,
2462    f: impl FnOnce(&mut EncodeContext<'_, '_>) -> usize,
2463) {
2464    let mut encoder = opaque::FileEncoder::new(path)
2465        .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err }));
2466    encoder.emit_raw_bytes(METADATA_HEADER);
2467
2468    // Will be filled with the root position after encoding everything.
2469    encoder.emit_raw_bytes(&0u64.to_le_bytes());
2470
2471    let source_map_files = tcx.sess.source_map().files();
2472    let source_file_cache = (Arc::clone(&source_map_files[0]), 0);
2473    let required_source_files = Some(FxIndexSet::default());
2474    drop(source_map_files);
2475
2476    let hygiene_ctxt = HygieneEncodeContext::default();
2477
2478    let mut ecx = EncodeContext {
2479        opaque: encoder,
2480        tcx,
2481        feat: tcx.features(),
2482        tables: Default::default(),
2483        lazy_state: LazyState::NoNode,
2484        span_shorthands: Default::default(),
2485        type_shorthands: Default::default(),
2486        predicate_shorthands: Default::default(),
2487        source_file_cache,
2488        interpret_allocs: Default::default(),
2489        required_source_files,
2490        is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro),
2491        hygiene_ctxt: &hygiene_ctxt,
2492        symbol_index_table: Default::default(),
2493    };
2494
2495    // Encode the rustc version string in a predictable location.
2496    rustc_version(tcx.sess.cfg_version).encode(&mut ecx);
2497
2498    let root_position = f(&mut ecx);
2499
2500    // Make sure we report any errors from writing to the file.
2501    // If we forget this, compilation can succeed with an incomplete rmeta file,
2502    // causing an ICE when the rmeta file is read by another compilation.
2503    if let Err((path, err)) = ecx.opaque.finish() {
2504        tcx.dcx().emit_fatal(FailWriteFile { path: &path, err });
2505    }
2506
2507    let file = ecx.opaque.file();
2508    if let Err(err) = encode_root_position(file, root_position) {
2509        tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err });
2510    }
2511}
2512
2513fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> {
2514    // We will return to this position after writing the root position.
2515    let pos_before_seek = file.stream_position().unwrap();
2516
2517    // Encode the root position.
2518    let header = METADATA_HEADER.len();
2519    file.seek(std::io::SeekFrom::Start(header as u64))?;
2520    file.write_all(&pos.to_le_bytes())?;
2521
2522    // Return to the position where we are before writing the root position.
2523    file.seek(std::io::SeekFrom::Start(pos_before_seek))?;
2524    Ok(())
2525}
2526
2527pub(crate) fn provide(providers: &mut Providers) {
2528    *providers = Providers {
2529        doc_link_resolutions: |tcx, def_id| {
2530            tcx.resolutions(())
2531                .doc_link_resolutions
2532                .get(&def_id)
2533                .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link"))
2534        },
2535        doc_link_traits_in_scope: |tcx, def_id| {
2536            tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| {
2537                span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link")
2538            })
2539        },
2540
2541        ..*providers
2542    }
2543}
2544
2545/// Build a textual representation of an unevaluated constant expression.
2546///
2547/// If the const expression is too complex, an underscore `_` is returned.
2548/// For const arguments, it's `{ _ }` to be precise.
2549/// This means that the output is not necessarily valid Rust code.
2550///
2551/// Currently, only
2552///
2553/// * literals (optionally with a leading `-`)
2554/// * unit `()`
2555/// * blocks (`{ … }`) around simple expressions and
2556/// * paths without arguments
2557///
2558/// are considered simple enough. Simple blocks are included since they are
2559/// necessary to disambiguate unit from the unit type.
2560/// This list might get extended in the future.
2561///
2562/// Without this censoring, in a lot of cases the output would get too large
2563/// and verbose. Consider `match` expressions, blocks and deeply nested ADTs.
2564/// Further, private and `doc(hidden)` fields of structs would get leaked
2565/// since HIR datatypes like the `body` parameter do not contain enough
2566/// semantic information for this function to be able to hide them –
2567/// at least not without significant performance overhead.
2568///
2569/// Whenever possible, prefer to evaluate the constant first and try to
2570/// use a different method for pretty-printing. Ideally this function
2571/// should only ever be used as a fallback.
2572pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String {
2573    let value = body.value;
2574
2575    #[derive(PartialEq, Eq)]
2576    enum Classification {
2577        Literal,
2578        Simple,
2579        Complex,
2580    }
2581
2582    use Classification::*;
2583
2584    fn classify(expr: &hir::Expr<'_>) -> Classification {
2585        match &expr.kind {
2586            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
2587                if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex }
2588            }
2589            hir::ExprKind::Lit(_) => Literal,
2590            hir::ExprKind::Tup([]) => Simple,
2591            hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => {
2592                if classify(expr) == Complex { Complex } else { Simple }
2593            }
2594            // Paths with a self-type or arguments are too “complex” following our measure since
2595            // they may leak private fields of structs (with feature `adt_const_params`).
2596            // Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`.
2597            // Paths without arguments are definitely harmless though.
2598            hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => {
2599                if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex }
2600            }
2601            // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty
2602            //        contains const arguments. Is there a *concise* way to check for this?
2603            hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple,
2604            // FIXME: Can they contain const arguments and thus leak private struct fields?
2605            hir::ExprKind::Path(hir::QPath::LangItem(..)) => Simple,
2606            _ => Complex,
2607        }
2608    }
2609
2610    match classify(value) {
2611        // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet
2612        // instead to preserve certain stylistic choices the user likely made for the sake of
2613        // legibility, like:
2614        //
2615        // * hexadecimal notation
2616        // * underscores
2617        // * character escapes
2618        //
2619        // FIXME: This passes through `-/*spacer*/0` verbatim.
2620        Literal
2621            if !value.span.from_expansion()
2622                && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) =>
2623        {
2624            snippet
2625        }
2626
2627        // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and
2628        // other formatting artifacts.
2629        Literal | Simple => id_to_string(&tcx, body.id().hir_id),
2630
2631        // FIXME: Omit the curly braces if the enclosing expression is an array literal
2632        //        with a repeated element (an `ExprKind::Repeat`) as in such case it
2633        //        would not actually need any disambiguation.
2634        Complex => {
2635            if tcx.def_kind(def_id) == DefKind::AnonConst {
2636                "{ _ }".to_owned()
2637            } else {
2638                "_".to_owned()
2639            }
2640        }
2641    }
2642}