rustc_macros/diagnostics/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
use std::cell::RefCell;
use std::collections::{BTreeSet, HashMap};
use std::fmt;
use std::str::FromStr;

use proc_macro::Span;
use proc_macro2::{Ident, TokenStream};
use quote::{ToTokens, format_ident, quote};
use syn::meta::ParseNestedMeta;
use syn::punctuated::Punctuated;
use syn::spanned::Spanned;
use syn::{Attribute, Field, LitStr, Meta, Path, Token, Type, TypeTuple, parenthesized};
use synstructure::{BindingInfo, VariantInfo};

use super::error::invalid_attr;
use crate::diagnostics::error::{
    DiagnosticDeriveError, span_err, throw_invalid_attr, throw_span_err,
};

thread_local! {
    pub(crate) static CODE_IDENT_COUNT: RefCell<u32> = RefCell::new(0);
}

/// Returns an ident of the form `__code_N` where `N` is incremented once with every call.
pub(crate) fn new_code_ident() -> syn::Ident {
    CODE_IDENT_COUNT.with(|count| {
        let ident = format_ident!("__code_{}", *count.borrow());
        *count.borrow_mut() += 1;
        ident
    })
}

/// Checks whether the type name of `ty` matches `name`.
///
/// Given some struct at `a::b::c::Foo`, this will return true for `c::Foo`, `b::c::Foo`, or
/// `a::b::c::Foo`. This reasonably allows qualified names to be used in the macro.
pub(crate) fn type_matches_path(ty: &Type, name: &[&str]) -> bool {
    if let Type::Path(ty) = ty {
        ty.path
            .segments
            .iter()
            .map(|s| s.ident.to_string())
            .rev()
            .zip(name.iter().rev())
            .all(|(x, y)| &x.as_str() == y)
    } else {
        false
    }
}

/// Checks whether the type `ty` is `()`.
pub(crate) fn type_is_unit(ty: &Type) -> bool {
    if let Type::Tuple(TypeTuple { elems, .. }) = ty { elems.is_empty() } else { false }
}

/// Checks whether the type `ty` is `bool`.
pub(crate) fn type_is_bool(ty: &Type) -> bool {
    type_matches_path(ty, &["bool"])
}

/// Reports a type error for field with `attr`.
pub(crate) fn report_type_error(
    attr: &Attribute,
    ty_name: &str,
) -> Result<!, DiagnosticDeriveError> {
    let name = attr.path().segments.last().unwrap().ident.to_string();
    let meta = &attr.meta;

    throw_span_err!(
        attr.span().unwrap(),
        &format!(
            "the `#[{}{}]` attribute can only be applied to fields of type {}",
            name,
            match meta {
                Meta::Path(_) => "",
                Meta::NameValue(_) => " = ...",
                Meta::List(_) => "(...)",
            },
            ty_name
        )
    );
}

/// Reports an error if the field's type does not match `path`.
fn report_error_if_not_applied_to_ty(
    attr: &Attribute,
    info: &FieldInfo<'_>,
    path: &[&str],
    ty_name: &str,
) -> Result<(), DiagnosticDeriveError> {
    if !type_matches_path(info.ty.inner_type(), path) {
        report_type_error(attr, ty_name)?;
    }

    Ok(())
}

/// Reports an error if the field's type is not `Applicability`.
pub(crate) fn report_error_if_not_applied_to_applicability(
    attr: &Attribute,
    info: &FieldInfo<'_>,
) -> Result<(), DiagnosticDeriveError> {
    report_error_if_not_applied_to_ty(
        attr,
        info,
        &["rustc_errors", "Applicability"],
        "`Applicability`",
    )
}

/// Reports an error if the field's type is not `Span`.
pub(crate) fn report_error_if_not_applied_to_span(
    attr: &Attribute,
    info: &FieldInfo<'_>,
) -> Result<(), DiagnosticDeriveError> {
    if !type_matches_path(info.ty.inner_type(), &["rustc_span", "Span"])
        && !type_matches_path(info.ty.inner_type(), &["rustc_errors", "MultiSpan"])
    {
        report_type_error(attr, "`Span` or `MultiSpan`")?;
    }

    Ok(())
}

/// Inner type of a field and type of wrapper.
#[derive(Copy, Clone)]
pub(crate) enum FieldInnerTy<'ty> {
    /// Field is wrapped in a `Option<$inner>`.
    Option(&'ty Type),
    /// Field is wrapped in a `Vec<$inner>`.
    Vec(&'ty Type),
    /// Field isn't wrapped in an outer type.
    Plain(&'ty Type),
}

impl<'ty> FieldInnerTy<'ty> {
    /// Returns inner type for a field, if there is one.
    ///
    /// - If `ty` is an `Option<Inner>`, returns `FieldInnerTy::Option(Inner)`.
    /// - If `ty` is a `Vec<Inner>`, returns `FieldInnerTy::Vec(Inner)`.
    /// - Otherwise returns `FieldInnerTy::Plain(ty)`.
    pub(crate) fn from_type(ty: &'ty Type) -> Self {
        fn single_generic_type(ty: &Type) -> &Type {
            let Type::Path(ty_path) = ty else {
                panic!("expected path type");
            };

            let path = &ty_path.path;
            let ty = path.segments.iter().last().unwrap();
            let syn::PathArguments::AngleBracketed(bracketed) = &ty.arguments else {
                panic!("expected bracketed generic arguments");
            };

            assert_eq!(bracketed.args.len(), 1);

            let syn::GenericArgument::Type(ty) = &bracketed.args[0] else {
                panic!("expected generic parameter to be a type generic");
            };

            ty
        }

        if type_matches_path(ty, &["std", "option", "Option"]) {
            FieldInnerTy::Option(single_generic_type(ty))
        } else if type_matches_path(ty, &["std", "vec", "Vec"]) {
            FieldInnerTy::Vec(single_generic_type(ty))
        } else {
            FieldInnerTy::Plain(ty)
        }
    }

    /// Returns `true` if `FieldInnerTy::with` will result in iteration for this inner type (i.e.
    /// that cloning might be required for values moved in the loop body).
    pub(crate) fn will_iterate(&self) -> bool {
        match self {
            FieldInnerTy::Vec(..) => true,
            FieldInnerTy::Option(..) | FieldInnerTy::Plain(_) => false,
        }
    }

    /// Returns the inner type.
    pub(crate) fn inner_type(&self) -> &'ty Type {
        match self {
            FieldInnerTy::Option(inner) | FieldInnerTy::Vec(inner) | FieldInnerTy::Plain(inner) => {
                inner
            }
        }
    }

    /// Surrounds `inner` with destructured wrapper type, exposing inner type as `binding`.
    pub(crate) fn with(&self, binding: impl ToTokens, inner: impl ToTokens) -> TokenStream {
        match self {
            FieldInnerTy::Option(..) => quote! {
                if let Some(#binding) = #binding {
                    #inner
                }
            },
            FieldInnerTy::Vec(..) => quote! {
                for #binding in #binding {
                    #inner
                }
            },
            FieldInnerTy::Plain(t) if type_is_bool(t) => quote! {
                if #binding {
                    #inner
                }
            },
            FieldInnerTy::Plain(..) => quote! { #inner },
        }
    }

    pub(crate) fn span(&self) -> proc_macro2::Span {
        match self {
            FieldInnerTy::Option(ty) | FieldInnerTy::Vec(ty) | FieldInnerTy::Plain(ty) => ty.span(),
        }
    }
}

/// Field information passed to the builder. Deliberately omits attrs to discourage the
/// `generate_*` methods from walking the attributes themselves.
pub(crate) struct FieldInfo<'a> {
    pub(crate) binding: &'a BindingInfo<'a>,
    pub(crate) ty: FieldInnerTy<'a>,
    pub(crate) span: &'a proc_macro2::Span,
}

/// Small helper trait for abstracting over `Option` fields that contain a value and a `Span`
/// for error reporting if they are set more than once.
pub(crate) trait SetOnce<T> {
    fn set_once(&mut self, value: T, span: Span);

    fn value(self) -> Option<T>;
    fn value_ref(&self) -> Option<&T>;
}

/// An [`Option<T>`] that keeps track of the span that caused it to be set; used with [`SetOnce`].
pub(super) type SpannedOption<T> = Option<(T, Span)>;

impl<T> SetOnce<T> for SpannedOption<T> {
    fn set_once(&mut self, value: T, span: Span) {
        match self {
            None => {
                *self = Some((value, span));
            }
            Some((_, prev_span)) => {
                span_err(span, "specified multiple times")
                    .span_note(*prev_span, "previously specified here")
                    .emit();
            }
        }
    }

    fn value(self) -> Option<T> {
        self.map(|(v, _)| v)
    }

    fn value_ref(&self) -> Option<&T> {
        self.as_ref().map(|(v, _)| v)
    }
}

pub(super) type FieldMap = HashMap<String, TokenStream>;

pub(crate) trait HasFieldMap {
    /// Returns the binding for the field with the given name, if it exists on the type.
    fn get_field_binding(&self, field: &String) -> Option<&TokenStream>;

    /// In the strings in the attributes supplied to this macro, we want callers to be able to
    /// reference fields in the format string. For example:
    ///
    /// ```ignore (not-usage-example)
    /// /// Suggest `==` when users wrote `===`.
    /// #[suggestion(slug = "parser-not-javascript-eq", code = "{lhs} == {rhs}")]
    /// struct NotJavaScriptEq {
    ///     #[primary_span]
    ///     span: Span,
    ///     lhs: Ident,
    ///     rhs: Ident,
    /// }
    /// ```
    ///
    /// We want to automatically pick up that `{lhs}` refers `self.lhs` and `{rhs}` refers to
    /// `self.rhs`, then generate this call to `format!`:
    ///
    /// ```ignore (not-usage-example)
    /// format!("{lhs} == {rhs}", lhs = self.lhs, rhs = self.rhs)
    /// ```
    ///
    /// This function builds the entire call to `format!`.
    fn build_format(&self, input: &str, span: proc_macro2::Span) -> TokenStream {
        // This set is used later to generate the final format string. To keep builds reproducible,
        // the iteration order needs to be deterministic, hence why we use a `BTreeSet` here
        // instead of a `HashSet`.
        let mut referenced_fields: BTreeSet<String> = BTreeSet::new();

        // At this point, we can start parsing the format string.
        let mut it = input.chars().peekable();

        // Once the start of a format string has been found, process the format string and spit out
        // the referenced fields. Leaves `it` sitting on the closing brace of the format string, so
        // the next call to `it.next()` retrieves the next character.
        while let Some(c) = it.next() {
            if c != '{' {
                continue;
            }
            if *it.peek().unwrap_or(&'\0') == '{' {
                assert_eq!(it.next().unwrap(), '{');
                continue;
            }
            let mut eat_argument = || -> Option<String> {
                let mut result = String::new();
                // Format specifiers look like:
                //
                //   format   := '{' [ argument ] [ ':' format_spec ] '}' .
                //
                // Therefore, we only need to eat until ':' or '}' to find the argument.
                while let Some(c) = it.next() {
                    result.push(c);
                    let next = *it.peek().unwrap_or(&'\0');
                    if next == '}' {
                        break;
                    } else if next == ':' {
                        // Eat the ':' character.
                        assert_eq!(it.next().unwrap(), ':');
                        break;
                    }
                }
                // Eat until (and including) the matching '}'
                while it.next()? != '}' {
                    continue;
                }
                Some(result)
            };

            if let Some(referenced_field) = eat_argument() {
                referenced_fields.insert(referenced_field);
            }
        }

        // At this point, `referenced_fields` contains a set of the unique fields that were
        // referenced in the format string. Generate the corresponding "x = self.x" format
        // string parameters:
        let args = referenced_fields.into_iter().map(|field: String| {
            let field_ident = format_ident!("{}", field);
            let value = match self.get_field_binding(&field) {
                Some(value) => value.clone(),
                // This field doesn't exist. Emit a diagnostic.
                None => {
                    span_err(
                        span.unwrap(),
                        format!("`{field}` doesn't refer to a field on this type"),
                    )
                    .emit();
                    quote! {
                        "{#field}"
                    }
                }
            };
            quote! {
                #field_ident = #value
            }
        });
        quote! {
            format!(#input #(,#args)*)
        }
    }
}

/// `Applicability` of a suggestion - mirrors `rustc_errors::Applicability` - and used to represent
/// the user's selection of applicability if specified in an attribute.
#[derive(Clone, Copy)]
pub(crate) enum Applicability {
    MachineApplicable,
    MaybeIncorrect,
    HasPlaceholders,
    Unspecified,
}

impl FromStr for Applicability {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "machine-applicable" => Ok(Applicability::MachineApplicable),
            "maybe-incorrect" => Ok(Applicability::MaybeIncorrect),
            "has-placeholders" => Ok(Applicability::HasPlaceholders),
            "unspecified" => Ok(Applicability::Unspecified),
            _ => Err(()),
        }
    }
}

impl quote::ToTokens for Applicability {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        tokens.extend(match self {
            Applicability::MachineApplicable => {
                quote! { rustc_errors::Applicability::MachineApplicable }
            }
            Applicability::MaybeIncorrect => {
                quote! { rustc_errors::Applicability::MaybeIncorrect }
            }
            Applicability::HasPlaceholders => {
                quote! { rustc_errors::Applicability::HasPlaceholders }
            }
            Applicability::Unspecified => {
                quote! { rustc_errors::Applicability::Unspecified }
            }
        });
    }
}

/// Build the mapping of field names to fields. This allows attributes to peek values from
/// other fields.
pub(super) fn build_field_mapping(variant: &VariantInfo<'_>) -> HashMap<String, TokenStream> {
    let mut fields_map = FieldMap::new();
    for binding in variant.bindings() {
        if let Some(ident) = &binding.ast().ident {
            fields_map.insert(ident.to_string(), quote! { #binding });
        }
    }
    fields_map
}

#[derive(Copy, Clone, Debug)]
pub(super) enum AllowMultipleAlternatives {
    No,
    Yes,
}

fn parse_suggestion_values(
    nested: ParseNestedMeta<'_>,
    allow_multiple: AllowMultipleAlternatives,
) -> syn::Result<Vec<LitStr>> {
    let values = if let Ok(val) = nested.value() {
        vec![val.parse()?]
    } else {
        let content;
        parenthesized!(content in nested.input);

        if let AllowMultipleAlternatives::No = allow_multiple {
            span_err(
                nested.input.span().unwrap(),
                "expected exactly one string literal for `code = ...`",
            )
            .emit();
            vec![]
        } else {
            let literals = Punctuated::<LitStr, Token![,]>::parse_terminated(&content);

            match literals {
                Ok(p) if p.is_empty() => {
                    span_err(
                        content.span().unwrap(),
                        "expected at least one string literal for `code(...)`",
                    )
                    .emit();
                    vec![]
                }
                Ok(p) => p.into_iter().collect(),
                Err(_) => {
                    span_err(
                        content.span().unwrap(),
                        "`code(...)` must contain only string literals",
                    )
                    .emit();
                    vec![]
                }
            }
        }
    };

    Ok(values)
}

/// Constructs the `format!()` invocation(s) necessary for a `#[suggestion*(code = "foo")]` or
/// `#[suggestion*(code("foo", "bar"))]` attribute field
pub(super) fn build_suggestion_code(
    code_field: &Ident,
    nested: ParseNestedMeta<'_>,
    fields: &impl HasFieldMap,
    allow_multiple: AllowMultipleAlternatives,
) -> TokenStream {
    let values = match parse_suggestion_values(nested, allow_multiple) {
        Ok(x) => x,
        Err(e) => return e.into_compile_error(),
    };

    if let AllowMultipleAlternatives::Yes = allow_multiple {
        let formatted_strings: Vec<_> = values
            .into_iter()
            .map(|value| fields.build_format(&value.value(), value.span()))
            .collect();
        quote! { let #code_field = [#(#formatted_strings),*].into_iter(); }
    } else if let [value] = values.as_slice() {
        let formatted_str = fields.build_format(&value.value(), value.span());
        quote! { let #code_field = #formatted_str; }
    } else {
        // error handled previously
        quote! { let #code_field = String::new(); }
    }
}

/// Possible styles for suggestion subdiagnostics.
#[derive(Clone, Copy, PartialEq)]
pub(super) enum SuggestionKind {
    Normal,
    Short,
    Hidden,
    Verbose,
    ToolOnly,
}

impl FromStr for SuggestionKind {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "normal" => Ok(SuggestionKind::Normal),
            "short" => Ok(SuggestionKind::Short),
            "hidden" => Ok(SuggestionKind::Hidden),
            "verbose" => Ok(SuggestionKind::Verbose),
            "tool-only" => Ok(SuggestionKind::ToolOnly),
            _ => Err(()),
        }
    }
}

impl fmt::Display for SuggestionKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            SuggestionKind::Normal => write!(f, "normal"),
            SuggestionKind::Short => write!(f, "short"),
            SuggestionKind::Hidden => write!(f, "hidden"),
            SuggestionKind::Verbose => write!(f, "verbose"),
            SuggestionKind::ToolOnly => write!(f, "tool-only"),
        }
    }
}

impl SuggestionKind {
    pub(crate) fn to_suggestion_style(&self) -> TokenStream {
        match self {
            SuggestionKind::Normal => {
                quote! { rustc_errors::SuggestionStyle::ShowCode }
            }
            SuggestionKind::Short => {
                quote! { rustc_errors::SuggestionStyle::HideCodeInline }
            }
            SuggestionKind::Hidden => {
                quote! { rustc_errors::SuggestionStyle::HideCodeAlways }
            }
            SuggestionKind::Verbose => {
                quote! { rustc_errors::SuggestionStyle::ShowAlways }
            }
            SuggestionKind::ToolOnly => {
                quote! { rustc_errors::SuggestionStyle::CompletelyHidden }
            }
        }
    }

    fn from_suffix(s: &str) -> Option<Self> {
        match s {
            "" => Some(SuggestionKind::Normal),
            "_short" => Some(SuggestionKind::Short),
            "_hidden" => Some(SuggestionKind::Hidden),
            "_verbose" => Some(SuggestionKind::Verbose),
            _ => None,
        }
    }
}

/// Types of subdiagnostics that can be created using attributes
#[derive(Clone)]
pub(super) enum SubdiagnosticKind {
    /// `#[label(...)]`
    Label,
    /// `#[note(...)]`
    Note,
    /// `#[note_once(...)]`
    NoteOnce,
    /// `#[help(...)]`
    Help,
    /// `#[help_once(...)]`
    HelpOnce,
    /// `#[warning(...)]`
    Warn,
    /// `#[suggestion{,_short,_hidden,_verbose}]`
    Suggestion {
        suggestion_kind: SuggestionKind,
        applicability: SpannedOption<Applicability>,
        /// Identifier for variable used for formatted code, e.g. `___code_0`. Enables separation
        /// of formatting and diagnostic emission so that `arg` calls can happen in-between..
        code_field: syn::Ident,
        /// Initialization logic for `code_field`'s variable, e.g.
        /// `let __formatted_code = /* whatever */;`
        code_init: TokenStream,
    },
    /// `#[multipart_suggestion{,_short,_hidden,_verbose}]`
    MultipartSuggestion {
        suggestion_kind: SuggestionKind,
        applicability: SpannedOption<Applicability>,
    },
}

pub(super) struct SubdiagnosticVariant {
    pub(super) kind: SubdiagnosticKind,
    pub(super) slug: Option<Path>,
    pub(super) no_span: bool,
}

impl SubdiagnosticVariant {
    /// Constructs a `SubdiagnosticVariant` from a field or type attribute such as `#[note]`,
    /// `#[error(parser::add_paren, no_span)]` or `#[suggestion(code = "...")]`. Returns the
    /// `SubdiagnosticKind` and the diagnostic slug, if specified.
    pub(super) fn from_attr(
        attr: &Attribute,
        fields: &impl HasFieldMap,
    ) -> Result<Option<SubdiagnosticVariant>, DiagnosticDeriveError> {
        // Always allow documentation comments.
        if is_doc_comment(attr) {
            return Ok(None);
        }

        let span = attr.span().unwrap();

        let name = attr.path().segments.last().unwrap().ident.to_string();
        let name = name.as_str();

        let mut kind = match name {
            "label" => SubdiagnosticKind::Label,
            "note" => SubdiagnosticKind::Note,
            "note_once" => SubdiagnosticKind::NoteOnce,
            "help" => SubdiagnosticKind::Help,
            "help_once" => SubdiagnosticKind::HelpOnce,
            "warning" => SubdiagnosticKind::Warn,
            _ => {
                // Recover old `#[(multipart_)suggestion_*]` syntaxes
                // FIXME(#100717): remove
                if let Some(suggestion_kind) =
                    name.strip_prefix("suggestion").and_then(SuggestionKind::from_suffix)
                {
                    if suggestion_kind != SuggestionKind::Normal {
                        invalid_attr(attr)
                            .help(format!(
                                r#"Use `#[suggestion(..., style = "{suggestion_kind}")]` instead"#
                            ))
                            .emit();
                    }

                    SubdiagnosticKind::Suggestion {
                        suggestion_kind: SuggestionKind::Normal,
                        applicability: None,
                        code_field: new_code_ident(),
                        code_init: TokenStream::new(),
                    }
                } else if let Some(suggestion_kind) =
                    name.strip_prefix("multipart_suggestion").and_then(SuggestionKind::from_suffix)
                {
                    if suggestion_kind != SuggestionKind::Normal {
                        invalid_attr(attr)
                            .help(format!(
                                r#"Use `#[multipart_suggestion(..., style = "{suggestion_kind}")]` instead"#
                            ))
                            .emit();
                    }

                    SubdiagnosticKind::MultipartSuggestion {
                        suggestion_kind: SuggestionKind::Normal,
                        applicability: None,
                    }
                } else {
                    throw_invalid_attr!(attr);
                }
            }
        };

        let list = match &attr.meta {
            Meta::List(list) => {
                // An attribute with properties, such as `#[suggestion(code = "...")]` or
                // `#[error(some::slug)]`
                list
            }
            Meta::Path(_) => {
                // An attribute without a slug or other properties, such as `#[note]` - return
                // without further processing.
                //
                // Only allow this if there are no mandatory properties, such as `code = "..."` in
                // `#[suggestion(...)]`
                match kind {
                    SubdiagnosticKind::Label
                    | SubdiagnosticKind::Note
                    | SubdiagnosticKind::NoteOnce
                    | SubdiagnosticKind::Help
                    | SubdiagnosticKind::HelpOnce
                    | SubdiagnosticKind::Warn
                    | SubdiagnosticKind::MultipartSuggestion { .. } => {
                        return Ok(Some(SubdiagnosticVariant { kind, slug: None, no_span: false }));
                    }
                    SubdiagnosticKind::Suggestion { .. } => {
                        throw_span_err!(span, "suggestion without `code = \"...\"`")
                    }
                }
            }
            _ => {
                throw_invalid_attr!(attr)
            }
        };

        let mut code = None;
        let mut suggestion_kind = None;

        let mut first = true;
        let mut slug = None;
        let mut no_span = false;

        list.parse_nested_meta(|nested| {
            if nested.input.is_empty() || nested.input.peek(Token![,]) {
                if first {
                    slug = Some(nested.path);
                } else if nested.path.is_ident("no_span") {
                    no_span = true;
                } else {
                    span_err(nested.input.span().unwrap(), "a diagnostic slug must be the first argument to the attribute").emit();
                }

                first = false;
                return Ok(());
            }

            first = false;

            let nested_name = nested.path.segments.last().unwrap().ident.to_string();
            let nested_name = nested_name.as_str();

            let path_span = nested.path.span().unwrap();
            let val_span = nested.input.span().unwrap();

            macro_rules! get_string {
                () => {{
                    let Ok(value) = nested.value().and_then(|x| x.parse::<LitStr>()) else {
                        span_err(val_span, "expected `= \"xxx\"`").emit();
                        return Ok(());
                    };
                    value
                }};
            }

            let mut has_errors = false;
            let input = nested.input;

            match (nested_name, &mut kind) {
                ("code", SubdiagnosticKind::Suggestion { code_field, .. }) => {
                    let code_init = build_suggestion_code(
                        code_field,
                        nested,
                        fields,
                        AllowMultipleAlternatives::Yes,
                    );
                    code.set_once(code_init, path_span);
                }
                (
                    "applicability",
                    SubdiagnosticKind::Suggestion { ref mut applicability, .. }
                    | SubdiagnosticKind::MultipartSuggestion { ref mut applicability, .. },
                ) => {
                    let value = get_string!();
                    let value = Applicability::from_str(&value.value()).unwrap_or_else(|()| {
                        span_err(value.span().unwrap(), "invalid applicability").emit();
                        has_errors = true;
                        Applicability::Unspecified
                    });
                    applicability.set_once(value, span);
                }
                (
                    "style",
                    SubdiagnosticKind::Suggestion { .. }
                    | SubdiagnosticKind::MultipartSuggestion { .. },
                ) => {
                    let value = get_string!();

                    let value = value.value().parse().unwrap_or_else(|()| {
                        span_err(value.span().unwrap(), "invalid suggestion style")
                            .help("valid styles are `normal`, `short`, `hidden`, `verbose` and `tool-only`")
                            .emit();
                        has_errors = true;
                        SuggestionKind::Normal
                    });

                    suggestion_kind.set_once(value, span);
                }

                // Invalid nested attribute
                (_, SubdiagnosticKind::Suggestion { .. }) => {
                    span_err(path_span, "invalid nested attribute")
                        .help(
                            "only `no_span`, `style`, `code` and `applicability` are valid nested attributes",
                        )
                        .emit();
                    has_errors = true;
                }
                (_, SubdiagnosticKind::MultipartSuggestion { .. }) => {
                    span_err(path_span, "invalid nested attribute")
                        .help("only `no_span`, `style` and `applicability` are valid nested attributes")
                        .emit();
                    has_errors = true;
                }
                _ => {
                    span_err(path_span, "only `no_span` is a valid nested attribute").emit();
                    has_errors = true;
                }
            }

            if has_errors {
                // Consume the rest of the input to avoid spamming errors
                let _ = input.parse::<TokenStream>();
            }

            Ok(())
        })?;

        match kind {
            SubdiagnosticKind::Suggestion {
                ref code_field,
                ref mut code_init,
                suggestion_kind: ref mut kind_field,
                ..
            } => {
                if let Some(kind) = suggestion_kind.value() {
                    *kind_field = kind;
                }

                *code_init = if let Some(init) = code.value() {
                    init
                } else {
                    span_err(span, "suggestion without `code = \"...\"`").emit();
                    quote! { let #code_field = std::iter::empty(); }
                };
            }
            SubdiagnosticKind::MultipartSuggestion {
                suggestion_kind: ref mut kind_field, ..
            } => {
                if let Some(kind) = suggestion_kind.value() {
                    *kind_field = kind;
                }
            }
            SubdiagnosticKind::Label
            | SubdiagnosticKind::Note
            | SubdiagnosticKind::NoteOnce
            | SubdiagnosticKind::Help
            | SubdiagnosticKind::HelpOnce
            | SubdiagnosticKind::Warn => {}
        }

        Ok(Some(SubdiagnosticVariant { kind, slug, no_span }))
    }
}

impl quote::IdentFragment for SubdiagnosticKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            SubdiagnosticKind::Label => write!(f, "label"),
            SubdiagnosticKind::Note => write!(f, "note"),
            SubdiagnosticKind::NoteOnce => write!(f, "note_once"),
            SubdiagnosticKind::Help => write!(f, "help"),
            SubdiagnosticKind::HelpOnce => write!(f, "help_once"),
            SubdiagnosticKind::Warn => write!(f, "warn"),
            SubdiagnosticKind::Suggestion { .. } => write!(f, "suggestions_with_style"),
            SubdiagnosticKind::MultipartSuggestion { .. } => {
                write!(f, "multipart_suggestion_with_style")
            }
        }
    }

    fn span(&self) -> Option<proc_macro2::Span> {
        None
    }
}

/// Returns `true` if `field` should generate a `arg` call rather than any other diagnostic
/// call (like `span_label`).
pub(super) fn should_generate_arg(field: &Field) -> bool {
    // Perhaps this should be an exhaustive list...
    field.attrs.iter().all(|attr| is_doc_comment(attr))
}

pub(super) fn is_doc_comment(attr: &Attribute) -> bool {
    attr.path().segments.last().unwrap().ident == "doc"
}