rustc_infer/infer/
mod.rs

1use std::cell::{Cell, RefCell};
2use std::fmt;
3
4pub use at::DefineOpaqueTypes;
5use free_regions::RegionRelations;
6pub use freshen::TypeFreshener;
7use lexical_region_resolve::LexicalRegionResolutions;
8pub use lexical_region_resolve::RegionResolutionError;
9pub use opaque_types::{OpaqueTypeStorage, OpaqueTypeStorageEntries, OpaqueTypeTable};
10use region_constraints::{
11    GenericKind, RegionConstraintCollector, RegionConstraintStorage, VarInfos, VerifyBound,
12};
13pub use relate::StructurallyRelateAliases;
14pub use relate::combine::PredicateEmittingRelation;
15use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
16use rustc_data_structures::undo_log::{Rollback, UndoLogs};
17use rustc_data_structures::unify as ut;
18use rustc_errors::{DiagCtxtHandle, ErrorGuaranteed};
19use rustc_hir as hir;
20use rustc_hir::def_id::{DefId, LocalDefId};
21use rustc_macros::extension;
22pub use rustc_macros::{TypeFoldable, TypeVisitable};
23use rustc_middle::bug;
24use rustc_middle::infer::canonical::{CanonicalQueryInput, CanonicalVarValues};
25use rustc_middle::mir::ConstraintCategory;
26use rustc_middle::traits::select;
27use rustc_middle::traits::solve::Goal;
28use rustc_middle::ty::error::{ExpectedFound, TypeError};
29use rustc_middle::ty::{
30    self, BoundVarReplacerDelegate, ConstVid, FloatVid, GenericArg, GenericArgKind, GenericArgs,
31    GenericArgsRef, GenericParamDefKind, InferConst, IntVid, OpaqueHiddenType, OpaqueTypeKey,
32    PseudoCanonicalInput, Term, TermKind, Ty, TyCtxt, TyVid, TypeFoldable, TypeFolder,
33    TypeSuperFoldable, TypeVisitable, TypeVisitableExt, TypingEnv, TypingMode, fold_regions,
34};
35use rustc_span::{DUMMY_SP, Span, Symbol};
36use snapshot::undo_log::InferCtxtUndoLogs;
37use tracing::{debug, instrument};
38use type_variable::TypeVariableOrigin;
39
40use crate::infer::snapshot::undo_log::UndoLog;
41use crate::infer::unify_key::{ConstVariableOrigin, ConstVariableValue, ConstVidKey};
42use crate::traits::{
43    self, ObligationCause, ObligationInspector, PredicateObligation, PredicateObligations,
44    TraitEngine,
45};
46
47pub mod at;
48pub mod canonical;
49mod context;
50mod free_regions;
51mod freshen;
52mod lexical_region_resolve;
53mod opaque_types;
54pub mod outlives;
55mod projection;
56pub mod region_constraints;
57pub mod relate;
58pub mod resolve;
59pub(crate) mod snapshot;
60mod type_variable;
61mod unify_key;
62
63/// `InferOk<'tcx, ()>` is used a lot. It may seem like a useless wrapper
64/// around `PredicateObligations<'tcx>`, but it has one important property:
65/// because `InferOk` is marked with `#[must_use]`, if you have a method
66/// `InferCtxt::f` that returns `InferResult<'tcx, ()>` and you call it with
67/// `infcx.f()?;` you'll get a warning about the obligations being discarded
68/// without use, which is probably unintentional and has been a source of bugs
69/// in the past.
70#[must_use]
71#[derive(Debug)]
72pub struct InferOk<'tcx, T> {
73    pub value: T,
74    pub obligations: PredicateObligations<'tcx>,
75}
76pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
77
78pub(crate) type FixupResult<T> = Result<T, FixupError>; // "fixup result"
79
80pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
81    ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
82>;
83
84/// This type contains all the things within `InferCtxt` that sit within a
85/// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
86/// operations are hot enough that we want only one call to `borrow_mut` per
87/// call to `start_snapshot` and `rollback_to`.
88#[derive(Clone)]
89pub struct InferCtxtInner<'tcx> {
90    undo_log: InferCtxtUndoLogs<'tcx>,
91
92    /// Cache for projections.
93    ///
94    /// This cache is snapshotted along with the infcx.
95    projection_cache: traits::ProjectionCacheStorage<'tcx>,
96
97    /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
98    /// that might instantiate a general type variable have an order,
99    /// represented by its upper and lower bounds.
100    type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
101
102    /// Map from const parameter variable to the kind of const it represents.
103    const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>,
104
105    /// Map from integral variable to the kind of integer it represents.
106    int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
107
108    /// Map from floating variable to the kind of float it represents.
109    float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
110
111    /// Tracks the set of region variables and the constraints between them.
112    ///
113    /// This is initially `Some(_)` but when
114    /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
115    /// -- further attempts to perform unification, etc., may fail if new
116    /// region constraints would've been added.
117    region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
118
119    /// A set of constraints that regionck must validate.
120    ///
121    /// Each constraint has the form `T:'a`, meaning "some type `T` must
122    /// outlive the lifetime 'a". These constraints derive from
123    /// instantiated type parameters. So if you had a struct defined
124    /// like the following:
125    /// ```ignore (illustrative)
126    /// struct Foo<T: 'static> { ... }
127    /// ```
128    /// In some expression `let x = Foo { ... }`, it will
129    /// instantiate the type parameter `T` with a fresh type `$0`. At
130    /// the same time, it will record a region obligation of
131    /// `$0: 'static`. This will get checked later by regionck. (We
132    /// can't generally check these things right away because we have
133    /// to wait until types are resolved.)
134    ///
135    /// These are stored in a map keyed to the id of the innermost
136    /// enclosing fn body / static initializer expression. This is
137    /// because the location where the obligation was incurred can be
138    /// relevant with respect to which sublifetime assumptions are in
139    /// place. The reason that we store under the fn-id, and not
140    /// something more fine-grained, is so that it is easier for
141    /// regionck to be sure that it has found *all* the region
142    /// obligations (otherwise, it's easy to fail to walk to a
143    /// particular node-id).
144    ///
145    /// Before running `resolve_regions_and_report_errors`, the creator
146    /// of the inference context is expected to invoke
147    /// [`InferCtxt::process_registered_region_obligations`]
148    /// for each body-id in this map, which will process the
149    /// obligations within. This is expected to be done 'late enough'
150    /// that all type inference variables have been bound and so forth.
151    region_obligations: Vec<TypeOutlivesConstraint<'tcx>>,
152
153    /// The outlives bounds that we assume must hold about placeholders that
154    /// come from instantiating the binder of coroutine-witnesses. These bounds
155    /// are deduced from the well-formedness of the witness's types, and are
156    /// necessary because of the way we anonymize the regions in a coroutine,
157    /// which may cause types to no longer be considered well-formed.
158    region_assumptions: Vec<ty::ArgOutlivesPredicate<'tcx>>,
159
160    /// `-Znext-solver`: Successfully proven goals during HIR typeck which
161    /// reference inference variables and get reproven after writeback.
162    ///
163    /// See the documentation of `InferCtxt::in_hir_typeck` for more details.
164    hir_typeck_potentially_region_dependent_goals: Vec<PredicateObligation<'tcx>>,
165
166    /// Caches for opaque type inference.
167    opaque_type_storage: OpaqueTypeStorage<'tcx>,
168}
169
170impl<'tcx> InferCtxtInner<'tcx> {
171    fn new() -> InferCtxtInner<'tcx> {
172        InferCtxtInner {
173            undo_log: InferCtxtUndoLogs::default(),
174
175            projection_cache: Default::default(),
176            type_variable_storage: Default::default(),
177            const_unification_storage: Default::default(),
178            int_unification_storage: Default::default(),
179            float_unification_storage: Default::default(),
180            region_constraint_storage: Some(Default::default()),
181            region_obligations: Default::default(),
182            region_assumptions: Default::default(),
183            hir_typeck_potentially_region_dependent_goals: Default::default(),
184            opaque_type_storage: Default::default(),
185        }
186    }
187
188    #[inline]
189    pub fn region_obligations(&self) -> &[TypeOutlivesConstraint<'tcx>] {
190        &self.region_obligations
191    }
192
193    #[inline]
194    pub fn region_assumptions(&self) -> &[ty::ArgOutlivesPredicate<'tcx>] {
195        &self.region_assumptions
196    }
197
198    #[inline]
199    pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
200        self.projection_cache.with_log(&mut self.undo_log)
201    }
202
203    #[inline]
204    fn try_type_variables_probe_ref(
205        &self,
206        vid: ty::TyVid,
207    ) -> Option<&type_variable::TypeVariableValue<'tcx>> {
208        // Uses a read-only view of the unification table, this way we don't
209        // need an undo log.
210        self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
211    }
212
213    #[inline]
214    fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
215        self.type_variable_storage.with_log(&mut self.undo_log)
216    }
217
218    #[inline]
219    pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
220        self.opaque_type_storage.with_log(&mut self.undo_log)
221    }
222
223    #[inline]
224    fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
225        self.int_unification_storage.with_log(&mut self.undo_log)
226    }
227
228    #[inline]
229    fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
230        self.float_unification_storage.with_log(&mut self.undo_log)
231    }
232
233    #[inline]
234    fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> {
235        self.const_unification_storage.with_log(&mut self.undo_log)
236    }
237
238    #[inline]
239    pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
240        self.region_constraint_storage
241            .as_mut()
242            .expect("region constraints already solved")
243            .with_log(&mut self.undo_log)
244    }
245}
246
247pub struct InferCtxt<'tcx> {
248    pub tcx: TyCtxt<'tcx>,
249
250    /// The mode of this inference context, see the struct documentation
251    /// for more details.
252    typing_mode: TypingMode<'tcx>,
253
254    /// Whether this inference context should care about region obligations in
255    /// the root universe. Most notably, this is used during HIR typeck as region
256    /// solving is left to borrowck instead.
257    pub considering_regions: bool,
258    /// `-Znext-solver`: Whether this inference context is used by HIR typeck. If so, we
259    /// need to make sure we don't rely on region identity in the trait solver or when
260    /// relating types. This is necessary as borrowck starts by replacing each occurrence of a
261    /// free region with a unique inference variable. If HIR typeck ends up depending on two
262    /// regions being equal we'd get unexpected mismatches between HIR typeck and MIR typeck,
263    /// resulting in an ICE.
264    ///
265    /// The trait solver sometimes depends on regions being identical. As a concrete example
266    /// the trait solver ignores other candidates if one candidate exists without any constraints.
267    /// The goal `&'a u32: Equals<&'a u32>` has no constraints right now. If we replace each
268    /// occurrence of `'a` with a unique region the goal now equates these regions. See
269    /// the tests in trait-system-refactor-initiative#27 for concrete examples.
270    ///
271    /// We handle this by *uniquifying* region when canonicalizing root goals during HIR typeck.
272    /// This is still insufficient as inference variables may *hide* region variables, so e.g.
273    /// `dyn TwoSuper<?x, ?x>: Super<?x>` may hold but MIR typeck could end up having to prove
274    /// `dyn TwoSuper<&'0 (), &'1 ()>: Super<&'2 ()>` which is now ambiguous. Because of this we
275    /// stash all successfully proven goals which reference inference variables and then reprove
276    /// them after writeback.
277    pub in_hir_typeck: bool,
278
279    /// If set, this flag causes us to skip the 'leak check' during
280    /// higher-ranked subtyping operations. This flag is a temporary one used
281    /// to manage the removal of the leak-check: for the time being, we still run the
282    /// leak-check, but we issue warnings.
283    skip_leak_check: bool,
284
285    pub inner: RefCell<InferCtxtInner<'tcx>>,
286
287    /// Once region inference is done, the values for each variable.
288    lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
289
290    /// Caches the results of trait selection. This cache is used
291    /// for things that depends on inference variables or placeholders.
292    pub selection_cache: select::SelectionCache<'tcx, ty::ParamEnv<'tcx>>,
293
294    /// Caches the results of trait evaluation. This cache is used
295    /// for things that depends on inference variables or placeholders.
296    pub evaluation_cache: select::EvaluationCache<'tcx, ty::ParamEnv<'tcx>>,
297
298    /// The set of predicates on which errors have been reported, to
299    /// avoid reporting the same error twice.
300    pub reported_trait_errors:
301        RefCell<FxIndexMap<Span, (Vec<Goal<'tcx, ty::Predicate<'tcx>>>, ErrorGuaranteed)>>,
302
303    pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
304
305    /// When an error occurs, we want to avoid reporting "derived"
306    /// errors that are due to this original failure. We have this
307    /// flag that one can set whenever one creates a type-error that
308    /// is due to an error in a prior pass.
309    ///
310    /// Don't read this flag directly, call `is_tainted_by_errors()`
311    /// and `set_tainted_by_errors()`.
312    tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
313
314    /// What is the innermost universe we have created? Starts out as
315    /// `UniverseIndex::root()` but grows from there as we enter
316    /// universal quantifiers.
317    ///
318    /// N.B., at present, we exclude the universal quantifiers on the
319    /// item we are type-checking, and just consider those names as
320    /// part of the root universe. So this would only get incremented
321    /// when we enter into a higher-ranked (`for<..>`) type or trait
322    /// bound.
323    universe: Cell<ty::UniverseIndex>,
324
325    next_trait_solver: bool,
326
327    pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>,
328}
329
330/// See the `error_reporting` module for more details.
331#[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
332pub enum ValuePairs<'tcx> {
333    Regions(ExpectedFound<ty::Region<'tcx>>),
334    Terms(ExpectedFound<ty::Term<'tcx>>),
335    Aliases(ExpectedFound<ty::AliasTerm<'tcx>>),
336    TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
337    PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
338    ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
339    ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
340}
341
342impl<'tcx> ValuePairs<'tcx> {
343    pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
344        if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
345            && let Some(expected) = expected.as_type()
346            && let Some(found) = found.as_type()
347        {
348            Some((expected, found))
349        } else {
350            None
351        }
352    }
353}
354
355/// The trace designates the path through inference that we took to
356/// encounter an error or subtyping constraint.
357///
358/// See the `error_reporting` module for more details.
359#[derive(Clone, Debug)]
360pub struct TypeTrace<'tcx> {
361    pub cause: ObligationCause<'tcx>,
362    pub values: ValuePairs<'tcx>,
363}
364
365/// The origin of a `r1 <= r2` constraint.
366///
367/// See `error_reporting` module for more details
368#[derive(Clone, Debug)]
369pub enum SubregionOrigin<'tcx> {
370    /// Arose from a subtyping relation
371    Subtype(Box<TypeTrace<'tcx>>),
372
373    /// When casting `&'a T` to an `&'b Trait` object,
374    /// relating `'a` to `'b`.
375    RelateObjectBound(Span),
376
377    /// Some type parameter was instantiated with the given type,
378    /// and that type must outlive some region.
379    RelateParamBound(Span, Ty<'tcx>, Option<Span>),
380
381    /// The given region parameter was instantiated with a region
382    /// that must outlive some other region.
383    RelateRegionParamBound(Span, Option<Ty<'tcx>>),
384
385    /// Creating a pointer `b` to contents of another reference.
386    Reborrow(Span),
387
388    /// (&'a &'b T) where a >= b
389    ReferenceOutlivesReferent(Ty<'tcx>, Span),
390
391    /// Comparing the signature and requirements of an impl method against
392    /// the containing trait.
393    CompareImplItemObligation {
394        span: Span,
395        impl_item_def_id: LocalDefId,
396        trait_item_def_id: DefId,
397    },
398
399    /// Checking that the bounds of a trait's associated type hold for a given impl.
400    CheckAssociatedTypeBounds {
401        parent: Box<SubregionOrigin<'tcx>>,
402        impl_item_def_id: LocalDefId,
403        trait_item_def_id: DefId,
404    },
405
406    AscribeUserTypeProvePredicate(Span),
407}
408
409// `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
410#[cfg(target_pointer_width = "64")]
411rustc_data_structures::static_assert_size!(SubregionOrigin<'_>, 32);
412
413impl<'tcx> SubregionOrigin<'tcx> {
414    pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
415        match self {
416            Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
417            Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
418            _ => ConstraintCategory::BoringNoLocation,
419        }
420    }
421}
422
423/// Times when we replace bound regions with existentials:
424#[derive(Clone, Copy, Debug)]
425pub enum BoundRegionConversionTime {
426    /// when a fn is called
427    FnCall,
428
429    /// when two higher-ranked types are compared
430    HigherRankedType,
431
432    /// when projecting an associated type
433    AssocTypeProjection(DefId),
434}
435
436/// Reasons to create a region inference variable.
437///
438/// See `error_reporting` module for more details.
439#[derive(Copy, Clone, Debug)]
440pub enum RegionVariableOrigin {
441    /// Region variables created for ill-categorized reasons.
442    ///
443    /// They mostly indicate places in need of refactoring.
444    Misc(Span),
445
446    /// Regions created by a `&P` or `[...]` pattern.
447    PatternRegion(Span),
448
449    /// Regions created by `&` operator.
450    BorrowRegion(Span),
451
452    /// Regions created as part of an autoref of a method receiver.
453    Autoref(Span),
454
455    /// Regions created as part of an automatic coercion.
456    Coercion(Span),
457
458    /// Region variables created as the values for early-bound regions.
459    ///
460    /// FIXME(@lcnr): This should also store a `DefId`, similar to
461    /// `TypeVariableOrigin`.
462    RegionParameterDefinition(Span, Symbol),
463
464    /// Region variables created when instantiating a binder with
465    /// existential variables, e.g. when calling a function or method.
466    BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime),
467
468    UpvarRegion(ty::UpvarId, Span),
469
470    /// This origin is used for the inference variables that we create
471    /// during NLL region processing.
472    Nll(NllRegionVariableOrigin),
473}
474
475#[derive(Copy, Clone, Debug)]
476pub enum NllRegionVariableOrigin {
477    /// During NLL region processing, we create variables for free
478    /// regions that we encounter in the function signature and
479    /// elsewhere. This origin indices we've got one of those.
480    FreeRegion,
481
482    /// "Universal" instantiation of a higher-ranked region (e.g.,
483    /// from a `for<'a> T` binder). Meant to represent "any region".
484    Placeholder(ty::PlaceholderRegion),
485
486    Existential {
487        /// If this is true, then this variable was created to represent a lifetime
488        /// bound in a `for` binder. For example, it might have been created to
489        /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
490        /// Such variables are created when we are trying to figure out if there
491        /// is any valid instantiation of `'a` that could fit into some scenario.
492        ///
493        /// This is used to inform error reporting: in the case that we are trying to
494        /// determine whether there is any valid instantiation of a `'a` variable that meets
495        /// some constraint C, we want to blame the "source" of that `for` type,
496        /// rather than blaming the source of the constraint C.
497        from_forall: bool,
498    },
499}
500
501#[derive(Copy, Clone, Debug)]
502pub struct FixupError {
503    unresolved: TyOrConstInferVar,
504}
505
506impl fmt::Display for FixupError {
507    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
508        match self.unresolved {
509            TyOrConstInferVar::TyInt(_) => write!(
510                f,
511                "cannot determine the type of this integer; \
512                 add a suffix to specify the type explicitly"
513            ),
514            TyOrConstInferVar::TyFloat(_) => write!(
515                f,
516                "cannot determine the type of this number; \
517                 add a suffix to specify the type explicitly"
518            ),
519            TyOrConstInferVar::Ty(_) => write!(f, "unconstrained type"),
520            TyOrConstInferVar::Const(_) => write!(f, "unconstrained const value"),
521        }
522    }
523}
524
525/// See the `region_obligations` field for more information.
526#[derive(Clone, Debug)]
527pub struct TypeOutlivesConstraint<'tcx> {
528    pub sub_region: ty::Region<'tcx>,
529    pub sup_type: Ty<'tcx>,
530    pub origin: SubregionOrigin<'tcx>,
531}
532
533/// Used to configure inference contexts before their creation.
534pub struct InferCtxtBuilder<'tcx> {
535    tcx: TyCtxt<'tcx>,
536    considering_regions: bool,
537    in_hir_typeck: bool,
538    skip_leak_check: bool,
539    /// Whether we should use the new trait solver in the local inference context,
540    /// which affects things like which solver is used in `predicate_may_hold`.
541    next_trait_solver: bool,
542}
543
544#[extension(pub trait TyCtxtInferExt<'tcx>)]
545impl<'tcx> TyCtxt<'tcx> {
546    fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
547        InferCtxtBuilder {
548            tcx: self,
549            considering_regions: true,
550            in_hir_typeck: false,
551            skip_leak_check: false,
552            next_trait_solver: self.next_trait_solver_globally(),
553        }
554    }
555}
556
557impl<'tcx> InferCtxtBuilder<'tcx> {
558    pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
559        self.next_trait_solver = next_trait_solver;
560        self
561    }
562
563    pub fn ignoring_regions(mut self) -> Self {
564        self.considering_regions = false;
565        self
566    }
567
568    pub fn in_hir_typeck(mut self) -> Self {
569        self.in_hir_typeck = true;
570        self
571    }
572
573    pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
574        self.skip_leak_check = skip_leak_check;
575        self
576    }
577
578    /// Given a canonical value `C` as a starting point, create an
579    /// inference context that contains each of the bound values
580    /// within instantiated as a fresh variable. The `f` closure is
581    /// invoked with the new infcx, along with the instantiated value
582    /// `V` and a instantiation `S`. This instantiation `S` maps from
583    /// the bound values in `C` to their instantiated values in `V`
584    /// (in other words, `S(C) = V`).
585    pub fn build_with_canonical<T>(
586        mut self,
587        span: Span,
588        input: &CanonicalQueryInput<'tcx, T>,
589    ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
590    where
591        T: TypeFoldable<TyCtxt<'tcx>>,
592    {
593        let infcx = self.build(input.typing_mode);
594        let (value, args) = infcx.instantiate_canonical(span, &input.canonical);
595        (infcx, value, args)
596    }
597
598    pub fn build_with_typing_env(
599        mut self,
600        TypingEnv { typing_mode, param_env }: TypingEnv<'tcx>,
601    ) -> (InferCtxt<'tcx>, ty::ParamEnv<'tcx>) {
602        (self.build(typing_mode), param_env)
603    }
604
605    pub fn build(&mut self, typing_mode: TypingMode<'tcx>) -> InferCtxt<'tcx> {
606        let InferCtxtBuilder {
607            tcx,
608            considering_regions,
609            in_hir_typeck,
610            skip_leak_check,
611            next_trait_solver,
612        } = *self;
613        InferCtxt {
614            tcx,
615            typing_mode,
616            considering_regions,
617            in_hir_typeck,
618            skip_leak_check,
619            inner: RefCell::new(InferCtxtInner::new()),
620            lexical_region_resolutions: RefCell::new(None),
621            selection_cache: Default::default(),
622            evaluation_cache: Default::default(),
623            reported_trait_errors: Default::default(),
624            reported_signature_mismatch: Default::default(),
625            tainted_by_errors: Cell::new(None),
626            universe: Cell::new(ty::UniverseIndex::ROOT),
627            next_trait_solver,
628            obligation_inspector: Cell::new(None),
629        }
630    }
631}
632
633impl<'tcx, T> InferOk<'tcx, T> {
634    /// Extracts `value`, registering any obligations into `fulfill_cx`.
635    pub fn into_value_registering_obligations<E: 'tcx>(
636        self,
637        infcx: &InferCtxt<'tcx>,
638        fulfill_cx: &mut dyn TraitEngine<'tcx, E>,
639    ) -> T {
640        let InferOk { value, obligations } = self;
641        fulfill_cx.register_predicate_obligations(infcx, obligations);
642        value
643    }
644}
645
646impl<'tcx> InferOk<'tcx, ()> {
647    pub fn into_obligations(self) -> PredicateObligations<'tcx> {
648        self.obligations
649    }
650}
651
652impl<'tcx> InferCtxt<'tcx> {
653    pub fn dcx(&self) -> DiagCtxtHandle<'_> {
654        self.tcx.dcx().taintable_handle(&self.tainted_by_errors)
655    }
656
657    pub fn next_trait_solver(&self) -> bool {
658        self.next_trait_solver
659    }
660
661    #[inline(always)]
662    pub fn typing_mode(&self) -> TypingMode<'tcx> {
663        self.typing_mode
664    }
665
666    pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
667        t.fold_with(&mut self.freshener())
668    }
669
670    /// Returns the origin of the type variable identified by `vid`.
671    ///
672    /// No attempt is made to resolve `vid` to its root variable.
673    pub fn type_var_origin(&self, vid: TyVid) -> TypeVariableOrigin {
674        self.inner.borrow_mut().type_variables().var_origin(vid)
675    }
676
677    /// Returns the origin of the const variable identified by `vid`
678    // FIXME: We should store origins separately from the unification table
679    // so this doesn't need to be optional.
680    pub fn const_var_origin(&self, vid: ConstVid) -> Option<ConstVariableOrigin> {
681        match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
682            ConstVariableValue::Known { .. } => None,
683            ConstVariableValue::Unknown { origin, .. } => Some(origin),
684        }
685    }
686
687    pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
688        freshen::TypeFreshener::new(self)
689    }
690
691    pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> {
692        let mut inner = self.inner.borrow_mut();
693        let mut vars: Vec<Ty<'_>> = inner
694            .type_variables()
695            .unresolved_variables()
696            .into_iter()
697            .map(|t| Ty::new_var(self.tcx, t))
698            .collect();
699        vars.extend(
700            (0..inner.int_unification_table().len())
701                .map(|i| ty::IntVid::from_usize(i))
702                .filter(|&vid| inner.int_unification_table().probe_value(vid).is_unknown())
703                .map(|v| Ty::new_int_var(self.tcx, v)),
704        );
705        vars.extend(
706            (0..inner.float_unification_table().len())
707                .map(|i| ty::FloatVid::from_usize(i))
708                .filter(|&vid| inner.float_unification_table().probe_value(vid).is_unknown())
709                .map(|v| Ty::new_float_var(self.tcx, v)),
710        );
711        vars
712    }
713
714    #[instrument(skip(self), level = "debug")]
715    pub fn sub_regions(
716        &self,
717        origin: SubregionOrigin<'tcx>,
718        a: ty::Region<'tcx>,
719        b: ty::Region<'tcx>,
720    ) {
721        self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
722    }
723
724    /// Processes a `Coerce` predicate from the fulfillment context.
725    /// This is NOT the preferred way to handle coercion, which is to
726    /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
727    ///
728    /// This method here is actually a fallback that winds up being
729    /// invoked when `FnCtxt::coerce` encounters unresolved type variables
730    /// and records a coercion predicate. Presently, this method is equivalent
731    /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
732    /// actually requiring `a <: b`. This is of course a valid coercion,
733    /// but it's not as flexible as `FnCtxt::coerce` would be.
734    ///
735    /// (We may refactor this in the future, but there are a number of
736    /// practical obstacles. Among other things, `FnCtxt::coerce` presently
737    /// records adjustments that are required on the HIR in order to perform
738    /// the coercion, and we don't currently have a way to manage that.)
739    pub fn coerce_predicate(
740        &self,
741        cause: &ObligationCause<'tcx>,
742        param_env: ty::ParamEnv<'tcx>,
743        predicate: ty::PolyCoercePredicate<'tcx>,
744    ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
745        let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
746            a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
747            a: p.a,
748            b: p.b,
749        });
750        self.subtype_predicate(cause, param_env, subtype_predicate)
751    }
752
753    pub fn subtype_predicate(
754        &self,
755        cause: &ObligationCause<'tcx>,
756        param_env: ty::ParamEnv<'tcx>,
757        predicate: ty::PolySubtypePredicate<'tcx>,
758    ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
759        // Check for two unresolved inference variables, in which case we can
760        // make no progress. This is partly a micro-optimization, but it's
761        // also an opportunity to "sub-unify" the variables. This isn't
762        // *necessary* to prevent cycles, because they would eventually be sub-unified
763        // anyhow during generalization, but it helps with diagnostics (we can detect
764        // earlier that they are sub-unified).
765        //
766        // Note that we can just skip the binders here because
767        // type variables can't (at present, at
768        // least) capture any of the things bound by this binder.
769        //
770        // Note that this sub here is not just for diagnostics - it has semantic
771        // effects as well.
772        let r_a = self.shallow_resolve(predicate.skip_binder().a);
773        let r_b = self.shallow_resolve(predicate.skip_binder().b);
774        match (r_a.kind(), r_b.kind()) {
775            (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
776                return Err((a_vid, b_vid));
777            }
778            _ => {}
779        }
780
781        self.enter_forall(predicate, |ty::SubtypePredicate { a_is_expected, a, b }| {
782            if a_is_expected {
783                Ok(self.at(cause, param_env).sub(DefineOpaqueTypes::Yes, a, b))
784            } else {
785                Ok(self.at(cause, param_env).sup(DefineOpaqueTypes::Yes, b, a))
786            }
787        })
788    }
789
790    /// Number of type variables created so far.
791    pub fn num_ty_vars(&self) -> usize {
792        self.inner.borrow_mut().type_variables().num_vars()
793    }
794
795    pub fn next_ty_var(&self, span: Span) -> Ty<'tcx> {
796        self.next_ty_var_with_origin(TypeVariableOrigin { span, param_def_id: None })
797    }
798
799    pub fn next_ty_var_with_origin(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
800        let vid = self.inner.borrow_mut().type_variables().new_var(self.universe(), origin);
801        Ty::new_var(self.tcx, vid)
802    }
803
804    pub fn next_ty_var_id_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> TyVid {
805        let origin = TypeVariableOrigin { span, param_def_id: None };
806        self.inner.borrow_mut().type_variables().new_var(universe, origin)
807    }
808
809    pub fn next_ty_var_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> Ty<'tcx> {
810        let vid = self.next_ty_var_id_in_universe(span, universe);
811        Ty::new_var(self.tcx, vid)
812    }
813
814    pub fn next_const_var(&self, span: Span) -> ty::Const<'tcx> {
815        self.next_const_var_with_origin(ConstVariableOrigin { span, param_def_id: None })
816    }
817
818    pub fn next_const_var_with_origin(&self, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
819        let vid = self
820            .inner
821            .borrow_mut()
822            .const_unification_table()
823            .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
824            .vid;
825        ty::Const::new_var(self.tcx, vid)
826    }
827
828    pub fn next_const_var_in_universe(
829        &self,
830        span: Span,
831        universe: ty::UniverseIndex,
832    ) -> ty::Const<'tcx> {
833        let origin = ConstVariableOrigin { span, param_def_id: None };
834        let vid = self
835            .inner
836            .borrow_mut()
837            .const_unification_table()
838            .new_key(ConstVariableValue::Unknown { origin, universe })
839            .vid;
840        ty::Const::new_var(self.tcx, vid)
841    }
842
843    pub fn next_int_var(&self) -> Ty<'tcx> {
844        let next_int_var_id =
845            self.inner.borrow_mut().int_unification_table().new_key(ty::IntVarValue::Unknown);
846        Ty::new_int_var(self.tcx, next_int_var_id)
847    }
848
849    pub fn next_float_var(&self) -> Ty<'tcx> {
850        let next_float_var_id =
851            self.inner.borrow_mut().float_unification_table().new_key(ty::FloatVarValue::Unknown);
852        Ty::new_float_var(self.tcx, next_float_var_id)
853    }
854
855    /// Creates a fresh region variable with the next available index.
856    /// The variable will be created in the maximum universe created
857    /// thus far, allowing it to name any region created thus far.
858    pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
859        self.next_region_var_in_universe(origin, self.universe())
860    }
861
862    /// Creates a fresh region variable with the next available index
863    /// in the given universe; typically, you can use
864    /// `next_region_var` and just use the maximal universe.
865    pub fn next_region_var_in_universe(
866        &self,
867        origin: RegionVariableOrigin,
868        universe: ty::UniverseIndex,
869    ) -> ty::Region<'tcx> {
870        let region_var =
871            self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
872        ty::Region::new_var(self.tcx, region_var)
873    }
874
875    pub fn next_term_var_of_kind(&self, term: ty::Term<'tcx>, span: Span) -> ty::Term<'tcx> {
876        match term.kind() {
877            ty::TermKind::Ty(_) => self.next_ty_var(span).into(),
878            ty::TermKind::Const(_) => self.next_const_var(span).into(),
879        }
880    }
881
882    /// Return the universe that the region `r` was created in. For
883    /// most regions (e.g., `'static`, named regions from the user,
884    /// etc) this is the root universe U0. For inference variables or
885    /// placeholders, however, it will return the universe which they
886    /// are associated.
887    pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
888        self.inner.borrow_mut().unwrap_region_constraints().universe(r)
889    }
890
891    /// Number of region variables created so far.
892    pub fn num_region_vars(&self) -> usize {
893        self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
894    }
895
896    /// Just a convenient wrapper of `next_region_var` for using during NLL.
897    #[instrument(skip(self), level = "debug")]
898    pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
899        self.next_region_var(RegionVariableOrigin::Nll(origin))
900    }
901
902    /// Just a convenient wrapper of `next_region_var` for using during NLL.
903    #[instrument(skip(self), level = "debug")]
904    pub fn next_nll_region_var_in_universe(
905        &self,
906        origin: NllRegionVariableOrigin,
907        universe: ty::UniverseIndex,
908    ) -> ty::Region<'tcx> {
909        self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
910    }
911
912    pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
913        match param.kind {
914            GenericParamDefKind::Lifetime => {
915                // Create a region inference variable for the given
916                // region parameter definition.
917                self.next_region_var(RegionVariableOrigin::RegionParameterDefinition(
918                    span, param.name,
919                ))
920                .into()
921            }
922            GenericParamDefKind::Type { .. } => {
923                // Create a type inference variable for the given
924                // type parameter definition. The generic parameters are
925                // for actual parameters that may be referred to by
926                // the default of this type parameter, if it exists.
927                // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
928                // used in a path such as `Foo::<T, U>::new()` will
929                // use an inference variable for `C` with `[T, U]`
930                // as the generic parameters for the default, `(T, U)`.
931                let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
932                    self.universe(),
933                    TypeVariableOrigin { param_def_id: Some(param.def_id), span },
934                );
935
936                Ty::new_var(self.tcx, ty_var_id).into()
937            }
938            GenericParamDefKind::Const { .. } => {
939                let origin = ConstVariableOrigin { param_def_id: Some(param.def_id), span };
940                let const_var_id = self
941                    .inner
942                    .borrow_mut()
943                    .const_unification_table()
944                    .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() })
945                    .vid;
946                ty::Const::new_var(self.tcx, const_var_id).into()
947            }
948        }
949    }
950
951    /// Given a set of generics defined on a type or impl, returns the generic parameters mapping
952    /// each type/region parameter to a fresh inference variable.
953    pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> {
954        GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
955    }
956
957    /// Returns `true` if errors have been reported since this infcx was
958    /// created. This is sometimes used as a heuristic to skip
959    /// reporting errors that often occur as a result of earlier
960    /// errors, but where it's hard to be 100% sure (e.g., unresolved
961    /// inference variables, regionck errors).
962    #[must_use = "this method does not have any side effects"]
963    pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
964        self.tainted_by_errors.get()
965    }
966
967    /// Set the "tainted by errors" flag to true. We call this when we
968    /// observe an error from a prior pass.
969    pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
970        debug!("set_tainted_by_errors(ErrorGuaranteed)");
971        self.tainted_by_errors.set(Some(e));
972    }
973
974    pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
975        let mut inner = self.inner.borrow_mut();
976        let inner = &mut *inner;
977        inner.unwrap_region_constraints().var_origin(vid)
978    }
979
980    /// Clone the list of variable regions. This is used only during NLL processing
981    /// to put the set of region variables into the NLL region context.
982    pub fn get_region_var_infos(&self) -> VarInfos {
983        let inner = self.inner.borrow();
984        assert!(!UndoLogs::<UndoLog<'_>>::in_snapshot(&inner.undo_log));
985        let storage = inner.region_constraint_storage.as_ref().expect("regions already resolved");
986        assert!(storage.data.is_empty(), "{:#?}", storage.data);
987        // We clone instead of taking because borrowck still wants to use the
988        // inference context after calling this for diagnostics and the new
989        // trait solver.
990        storage.var_infos.clone()
991    }
992
993    #[instrument(level = "debug", skip(self), ret)]
994    pub fn take_opaque_types(&self) -> Vec<(OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>)> {
995        self.inner.borrow_mut().opaque_type_storage.take_opaque_types().collect()
996    }
997
998    #[instrument(level = "debug", skip(self), ret)]
999    pub fn clone_opaque_types(&self) -> Vec<(OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>)> {
1000        self.inner.borrow_mut().opaque_type_storage.iter_opaque_types().collect()
1001    }
1002
1003    #[inline(always)]
1004    pub fn can_define_opaque_ty(&self, id: impl Into<DefId>) -> bool {
1005        debug_assert!(!self.next_trait_solver());
1006        match self.typing_mode() {
1007            TypingMode::Analysis {
1008                defining_opaque_types_and_generators: defining_opaque_types,
1009            }
1010            | TypingMode::Borrowck { defining_opaque_types } => {
1011                id.into().as_local().is_some_and(|def_id| defining_opaque_types.contains(&def_id))
1012            }
1013            // FIXME(#132279): This function is quite weird in post-analysis
1014            // and post-borrowck analysis mode. We may need to modify its uses
1015            // to support PostBorrowckAnalysis in the old solver as well.
1016            TypingMode::Coherence
1017            | TypingMode::PostBorrowckAnalysis { .. }
1018            | TypingMode::PostAnalysis => false,
1019        }
1020    }
1021
1022    pub fn push_hir_typeck_potentially_region_dependent_goal(
1023        &self,
1024        goal: PredicateObligation<'tcx>,
1025    ) {
1026        let mut inner = self.inner.borrow_mut();
1027        inner.undo_log.push(UndoLog::PushHirTypeckPotentiallyRegionDependentGoal);
1028        inner.hir_typeck_potentially_region_dependent_goals.push(goal);
1029    }
1030
1031    pub fn take_hir_typeck_potentially_region_dependent_goals(
1032        &self,
1033    ) -> Vec<PredicateObligation<'tcx>> {
1034        assert!(!self.in_snapshot(), "cannot take goals in a snapshot");
1035        std::mem::take(&mut self.inner.borrow_mut().hir_typeck_potentially_region_dependent_goals)
1036    }
1037
1038    pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
1039        self.resolve_vars_if_possible(t).to_string()
1040    }
1041
1042    /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
1043    /// universe index of `TyVar(vid)`.
1044    pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
1045        use self::type_variable::TypeVariableValue;
1046
1047        match self.inner.borrow_mut().type_variables().probe(vid) {
1048            TypeVariableValue::Known { value } => Ok(value),
1049            TypeVariableValue::Unknown { universe } => Err(universe),
1050        }
1051    }
1052
1053    pub fn shallow_resolve(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
1054        if let ty::Infer(v) = *ty.kind() {
1055            match v {
1056                ty::TyVar(v) => {
1057                    // Not entirely obvious: if `typ` is a type variable,
1058                    // it can be resolved to an int/float variable, which
1059                    // can then be recursively resolved, hence the
1060                    // recursion. Note though that we prevent type
1061                    // variables from unifying to other type variables
1062                    // directly (though they may be embedded
1063                    // structurally), and we prevent cycles in any case,
1064                    // so this recursion should always be of very limited
1065                    // depth.
1066                    //
1067                    // Note: if these two lines are combined into one we get
1068                    // dynamic borrow errors on `self.inner`.
1069                    let known = self.inner.borrow_mut().type_variables().probe(v).known();
1070                    known.map_or(ty, |t| self.shallow_resolve(t))
1071                }
1072
1073                ty::IntVar(v) => {
1074                    match self.inner.borrow_mut().int_unification_table().probe_value(v) {
1075                        ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty),
1076                        ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty),
1077                        ty::IntVarValue::Unknown => ty,
1078                    }
1079                }
1080
1081                ty::FloatVar(v) => {
1082                    match self.inner.borrow_mut().float_unification_table().probe_value(v) {
1083                        ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty),
1084                        ty::FloatVarValue::Unknown => ty,
1085                    }
1086                }
1087
1088                ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => ty,
1089            }
1090        } else {
1091            ty
1092        }
1093    }
1094
1095    pub fn shallow_resolve_const(&self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
1096        match ct.kind() {
1097            ty::ConstKind::Infer(infer_ct) => match infer_ct {
1098                InferConst::Var(vid) => self
1099                    .inner
1100                    .borrow_mut()
1101                    .const_unification_table()
1102                    .probe_value(vid)
1103                    .known()
1104                    .unwrap_or(ct),
1105                InferConst::Fresh(_) => ct,
1106            },
1107            ty::ConstKind::Param(_)
1108            | ty::ConstKind::Bound(_, _)
1109            | ty::ConstKind::Placeholder(_)
1110            | ty::ConstKind::Unevaluated(_)
1111            | ty::ConstKind::Value(_)
1112            | ty::ConstKind::Error(_)
1113            | ty::ConstKind::Expr(_) => ct,
1114        }
1115    }
1116
1117    pub fn shallow_resolve_term(&self, term: ty::Term<'tcx>) -> ty::Term<'tcx> {
1118        match term.kind() {
1119            ty::TermKind::Ty(ty) => self.shallow_resolve(ty).into(),
1120            ty::TermKind::Const(ct) => self.shallow_resolve_const(ct).into(),
1121        }
1122    }
1123
1124    pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
1125        self.inner.borrow_mut().type_variables().root_var(var)
1126    }
1127
1128    pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid {
1129        self.inner.borrow_mut().const_unification_table().find(var).vid
1130    }
1131
1132    /// Resolves an int var to a rigid int type, if it was constrained to one,
1133    /// or else the root int var in the unification table.
1134    pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
1135        let mut inner = self.inner.borrow_mut();
1136        let value = inner.int_unification_table().probe_value(vid);
1137        match value {
1138            ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty),
1139            ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty),
1140            ty::IntVarValue::Unknown => {
1141                Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
1142            }
1143        }
1144    }
1145
1146    /// Resolves a float var to a rigid int type, if it was constrained to one,
1147    /// or else the root float var in the unification table.
1148    pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
1149        let mut inner = self.inner.borrow_mut();
1150        let value = inner.float_unification_table().probe_value(vid);
1151        match value {
1152            ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty),
1153            ty::FloatVarValue::Unknown => {
1154                Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
1155            }
1156        }
1157    }
1158
1159    /// Where possible, replaces type/const variables in
1160    /// `value` with their final value. Note that region variables
1161    /// are unaffected. If a type/const variable has not been unified, it
1162    /// is left as is. This is an idempotent operation that does
1163    /// not affect inference state in any way and so you can do it
1164    /// at will.
1165    pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
1166    where
1167        T: TypeFoldable<TyCtxt<'tcx>>,
1168    {
1169        if let Err(guar) = value.error_reported() {
1170            self.set_tainted_by_errors(guar);
1171        }
1172        if !value.has_non_region_infer() {
1173            return value;
1174        }
1175        let mut r = resolve::OpportunisticVarResolver::new(self);
1176        value.fold_with(&mut r)
1177    }
1178
1179    pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
1180    where
1181        T: TypeFoldable<TyCtxt<'tcx>>,
1182    {
1183        if !value.has_infer() {
1184            return value; // Avoid duplicated type-folding.
1185        }
1186        let mut r = InferenceLiteralEraser { tcx: self.tcx };
1187        value.fold_with(&mut r)
1188    }
1189
1190    pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
1191        match self.inner.borrow_mut().const_unification_table().probe_value(vid) {
1192            ConstVariableValue::Known { value } => Ok(value),
1193            ConstVariableValue::Unknown { origin: _, universe } => Err(universe),
1194        }
1195    }
1196
1197    /// Attempts to resolve all type/region/const variables in
1198    /// `value`. Region inference must have been run already (e.g.,
1199    /// by calling `resolve_regions_and_report_errors`). If some
1200    /// variable was never unified, an `Err` results.
1201    ///
1202    /// This method is idempotent, but it not typically not invoked
1203    /// except during the writeback phase.
1204    pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> {
1205        match resolve::fully_resolve(self, value) {
1206            Ok(value) => {
1207                if value.has_non_region_infer() {
1208                    bug!("`{value:?}` is not fully resolved");
1209                }
1210                if value.has_infer_regions() {
1211                    let guar = self.dcx().delayed_bug(format!("`{value:?}` is not fully resolved"));
1212                    Ok(fold_regions(self.tcx, value, |re, _| {
1213                        if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re }
1214                    }))
1215                } else {
1216                    Ok(value)
1217                }
1218            }
1219            Err(e) => Err(e),
1220        }
1221    }
1222
1223    // Instantiates the bound variables in a given binder with fresh inference
1224    // variables in the current universe.
1225    //
1226    // Use this method if you'd like to find some generic parameters of the binder's
1227    // variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`]
1228    // that corresponds to your use case, consider whether or not you should
1229    // use [`InferCtxt::enter_forall`] instead.
1230    pub fn instantiate_binder_with_fresh_vars<T>(
1231        &self,
1232        span: Span,
1233        lbrct: BoundRegionConversionTime,
1234        value: ty::Binder<'tcx, T>,
1235    ) -> T
1236    where
1237        T: TypeFoldable<TyCtxt<'tcx>> + Copy,
1238    {
1239        if let Some(inner) = value.no_bound_vars() {
1240            return inner;
1241        }
1242
1243        let bound_vars = value.bound_vars();
1244        let mut args = Vec::with_capacity(bound_vars.len());
1245
1246        for bound_var_kind in bound_vars {
1247            let arg: ty::GenericArg<'_> = match bound_var_kind {
1248                ty::BoundVariableKind::Ty(_) => self.next_ty_var(span).into(),
1249                ty::BoundVariableKind::Region(br) => {
1250                    self.next_region_var(RegionVariableOrigin::BoundRegion(span, br, lbrct)).into()
1251                }
1252                ty::BoundVariableKind::Const => self.next_const_var(span).into(),
1253            };
1254            args.push(arg);
1255        }
1256
1257        struct ToFreshVars<'tcx> {
1258            args: Vec<ty::GenericArg<'tcx>>,
1259        }
1260
1261        impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'tcx> {
1262            fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
1263                self.args[br.var.index()].expect_region()
1264            }
1265            fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
1266                self.args[bt.var.index()].expect_ty()
1267            }
1268            fn replace_const(&mut self, bv: ty::BoundVar) -> ty::Const<'tcx> {
1269                self.args[bv.index()].expect_const()
1270            }
1271        }
1272        let delegate = ToFreshVars { args };
1273        self.tcx.replace_bound_vars_uncached(value, delegate)
1274    }
1275
1276    /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
1277    pub(crate) fn verify_generic_bound(
1278        &self,
1279        origin: SubregionOrigin<'tcx>,
1280        kind: GenericKind<'tcx>,
1281        a: ty::Region<'tcx>,
1282        bound: VerifyBound<'tcx>,
1283    ) {
1284        debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
1285
1286        self.inner
1287            .borrow_mut()
1288            .unwrap_region_constraints()
1289            .verify_generic_bound(origin, kind, a, bound);
1290    }
1291
1292    /// Obtains the latest type of the given closure; this may be a
1293    /// closure in the current function, in which case its
1294    /// `ClosureKind` may not yet be known.
1295    pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> {
1296        let unresolved_kind_ty = match *closure_ty.kind() {
1297            ty::Closure(_, args) => args.as_closure().kind_ty(),
1298            ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(),
1299            _ => bug!("unexpected type {closure_ty}"),
1300        };
1301        let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty);
1302        closure_kind_ty.to_opt_closure_kind()
1303    }
1304
1305    pub fn universe(&self) -> ty::UniverseIndex {
1306        self.universe.get()
1307    }
1308
1309    /// Creates and return a fresh universe that extends all previous
1310    /// universes. Updates `self.universe` to that new universe.
1311    pub fn create_next_universe(&self) -> ty::UniverseIndex {
1312        let u = self.universe.get().next_universe();
1313        debug!("create_next_universe {u:?}");
1314        self.universe.set(u);
1315        u
1316    }
1317
1318    /// Extract [`ty::TypingMode`] of this inference context to get a `TypingEnv`
1319    /// which contains the necessary information to use the trait system without
1320    /// using canonicalization or carrying this inference context around.
1321    pub fn typing_env(&self, param_env: ty::ParamEnv<'tcx>) -> ty::TypingEnv<'tcx> {
1322        let typing_mode = match self.typing_mode() {
1323            // FIXME(#132279): This erases the `defining_opaque_types` as it isn't possible
1324            // to handle them without proper canonicalization. This means we may cause cycle
1325            // errors and fail to reveal opaques while inside of bodies. We should rename this
1326            // function and require explicit comments on all use-sites in the future.
1327            ty::TypingMode::Analysis { defining_opaque_types_and_generators: _ }
1328            | ty::TypingMode::Borrowck { defining_opaque_types: _ } => {
1329                TypingMode::non_body_analysis()
1330            }
1331            mode @ (ty::TypingMode::Coherence
1332            | ty::TypingMode::PostBorrowckAnalysis { .. }
1333            | ty::TypingMode::PostAnalysis) => mode,
1334        };
1335        ty::TypingEnv { typing_mode, param_env }
1336    }
1337
1338    /// Similar to [`Self::canonicalize_query`], except that it returns
1339    /// a [`PseudoCanonicalInput`] and requires both the `value` and the
1340    /// `param_env` to not contain any inference variables or placeholders.
1341    pub fn pseudo_canonicalize_query<V>(
1342        &self,
1343        param_env: ty::ParamEnv<'tcx>,
1344        value: V,
1345    ) -> PseudoCanonicalInput<'tcx, V>
1346    where
1347        V: TypeVisitable<TyCtxt<'tcx>>,
1348    {
1349        debug_assert!(!value.has_infer());
1350        debug_assert!(!value.has_placeholders());
1351        debug_assert!(!param_env.has_infer());
1352        debug_assert!(!param_env.has_placeholders());
1353        self.typing_env(param_env).as_query_input(value)
1354    }
1355
1356    /// The returned function is used in a fast path. If it returns `true` the variable is
1357    /// unchanged, `false` indicates that the status is unknown.
1358    #[inline]
1359    pub fn is_ty_infer_var_definitely_unchanged(&self) -> impl Fn(TyOrConstInferVar) -> bool {
1360        // This hoists the borrow/release out of the loop body.
1361        let inner = self.inner.try_borrow();
1362
1363        move |infer_var: TyOrConstInferVar| match (infer_var, &inner) {
1364            (TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
1365                use self::type_variable::TypeVariableValue;
1366
1367                matches!(
1368                    inner.try_type_variables_probe_ref(ty_var),
1369                    Some(TypeVariableValue::Unknown { .. })
1370                )
1371            }
1372            _ => false,
1373        }
1374    }
1375
1376    /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
1377    ///   * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
1378    ///   * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
1379    ///
1380    /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
1381    /// inlined, despite being large, because it has only two call sites that
1382    /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
1383    /// inference variables), and it handles both `Ty` and `ty::Const` without
1384    /// having to resort to storing full `GenericArg`s in `stalled_on`.
1385    #[inline(always)]
1386    pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool {
1387        match infer_var {
1388            TyOrConstInferVar::Ty(v) => {
1389                use self::type_variable::TypeVariableValue;
1390
1391                // If `inlined_probe` returns a `Known` value, it never equals
1392                // `ty::Infer(ty::TyVar(v))`.
1393                match self.inner.borrow_mut().type_variables().inlined_probe(v) {
1394                    TypeVariableValue::Unknown { .. } => false,
1395                    TypeVariableValue::Known { .. } => true,
1396                }
1397            }
1398
1399            TyOrConstInferVar::TyInt(v) => {
1400                // If `inlined_probe_value` returns a value it's always a
1401                // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
1402                // `ty::Infer(_)`.
1403                self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_known()
1404            }
1405
1406            TyOrConstInferVar::TyFloat(v) => {
1407                // If `probe_value` returns a value it's always a
1408                // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
1409                //
1410                // Not `inlined_probe_value(v)` because this call site is colder.
1411                self.inner.borrow_mut().float_unification_table().probe_value(v).is_known()
1412            }
1413
1414            TyOrConstInferVar::Const(v) => {
1415                // If `probe_value` returns a `Known` value, it never equals
1416                // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
1417                //
1418                // Not `inlined_probe_value(v)` because this call site is colder.
1419                match self.inner.borrow_mut().const_unification_table().probe_value(v) {
1420                    ConstVariableValue::Unknown { .. } => false,
1421                    ConstVariableValue::Known { .. } => true,
1422                }
1423            }
1424        }
1425    }
1426
1427    /// Attach a callback to be invoked on each root obligation evaluated in the new trait solver.
1428    pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) {
1429        debug_assert!(
1430            self.obligation_inspector.get().is_none(),
1431            "shouldn't override a set obligation inspector"
1432        );
1433        self.obligation_inspector.set(Some(inspector));
1434    }
1435}
1436
1437/// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
1438/// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
1439#[derive(Copy, Clone, Debug)]
1440pub enum TyOrConstInferVar {
1441    /// Equivalent to `ty::Infer(ty::TyVar(_))`.
1442    Ty(TyVid),
1443    /// Equivalent to `ty::Infer(ty::IntVar(_))`.
1444    TyInt(IntVid),
1445    /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
1446    TyFloat(FloatVid),
1447
1448    /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
1449    Const(ConstVid),
1450}
1451
1452impl<'tcx> TyOrConstInferVar {
1453    /// Tries to extract an inference variable from a type or a constant, returns `None`
1454    /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
1455    /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1456    pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
1457        match arg.kind() {
1458            GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
1459            GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
1460            GenericArgKind::Lifetime(_) => None,
1461        }
1462    }
1463
1464    /// Tries to extract an inference variable from a type or a constant, returns `None`
1465    /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
1466    /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1467    pub fn maybe_from_term(term: Term<'tcx>) -> Option<Self> {
1468        match term.kind() {
1469            TermKind::Ty(ty) => Self::maybe_from_ty(ty),
1470            TermKind::Const(ct) => Self::maybe_from_const(ct),
1471        }
1472    }
1473
1474    /// Tries to extract an inference variable from a type, returns `None`
1475    /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
1476    fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
1477        match *ty.kind() {
1478            ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
1479            ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
1480            ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
1481            _ => None,
1482        }
1483    }
1484
1485    /// Tries to extract an inference variable from a constant, returns `None`
1486    /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
1487    fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
1488        match ct.kind() {
1489            ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
1490            _ => None,
1491        }
1492    }
1493}
1494
1495/// Replace `{integer}` with `i32` and `{float}` with `f64`.
1496/// Used only for diagnostics.
1497struct InferenceLiteralEraser<'tcx> {
1498    tcx: TyCtxt<'tcx>,
1499}
1500
1501impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
1502    fn cx(&self) -> TyCtxt<'tcx> {
1503        self.tcx
1504    }
1505
1506    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1507        match ty.kind() {
1508            ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
1509            ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
1510            _ => ty.super_fold_with(self),
1511        }
1512    }
1513}
1514
1515impl<'tcx> TypeTrace<'tcx> {
1516    pub fn span(&self) -> Span {
1517        self.cause.span
1518    }
1519
1520    pub fn types(cause: &ObligationCause<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> TypeTrace<'tcx> {
1521        TypeTrace {
1522            cause: cause.clone(),
1523            values: ValuePairs::Terms(ExpectedFound::new(a.into(), b.into())),
1524        }
1525    }
1526
1527    pub fn trait_refs(
1528        cause: &ObligationCause<'tcx>,
1529        a: ty::TraitRef<'tcx>,
1530        b: ty::TraitRef<'tcx>,
1531    ) -> TypeTrace<'tcx> {
1532        TypeTrace { cause: cause.clone(), values: ValuePairs::TraitRefs(ExpectedFound::new(a, b)) }
1533    }
1534
1535    pub fn consts(
1536        cause: &ObligationCause<'tcx>,
1537        a: ty::Const<'tcx>,
1538        b: ty::Const<'tcx>,
1539    ) -> TypeTrace<'tcx> {
1540        TypeTrace {
1541            cause: cause.clone(),
1542            values: ValuePairs::Terms(ExpectedFound::new(a.into(), b.into())),
1543        }
1544    }
1545}
1546
1547impl<'tcx> SubregionOrigin<'tcx> {
1548    pub fn span(&self) -> Span {
1549        match *self {
1550            SubregionOrigin::Subtype(ref a) => a.span(),
1551            SubregionOrigin::RelateObjectBound(a) => a,
1552            SubregionOrigin::RelateParamBound(a, ..) => a,
1553            SubregionOrigin::RelateRegionParamBound(a, _) => a,
1554            SubregionOrigin::Reborrow(a) => a,
1555            SubregionOrigin::ReferenceOutlivesReferent(_, a) => a,
1556            SubregionOrigin::CompareImplItemObligation { span, .. } => span,
1557            SubregionOrigin::AscribeUserTypeProvePredicate(span) => span,
1558            SubregionOrigin::CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
1559        }
1560    }
1561
1562    pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
1563    where
1564        F: FnOnce() -> Self,
1565    {
1566        match *cause.code() {
1567            traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
1568                SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
1569            }
1570
1571            traits::ObligationCauseCode::CompareImplItem {
1572                impl_item_def_id,
1573                trait_item_def_id,
1574                kind: _,
1575            } => SubregionOrigin::CompareImplItemObligation {
1576                span: cause.span,
1577                impl_item_def_id,
1578                trait_item_def_id,
1579            },
1580
1581            traits::ObligationCauseCode::CheckAssociatedTypeBounds {
1582                impl_item_def_id,
1583                trait_item_def_id,
1584            } => SubregionOrigin::CheckAssociatedTypeBounds {
1585                impl_item_def_id,
1586                trait_item_def_id,
1587                parent: Box::new(default()),
1588            },
1589
1590            traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
1591                SubregionOrigin::AscribeUserTypeProvePredicate(span)
1592            }
1593
1594            traits::ObligationCauseCode::ObjectTypeBound(ty, _reg) => {
1595                SubregionOrigin::RelateRegionParamBound(cause.span, Some(ty))
1596            }
1597
1598            _ => default(),
1599        }
1600    }
1601}
1602
1603impl RegionVariableOrigin {
1604    pub fn span(&self) -> Span {
1605        match *self {
1606            RegionVariableOrigin::Misc(a)
1607            | RegionVariableOrigin::PatternRegion(a)
1608            | RegionVariableOrigin::BorrowRegion(a)
1609            | RegionVariableOrigin::Autoref(a)
1610            | RegionVariableOrigin::Coercion(a)
1611            | RegionVariableOrigin::RegionParameterDefinition(a, ..)
1612            | RegionVariableOrigin::BoundRegion(a, ..)
1613            | RegionVariableOrigin::UpvarRegion(_, a) => a,
1614            RegionVariableOrigin::Nll(..) => bug!("NLL variable used with `span`"),
1615        }
1616    }
1617}
1618
1619impl<'tcx> InferCtxt<'tcx> {
1620    /// Given a [`hir::Block`], get the span of its last expression or
1621    /// statement, peeling off any inner blocks.
1622    pub fn find_block_span(&self, block: &'tcx hir::Block<'tcx>) -> Span {
1623        let block = block.innermost_block();
1624        if let Some(expr) = &block.expr {
1625            expr.span
1626        } else if let Some(stmt) = block.stmts.last() {
1627            // possibly incorrect trailing `;` in the else arm
1628            stmt.span
1629        } else {
1630            // empty block; point at its entirety
1631            block.span
1632        }
1633    }
1634
1635    /// Given a [`hir::HirId`] for a block (or an expr of a block), get the span
1636    /// of its last expression or statement, peeling off any inner blocks.
1637    pub fn find_block_span_from_hir_id(&self, hir_id: hir::HirId) -> Span {
1638        match self.tcx.hir_node(hir_id) {
1639            hir::Node::Block(blk)
1640            | hir::Node::Expr(&hir::Expr { kind: hir::ExprKind::Block(blk, _), .. }) => {
1641                self.find_block_span(blk)
1642            }
1643            hir::Node::Expr(e) => e.span,
1644            _ => DUMMY_SP,
1645        }
1646    }
1647}