1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
//!
//! There are two important bits of core logic in this file: constructor inclusion and constructor
//! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
//! is straightforward and defined in [`Constructor::is_covered_by`].
//!
//! Constructor splitting is mentioned in [`crate::usefulness`] but not detailed. We describe it
//! precisely here.
//!
//!
//!
//! # Constructor grouping and splitting
//!
//! As explained in the corresponding section in [`crate::usefulness`], to make usefulness tractable
//! we need to group together constructors that have the same effect when they are used to
//! specialize the matrix.
//!
//! Example:
//! ```compile_fail,E0004
//! match (0, false) {
//!     (0 ..=100, true) => {}
//!     (50..=150, false) => {}
//!     (0 ..=200, _) => {}
//! }
//! ```
//!
//! In this example we can restrict specialization to 5 cases: `0..50`, `50..=100`, `101..=150`,
//! `151..=200` and `200..`.
//!
//! In [`crate::usefulness`], we had said that `specialize` only takes value-only constructors. We
//! now relax this restriction: we allow `specialize` to take constructors like `0..50` as long as
//! we're careful to only do that with constructors that make sense. For example, `specialize(0..50,
//! (0..=100, true))` is sensible, but `specialize(50..=200, (0..=100, true))` is not.
//!
//! Constructor splitting looks at the constructors in the first column of the matrix and constructs
//! such a sensible set of constructors. Formally, we want to find a smallest disjoint set of
//! constructors:
//! - Whose union covers the whole type, and
//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
//!     each either disjoint with or covered by any given column constructor).
//!
//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the
//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
//! column of constructors and splits the set into groups accordingly. The precise invariants of
//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
//!
//! Constructor splitting has two interesting special cases: integer range splitting (see
//! [`IntRange::split`]) and slice splitting (see [`Slice::split`]).
//!
//!
//!
//! # The `Missing` constructor
//!
//! We detail a special case of constructor splitting that is a bit subtle. Take the following:
//!
//! ```
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//!     (Direction::North, 50..) => {}
//!     (_, _) => {}
//! }
//! ```
//!
//! Here we expect constructor splitting to output two cases: `North`, and "everything else". This
//! "everything else" is represented by [`Constructor::Missing`]. Unlike other constructors, it's a
//! bit contextual: to know the exact list of constructors it represents we have to look at the
//! column. In practice however we don't need to, because by construction it only matches rows that
//! have wildcards. This is how this constructor is special: the only constructor that covers it is
//! `Wildcard`.
//!
//! The only place where we care about which constructors `Missing` represents is in diagnostics
//! (see `crate::usefulness::WitnessMatrix::apply_constructor`).
//!
//! We choose whether to specialize with `Missing` in
//! `crate::usefulness::compute_exhaustiveness_and_usefulness`.
//!
//!
//!
//! ## Empty types, empty constructors, and the `exhaustive_patterns` feature
//!
//! An empty type is a type that has no valid value, like `!`, `enum Void {}`, or `Result<!, !>`.
//! They require careful handling.
//!
//! First, for soundness reasons related to the possible existence of invalid values, by default we
//! don't treat empty types as empty. We force them to be matched with wildcards. Except if the
//! `exhaustive_patterns` feature is turned on, in which case we do treat them as empty. And also
//! except if the type has no constructors (like `enum Void {}` but not like `Result<!, !>`), we
//! specifically allow `match void {}` to be exhaustive. There are additionally considerations of
//! place validity that are handled in `crate::usefulness`. Yes this is a bit tricky.
//!
//! The second thing is that regardless of the above, it is always allowed to use all the
//! constructors of a type. For example, all the following is ok:
//!
//! ```rust,ignore(example)
//! # #![feature(never_type)]
//! # #![feature(exhaustive_patterns)]
//! fn foo(x: Option<!>) {
//!   match x {
//!     None => {}
//!     Some(_) => {}
//!   }
//! }
//! fn bar(x: &[!]) -> u32 {
//!   match x {
//!     [] => 1,
//!     [_] => 2,
//!     [_, _] => 3,
//!   }
//! }
//! ```
//!
//! Moreover, take the following:
//!
//! ```rust
//! # #![feature(never_type)]
//! # #![feature(exhaustive_patterns)]
//! # let x = None::<!>;
//! match x {
//!   None => {}
//! }
//! ```
//!
//! On a normal type, we would identify `Some` as missing and tell the user. If `x: Option<!>`
//! however (and `exhaustive_patterns` is on), it's ok to omit `Some`. When listing the constructors
//! of a type, we must therefore track which can be omitted.
//!
//! Let's call "empty" a constructor that matches no valid value for the type, like `Some` for the
//! type `Option<!>`. What this all means is that `ConstructorSet` must know which constructors are
//! empty. The difference between empty and nonempty constructors is that empty constructors need
//! not be present for the match to be exhaustive.
//!
//! A final remark: empty constructors of arity 0 break specialization, we must avoid them. The
//! reason is that if we specialize by them, nothing remains to witness the emptiness; the rest of
//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
//!
//! This is all handled by [`PatCx::ctors_for_ty`] and
//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
//!
//!
//! ## Unions
//!
//! Unions allow us to match a value via several overlapping representations at the same time. For
//! example, the following is exhaustive because when seeing the value as a boolean we handled all
//! possible cases (other cases such as `n == 3` would trigger UB).
//!
//! ```rust
//! # fn main() {
//! union U8AsBool {
//!     n: u8,
//!     b: bool,
//! }
//! let x = U8AsBool { n: 1 };
//! unsafe {
//!     match x {
//!         U8AsBool { n: 2 } => {}
//!         U8AsBool { b: true } => {}
//!         U8AsBool { b: false } => {}
//!     }
//! }
//! # }
//! ```
//!
//! Pattern-matching has no knowledge that e.g. `false as u8 == 0`, so the values we consider in the
//! algorithm look like `U8AsBool { b: true, n: 2 }`. In other words, for the most part a union is
//! treated like a struct with the same fields. The difference lies in how we construct witnesses of
//! non-exhaustiveness.
//!
//!
//! ## Opaque patterns
//!
//! Some patterns, such as constants that are not allowed to be matched structurally, cannot be
//! inspected, which we handle with `Constructor::Opaque`. Since we know nothing of these patterns,
//! we assume they never cover each other. In order to respect the invariants of
//! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.

use std::cmp::{self, max, min, Ordering};
use std::fmt;
use std::iter::once;

use rustc_apfloat::ieee::{DoubleS, HalfS, IeeeFloat, QuadS, SingleS};
use rustc_index::bit_set::{BitSet, GrowableBitSet};
use rustc_index::IndexVec;
use smallvec::SmallVec;

use self::Constructor::*;
use self::MaybeInfiniteInt::*;
use self::SliceKind::*;
use crate::PatCx;

/// Whether we have seen a constructor in the column or not.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum Presence {
    Unseen,
    Seen,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RangeEnd {
    Included,
    Excluded,
}

impl fmt::Display for RangeEnd {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            RangeEnd::Included => "..=",
            RangeEnd::Excluded => "..",
        })
    }
}

/// A possibly infinite integer. Values are encoded such that the ordering on `u128` matches the
/// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
/// `255`. See `signed_bias` for details.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum MaybeInfiniteInt {
    NegInfinity,
    /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite_{int,uint}`.
    #[non_exhaustive]
    Finite(u128),
    PosInfinity,
}

impl MaybeInfiniteInt {
    pub fn new_finite_uint(bits: u128) -> Self {
        Finite(bits)
    }
    pub fn new_finite_int(bits: u128, size: u64) -> Self {
        // Perform a shift if the underlying types are signed, which makes the interval arithmetic
        // type-independent.
        let bias = 1u128 << (size - 1);
        Finite(bits ^ bias)
    }

    pub fn as_finite_uint(self) -> Option<u128> {
        match self {
            Finite(bits) => Some(bits),
            _ => None,
        }
    }
    pub fn as_finite_int(self, size: u64) -> Option<u128> {
        // We decode the shift.
        match self {
            Finite(bits) => {
                let bias = 1u128 << (size - 1);
                Some(bits ^ bias)
            }
            _ => None,
        }
    }

    /// Note: this will not turn a finite value into an infinite one or vice-versa.
    pub fn minus_one(self) -> Option<Self> {
        match self {
            Finite(n) => n.checked_sub(1).map(Finite),
            x => Some(x),
        }
    }
    /// Note: this will turn `u128::MAX` into `PosInfinity`. This means `plus_one` and `minus_one`
    /// are not strictly inverses, but that poses no problem in our use of them.
    /// this will not turn a finite value into an infinite one or vice-versa.
    pub fn plus_one(self) -> Option<Self> {
        match self {
            Finite(n) => match n.checked_add(1) {
                Some(m) => Some(Finite(m)),
                None => Some(PosInfinity),
            },
            x => Some(x),
        }
    }
}

/// An exclusive interval, used for precise integer exhaustiveness checking. `IntRange`s always
/// store a contiguous range.
///
/// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
/// space: i.e., `range.lo < range.hi`.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct IntRange {
    pub lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
    pub hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
}

impl IntRange {
    /// Best effort; will not know that e.g. `255u8..` is a singleton.
    pub fn is_singleton(&self) -> bool {
        // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
        // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
        self.lo.plus_one() == Some(self.hi)
    }

    /// Construct a singleton range.
    /// `x` must be a `Finite(_)` value.
    #[inline]
    pub fn from_singleton(x: MaybeInfiniteInt) -> IntRange {
        // `unwrap()` is ok on a finite value
        IntRange { lo: x, hi: x.plus_one().unwrap() }
    }

    /// Construct a range with these boundaries.
    /// `lo` must not be `PosInfinity`. `hi` must not be `NegInfinity`.
    #[inline]
    pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
        if end == RangeEnd::Included {
            hi = hi.plus_one().unwrap();
        }
        if lo >= hi {
            // This should have been caught earlier by E0030.
            panic!("malformed range pattern: {lo:?}..{hi:?}");
        }
        IntRange { lo, hi }
    }

    fn is_subrange(&self, other: &Self) -> bool {
        other.lo <= self.lo && self.hi <= other.hi
    }

    fn intersection(&self, other: &Self) -> Option<Self> {
        if self.lo < other.hi && other.lo < self.hi {
            Some(IntRange { lo: max(self.lo, other.lo), hi: min(self.hi, other.hi) })
        } else {
            None
        }
    }

    /// Partition a range of integers into disjoint subranges. This does constructor splitting for
    /// integer ranges as explained at the top of the file.
    ///
    /// This returns an output that covers `self`. The output is split so that the only
    /// intersections between an output range and a column range are inclusions. No output range
    /// straddles the boundary of one of the inputs.
    ///
    /// Additionally, we track for each output range whether it is covered by one of the column ranges or not.
    ///
    /// The following input:
    /// ```text
    ///   (--------------------------) // `self`
    /// (------) (----------)    (-)
    ///     (------) (--------)
    /// ```
    /// is first intersected with `self`:
    /// ```text
    ///   (--------------------------) // `self`
    ///   (----) (----------)    (-)
    ///     (------) (--------)
    /// ```
    /// and then iterated over as follows:
    /// ```text
    ///   (-(--)-(-)-(------)-)--(-)-
    /// ```
    /// where each sequence of dashes is an output range, and dashes outside parentheses are marked
    /// as `Presence::Missing`.
    ///
    /// ## `isize`/`usize`
    ///
    /// Whereas a wildcard of type `i32` stands for the range `i32::MIN..=i32::MAX`, a `usize`
    /// wildcard stands for `0..PosInfinity` and a `isize` wildcard stands for
    /// `NegInfinity..PosInfinity`. In other words, as far as `IntRange` is concerned, there are
    /// values before `isize::MIN` and after `usize::MAX`/`isize::MAX`.
    /// This is to avoid e.g. `0..(u32::MAX as usize)` from being exhaustive on one architecture and
    /// not others. This was decided in <https://github.com/rust-lang/rfcs/pull/2591>.
    ///
    /// These infinities affect splitting subtly: it is possible to get `NegInfinity..0` and
    /// `usize::MAX+1..PosInfinity` in the output. Diagnostics must be careful to handle these
    /// fictitious ranges sensibly.
    fn split(
        &self,
        column_ranges: impl Iterator<Item = IntRange>,
    ) -> impl Iterator<Item = (Presence, IntRange)> {
        // The boundaries of ranges in `column_ranges` intersected with `self`.
        // We do parenthesis matching for input ranges. A boundary counts as +1 if it starts
        // a range and -1 if it ends it. When the count is > 0 between two boundaries, we
        // are within an input range.
        let mut boundaries: Vec<(MaybeInfiniteInt, isize)> = column_ranges
            .filter_map(|r| self.intersection(&r))
            .flat_map(|r| [(r.lo, 1), (r.hi, -1)])
            .collect();
        // We sort by boundary, and for each boundary we sort the "closing parentheses" first. The
        // order of +1/-1 for a same boundary value is actually irrelevant, because we only look at
        // the accumulated count between distinct boundary values.
        boundaries.sort_unstable();

        // Accumulate parenthesis counts.
        let mut paren_counter = 0isize;
        // Gather pairs of adjacent boundaries.
        let mut prev_bdy = self.lo;
        boundaries
            .into_iter()
            // End with the end of the range. The count is ignored.
            .chain(once((self.hi, 0)))
            // List pairs of adjacent boundaries and the count between them.
            .map(move |(bdy, delta)| {
                // `delta` affects the count as we cross `bdy`, so the relevant count between
                // `prev_bdy` and `bdy` is untouched by `delta`.
                let ret = (prev_bdy, paren_counter, bdy);
                prev_bdy = bdy;
                paren_counter += delta;
                ret
            })
            // Skip empty ranges.
            .filter(|&(prev_bdy, _, bdy)| prev_bdy != bdy)
            // Convert back to ranges.
            .map(move |(prev_bdy, paren_count, bdy)| {
                use Presence::*;
                let presence = if paren_count > 0 { Seen } else { Unseen };
                let range = IntRange { lo: prev_bdy, hi: bdy };
                (presence, range)
            })
    }
}

/// Note: this will render signed ranges incorrectly. To render properly, convert to a pattern
/// first.
impl fmt::Debug for IntRange {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.is_singleton() {
            // Only finite ranges can be singletons.
            let Finite(lo) = self.lo else { unreachable!() };
            write!(f, "{lo}")?;
        } else {
            if let Finite(lo) = self.lo {
                write!(f, "{lo}")?;
            }
            write!(f, "{}", RangeEnd::Excluded)?;
            if let Finite(hi) = self.hi {
                write!(f, "{hi}")?;
            }
        }
        Ok(())
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum SliceKind {
    /// Patterns of length `n` (`[x, y]`).
    FixedLen(usize),
    /// Patterns using the `..` notation (`[x, .., y]`).
    /// Captures any array constructor of `length >= i + j`.
    /// In the case where `array_len` is `Some(_)`,
    /// this indicates that we only care about the first `i` and the last `j` values of the array,
    /// and everything in between is a wildcard `_`.
    VarLen(usize, usize),
}

impl SliceKind {
    pub fn arity(self) -> usize {
        match self {
            FixedLen(length) => length,
            VarLen(prefix, suffix) => prefix + suffix,
        }
    }

    /// Whether this pattern includes patterns of length `other_len`.
    fn covers_length(self, other_len: usize) -> bool {
        match self {
            FixedLen(len) => len == other_len,
            VarLen(prefix, suffix) => prefix + suffix <= other_len,
        }
    }
}

/// A constructor for array and slice patterns.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Slice {
    /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
    pub(crate) array_len: Option<usize>,
    /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
    pub(crate) kind: SliceKind,
}

impl Slice {
    pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
        let kind = match (array_len, kind) {
            // If the middle `..` has length 0, we effectively have a fixed-length pattern.
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
            (Some(len), VarLen(prefix, suffix)) if prefix + suffix > len => panic!(
                "Slice pattern of length {} longer than its array length {len}",
                prefix + suffix
            ),
            _ => kind,
        };
        Slice { array_len, kind }
    }

    pub fn arity(self) -> usize {
        self.kind.arity()
    }

    /// See `Constructor::is_covered_by`
    fn is_covered_by(self, other: Self) -> bool {
        other.kind.covers_length(self.arity())
    }

    /// This computes constructor splitting for variable-length slices, as explained at the top of
    /// the file.
    ///
    /// A slice pattern `[x, .., y]` behaves like the infinite or-pattern `[x, y] | [x, _, y] | [x,
    /// _, _, y] | etc`. The corresponding value constructors are fixed-length array constructors of
    /// corresponding lengths. We obviously can't list this infinitude of constructors.
    /// Thankfully, it turns out that for each finite set of slice patterns, all sufficiently large
    /// array lengths are equivalent.
    ///
    /// Let's look at an example, where we are trying to split the last pattern:
    /// ```
    /// # fn foo(x: &[bool]) {
    /// match x {
    ///     [true, true, ..] => {}
    ///     [.., false, false] => {}
    ///     [..] => {}
    /// }
    /// # }
    /// ```
    /// Here are the results of specialization for the first few lengths:
    /// ```
    /// # fn foo(x: &[bool]) { match x {
    /// // length 0
    /// [] => {}
    /// // length 1
    /// [_] => {}
    /// // length 2
    /// [true, true] => {}
    /// [false, false] => {}
    /// [_, _] => {}
    /// // length 3
    /// [true, true,  _    ] => {}
    /// [_,    false, false] => {}
    /// [_,    _,     _    ] => {}
    /// // length 4
    /// [true, true, _,     _    ] => {}
    /// [_,    _,    false, false] => {}
    /// [_,    _,    _,     _    ] => {}
    /// // length 5
    /// [true, true, _, _,     _    ] => {}
    /// [_,    _,    _, false, false] => {}
    /// [_,    _,    _, _,     _    ] => {}
    /// # _ => {}
    /// # }}
    /// ```
    ///
    /// We see that above length 4, we are simply inserting columns full of wildcards in the middle.
    /// This means that specialization and witness computation with slices of length `l >= 4` will
    /// give equivalent results regardless of `l`. This applies to any set of slice patterns: there
    /// will be a length `L` above which all lengths behave the same. This is exactly what we need
    /// for constructor splitting.
    ///
    /// A variable-length slice pattern covers all lengths from its arity up to infinity. As we just
    /// saw, we can split this in two: lengths below `L` are treated individually with a
    /// fixed-length slice each; lengths above `L` are grouped into a single variable-length slice
    /// constructor.
    ///
    /// For each variable-length slice pattern `p` with a prefix of length `plₚ` and suffix of
    /// length `slₚ`, only the first `plₚ` and the last `slₚ` elements are examined. Therefore, as
    /// long as `L` is positive (to avoid concerns about empty types), all elements after the
    /// maximum prefix length and before the maximum suffix length are not examined by any
    /// variable-length pattern, and therefore can be ignored. This gives us a way to compute `L`.
    ///
    /// Additionally, if fixed-length patterns exist, we must pick an `L` large enough to miss them,
    /// so we can pick `L = max(max(FIXED_LEN)+1, max(PREFIX_LEN) + max(SUFFIX_LEN))`.
    /// `max_slice` below will be made to have this arity `L`.
    ///
    /// If `self` is fixed-length, it is returned as-is.
    ///
    /// Additionally, we track for each output slice whether it is covered by one of the column slices or not.
    fn split(
        self,
        column_slices: impl Iterator<Item = Slice>,
    ) -> impl Iterator<Item = (Presence, Slice)> {
        // Range of lengths below `L`.
        let smaller_lengths;
        let arity = self.arity();
        let mut max_slice = self.kind;
        // Tracks the smallest variable-length slice we've seen. Any slice arity above it is
        // therefore `Presence::Seen` in the column.
        let mut min_var_len = usize::MAX;
        // Tracks the fixed-length slices we've seen, to mark them as `Presence::Seen`.
        let mut seen_fixed_lens = GrowableBitSet::new_empty();
        match &mut max_slice {
            VarLen(max_prefix_len, max_suffix_len) => {
                // A length larger than any fixed-length slice encountered.
                // We start at 1 in case the subtype is empty because in that case the zero-length
                // slice must be treated separately from the rest.
                let mut fixed_len_upper_bound = 1;
                // We grow `max_slice` to be larger than all slices encountered, as described above.
                // `L` is `max_slice.arity()`. For diagnostics, we keep the prefix and suffix
                // lengths separate.
                for slice in column_slices {
                    match slice.kind {
                        FixedLen(len) => {
                            fixed_len_upper_bound = cmp::max(fixed_len_upper_bound, len + 1);
                            seen_fixed_lens.insert(len);
                        }
                        VarLen(prefix, suffix) => {
                            *max_prefix_len = cmp::max(*max_prefix_len, prefix);
                            *max_suffix_len = cmp::max(*max_suffix_len, suffix);
                            min_var_len = cmp::min(min_var_len, prefix + suffix);
                        }
                    }
                }
                // If `fixed_len_upper_bound >= L`, we set `L` to `fixed_len_upper_bound`.
                if let Some(delta) =
                    fixed_len_upper_bound.checked_sub(*max_prefix_len + *max_suffix_len)
                {
                    *max_prefix_len += delta
                }

                // We cap the arity of `max_slice` at the array size.
                match self.array_len {
                    Some(len) if max_slice.arity() >= len => max_slice = FixedLen(len),
                    _ => {}
                }

                smaller_lengths = match self.array_len {
                    // The only admissible fixed-length slice is one of the array size. Whether `max_slice`
                    // is fixed-length or variable-length, it will be the only relevant slice to output
                    // here.
                    Some(_) => 0..0, // empty range
                    // We need to cover all arities in the range `(arity..infinity)`. We split that
                    // range into two: lengths smaller than `max_slice.arity()` are treated
                    // independently as fixed-lengths slices, and lengths above are captured by
                    // `max_slice`.
                    None => self.arity()..max_slice.arity(),
                };
            }
            FixedLen(_) => {
                // No need to split here. We only track presence.
                for slice in column_slices {
                    match slice.kind {
                        FixedLen(len) => {
                            if len == arity {
                                seen_fixed_lens.insert(len);
                            }
                        }
                        VarLen(prefix, suffix) => {
                            min_var_len = cmp::min(min_var_len, prefix + suffix);
                        }
                    }
                }
                smaller_lengths = 0..0;
            }
        };

        smaller_lengths.map(FixedLen).chain(once(max_slice)).map(move |kind| {
            let arity = kind.arity();
            let seen = if min_var_len <= arity || seen_fixed_lens.contains(arity) {
                Presence::Seen
            } else {
                Presence::Unseen
            };
            (seen, Slice::new(self.array_len, kind))
        })
    }
}

/// A globally unique id to distinguish `Opaque` patterns.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct OpaqueId(u32);

impl OpaqueId {
    pub fn new() -> Self {
        use std::sync::atomic::{AtomicU32, Ordering};
        static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
        OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
    }
}

/// A value can be decomposed into a constructor applied to some fields. This struct represents
/// the constructor. See also `Fields`.
///
/// `pat_constructor` retrieves the constructor corresponding to a pattern.
/// `specialize_constructor` returns the list of fields corresponding to a pattern, given a
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Debug)]
pub enum Constructor<Cx: PatCx> {
    /// Tuples and structs.
    Struct,
    /// Enum variants.
    Variant(Cx::VariantIdx),
    /// References
    Ref,
    /// Array and slice patterns.
    Slice(Slice),
    /// Union field accesses.
    UnionField,
    /// Booleans
    Bool(bool),
    /// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
    IntRange(IntRange),
    /// Ranges of floating-point literal values (`2.0..=5.2`).
    F16Range(IeeeFloat<HalfS>, IeeeFloat<HalfS>, RangeEnd),
    F32Range(IeeeFloat<SingleS>, IeeeFloat<SingleS>, RangeEnd),
    F64Range(IeeeFloat<DoubleS>, IeeeFloat<DoubleS>, RangeEnd),
    F128Range(IeeeFloat<QuadS>, IeeeFloat<QuadS>, RangeEnd),
    /// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
    Str(Cx::StrLit),
    /// Constants that must not be matched structurally. They are treated as black boxes for the
    /// purposes of exhaustiveness: we must not inspect them, and they don't count towards making a
    /// match exhaustive.
    /// Carries an id that must be unique within a match. We need this to ensure the invariants of
    /// [`SplitConstructorSet`].
    Opaque(OpaqueId),
    /// Or-pattern.
    Or,
    /// Wildcard pattern.
    Wildcard,
    /// Never pattern. Only used in `WitnessPat`. An actual never pattern should be lowered as
    /// `Wildcard`.
    Never,
    /// Fake extra constructor for enums that aren't allowed to be matched exhaustively. Also used
    /// for those types for which we cannot list constructors explicitly, like `f64` and `str`. Only
    /// used in `WitnessPat`.
    NonExhaustive,
    /// Fake extra constructor for variants that should not be mentioned in diagnostics. We use this
    /// for variants behind an unstable gate as well as `#[doc(hidden)]` ones. Only used in
    /// `WitnessPat`.
    Hidden,
    /// Fake extra constructor for constructors that are not seen in the matrix, as explained at the
    /// top of the file. Only used for specialization.
    Missing,
    /// Fake extra constructor that indicates and empty field that is private. When we encounter one
    /// we skip the column entirely so we don't observe its emptiness. Only used for specialization.
    PrivateUninhabited,
}

impl<Cx: PatCx> Clone for Constructor<Cx> {
    fn clone(&self) -> Self {
        match self {
            Constructor::Struct => Constructor::Struct,
            Constructor::Variant(idx) => Constructor::Variant(*idx),
            Constructor::Ref => Constructor::Ref,
            Constructor::Slice(slice) => Constructor::Slice(*slice),
            Constructor::UnionField => Constructor::UnionField,
            Constructor::Bool(b) => Constructor::Bool(*b),
            Constructor::IntRange(range) => Constructor::IntRange(*range),
            Constructor::F16Range(lo, hi, end) => Constructor::F16Range(lo.clone(), *hi, *end),
            Constructor::F32Range(lo, hi, end) => Constructor::F32Range(lo.clone(), *hi, *end),
            Constructor::F64Range(lo, hi, end) => Constructor::F64Range(lo.clone(), *hi, *end),
            Constructor::F128Range(lo, hi, end) => Constructor::F128Range(lo.clone(), *hi, *end),
            Constructor::Str(value) => Constructor::Str(value.clone()),
            Constructor::Opaque(inner) => Constructor::Opaque(inner.clone()),
            Constructor::Or => Constructor::Or,
            Constructor::Never => Constructor::Never,
            Constructor::Wildcard => Constructor::Wildcard,
            Constructor::NonExhaustive => Constructor::NonExhaustive,
            Constructor::Hidden => Constructor::Hidden,
            Constructor::Missing => Constructor::Missing,
            Constructor::PrivateUninhabited => Constructor::PrivateUninhabited,
        }
    }
}

impl<Cx: PatCx> Constructor<Cx> {
    pub(crate) fn is_non_exhaustive(&self) -> bool {
        matches!(self, NonExhaustive)
    }

    pub(crate) fn as_variant(&self) -> Option<Cx::VariantIdx> {
        match self {
            Variant(i) => Some(*i),
            _ => None,
        }
    }
    fn as_bool(&self) -> Option<bool> {
        match self {
            Bool(b) => Some(*b),
            _ => None,
        }
    }
    pub(crate) fn as_int_range(&self) -> Option<&IntRange> {
        match self {
            IntRange(range) => Some(range),
            _ => None,
        }
    }
    fn as_slice(&self) -> Option<Slice> {
        match self {
            Slice(slice) => Some(*slice),
            _ => None,
        }
    }

    /// The number of fields for this constructor. This must be kept in sync with
    /// `Fields::wildcards`.
    pub(crate) fn arity(&self, cx: &Cx, ty: &Cx::Ty) -> usize {
        cx.ctor_arity(self, ty)
    }

    /// Returns whether `self` is covered by `other`, i.e. whether `self` is a subset of `other`.
    /// For the simple cases, this is simply checking for equality. For the "grouped" constructors,
    /// this checks for inclusion.
    // We inline because this has a single call site in `Matrix::specialize_constructor`.
    #[inline]
    pub(crate) fn is_covered_by(&self, cx: &Cx, other: &Self) -> Result<bool, Cx::Error> {
        Ok(match (self, other) {
            (Wildcard, _) => {
                return Err(cx.bug(format_args!(
                    "Constructor splitting should not have returned `Wildcard`"
                )));
            }
            // Wildcards cover anything
            (_, Wildcard) => true,
            // `PrivateUninhabited` skips everything.
            (PrivateUninhabited, _) => true,
            // Only a wildcard pattern can match these special constructors.
            (Missing { .. } | NonExhaustive | Hidden, _) => false,

            (Struct, Struct) => true,
            (Ref, Ref) => true,
            (UnionField, UnionField) => true,
            (Variant(self_id), Variant(other_id)) => self_id == other_id,
            (Bool(self_b), Bool(other_b)) => self_b == other_b,

            (IntRange(self_range), IntRange(other_range)) => self_range.is_subrange(other_range),
            (F16Range(self_from, self_to, self_end), F16Range(other_from, other_to, other_end)) => {
                self_from.ge(other_from)
                    && match self_to.partial_cmp(other_to) {
                        Some(Ordering::Less) => true,
                        Some(Ordering::Equal) => other_end == self_end,
                        _ => false,
                    }
            }
            (F32Range(self_from, self_to, self_end), F32Range(other_from, other_to, other_end)) => {
                self_from.ge(other_from)
                    && match self_to.partial_cmp(other_to) {
                        Some(Ordering::Less) => true,
                        Some(Ordering::Equal) => other_end == self_end,
                        _ => false,
                    }
            }
            (F64Range(self_from, self_to, self_end), F64Range(other_from, other_to, other_end)) => {
                self_from.ge(other_from)
                    && match self_to.partial_cmp(other_to) {
                        Some(Ordering::Less) => true,
                        Some(Ordering::Equal) => other_end == self_end,
                        _ => false,
                    }
            }
            (
                F128Range(self_from, self_to, self_end),
                F128Range(other_from, other_to, other_end),
            ) => {
                self_from.ge(other_from)
                    && match self_to.partial_cmp(other_to) {
                        Some(Ordering::Less) => true,
                        Some(Ordering::Equal) => other_end == self_end,
                        _ => false,
                    }
            }
            (Str(self_val), Str(other_val)) => {
                // FIXME Once valtrees are available we can directly use the bytes
                // in the `Str` variant of the valtree for the comparison here.
                self_val == other_val
            }
            (Slice(self_slice), Slice(other_slice)) => self_slice.is_covered_by(*other_slice),

            // Opaque constructors don't interact with anything unless they come from the
            // syntactically identical pattern.
            (Opaque(self_id), Opaque(other_id)) => self_id == other_id,
            (Opaque(..), _) | (_, Opaque(..)) => false,

            _ => {
                return Err(cx.bug(format_args!(
                    "trying to compare incompatible constructors {self:?} and {other:?}"
                )));
            }
        })
    }

    pub(crate) fn fmt_fields(
        &self,
        f: &mut fmt::Formatter<'_>,
        ty: &Cx::Ty,
        mut fields: impl Iterator<Item = impl fmt::Debug>,
    ) -> fmt::Result {
        let mut first = true;
        let mut start_or_continue = |s| {
            if first {
                first = false;
                ""
            } else {
                s
            }
        };
        let mut start_or_comma = || start_or_continue(", ");

        match self {
            Struct | Variant(_) | UnionField => {
                Cx::write_variant_name(f, self, ty)?;
                // Without `cx`, we can't know which field corresponds to which, so we can't
                // get the names of the fields. Instead we just display everything as a tuple
                // struct, which should be good enough.
                write!(f, "(")?;
                for p in fields {
                    write!(f, "{}{:?}", start_or_comma(), p)?;
                }
                write!(f, ")")?;
            }
            // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
            // be careful to detect strings here. However a string literal pattern will never
            // be reported as a non-exhaustiveness witness, so we can ignore this issue.
            Ref => {
                write!(f, "&{:?}", fields.next().unwrap())?;
            }
            Slice(slice) => {
                write!(f, "[")?;
                match slice.kind {
                    SliceKind::FixedLen(_) => {
                        for p in fields {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                    }
                    SliceKind::VarLen(prefix_len, _) => {
                        for p in fields.by_ref().take(prefix_len) {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                        write!(f, "{}..", start_or_comma())?;
                        for p in fields {
                            write!(f, "{}{:?}", start_or_comma(), p)?;
                        }
                    }
                }
                write!(f, "]")?;
            }
            Bool(b) => write!(f, "{b}")?,
            // Best-effort, will render signed ranges incorrectly
            IntRange(range) => write!(f, "{range:?}")?,
            F16Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
            F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
            F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
            F128Range(lo, hi, end) => write!(f, "{lo}{end}{hi}")?,
            Str(value) => write!(f, "{value:?}")?,
            Opaque(..) => write!(f, "<constant pattern>")?,
            Or => {
                for pat in fields {
                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
                }
            }
            Never => write!(f, "!")?,
            Wildcard | Missing | NonExhaustive | Hidden | PrivateUninhabited => {
                write!(f, "_ : {:?}", ty)?
            }
        }
        Ok(())
    }
}

#[derive(Debug, Clone, Copy)]
pub enum VariantVisibility {
    /// Variant that doesn't fit the other cases, i.e. most variants.
    Visible,
    /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
    /// mentioned in diagnostics unless the user mentioned it first.
    Hidden,
    /// Variant that matches no value. E.g. `Some::<Option<!>>` if the `exhaustive_patterns` feature
    /// is enabled. Like `Hidden`, it will not be mentioned in diagnostics unless the user mentioned
    /// it first.
    Empty,
}

/// Describes the set of all constructors for a type. For details, in particular about the emptiness
/// of constructors, see the top of the file.
///
/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
/// `exhaustive_patterns` feature.
#[derive(Debug)]
pub enum ConstructorSet<Cx: PatCx> {
    /// The type is a tuple or struct. `empty` tracks whether the type is empty.
    Struct { empty: bool },
    /// This type has the following list of constructors. If `variants` is empty and
    /// `non_exhaustive` is false, don't use this; use `NoConstructors` instead.
    Variants { variants: IndexVec<Cx::VariantIdx, VariantVisibility>, non_exhaustive: bool },
    /// The type is `&T`.
    Ref,
    /// The type is a union.
    Union,
    /// Booleans.
    Bool,
    /// The type is spanned by integer values. The range or ranges give the set of allowed values.
    /// The second range is only useful for `char`.
    Integers { range_1: IntRange, range_2: Option<IntRange> },
    /// The type is matched by slices. `array_len` is the compile-time length of the array, if
    /// known. If `subtype_is_empty`, all constructors are empty except possibly the zero-length
    /// slice `[]`.
    Slice { array_len: Option<usize>, subtype_is_empty: bool },
    /// The constructors cannot be listed, and the type cannot be matched exhaustively. E.g. `str`,
    /// floats.
    Unlistable,
    /// The type has no constructors (not even empty ones). This is `!` and empty enums.
    NoConstructors,
}

/// Describes the result of analyzing the constructors in a column of a match.
///
/// `present` is morally the set of constructors present in the column, and `missing` is the set of
/// constructors that exist in the type but are not present in the column.
///
/// More formally, if we discard wildcards from the column, this respects the following constraints:
/// 1. the union of `present`, `missing` and `missing_empty` covers all the constructors of the type
/// 2. each constructor in `present` is covered by something in the column
/// 3. no constructor in `missing` or `missing_empty` is covered by anything in the column
/// 4. each constructor in the column is equal to the union of one or more constructors in `present`
/// 5. `missing` does not contain empty constructors (see discussion about emptiness at the top of
///    the file);
/// 6. `missing_empty` contains only empty constructors
/// 7. constructors in `present`, `missing` and `missing_empty` are split for the column; in other
///    words, they are either fully included in or fully disjoint from each constructor in the
///    column. In yet other words, there are no non-trivial intersections like between `0..10` and
///    `5..15`.
///
/// We must be particularly careful with weird constructors like `Opaque`: they're not formally part
/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
#[derive(Debug)]
pub struct SplitConstructorSet<Cx: PatCx> {
    pub present: SmallVec<[Constructor<Cx>; 1]>,
    pub missing: Vec<Constructor<Cx>>,
    pub missing_empty: Vec<Constructor<Cx>>,
}

impl<Cx: PatCx> ConstructorSet<Cx> {
    /// This analyzes a column of constructors to 1/ determine which constructors of the type (if
    /// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
    /// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation
    /// and its invariants.
    pub fn split<'a>(
        &self,
        ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
    ) -> SplitConstructorSet<Cx>
    where
        Cx: 'a,
    {
        let mut present: SmallVec<[_; 1]> = SmallVec::new();
        // Empty constructors found missing.
        let mut missing_empty = Vec::new();
        // Nonempty constructors found missing.
        let mut missing = Vec::new();
        // Constructors in `ctors`, except wildcards and opaques.
        let mut seen = Vec::new();
        for ctor in ctors.cloned() {
            match ctor {
                Opaque(..) => present.push(ctor),
                Wildcard => {} // discard wildcards
                _ => seen.push(ctor),
            }
        }

        match self {
            ConstructorSet::Struct { empty } => {
                if !seen.is_empty() {
                    present.push(Struct);
                } else if *empty {
                    missing_empty.push(Struct);
                } else {
                    missing.push(Struct);
                }
            }
            ConstructorSet::Ref => {
                if !seen.is_empty() {
                    present.push(Ref);
                } else {
                    missing.push(Ref);
                }
            }
            ConstructorSet::Union => {
                if !seen.is_empty() {
                    present.push(UnionField);
                } else {
                    missing.push(UnionField);
                }
            }
            ConstructorSet::Variants { variants, non_exhaustive } => {
                let mut seen_set = BitSet::new_empty(variants.len());
                for idx in seen.iter().filter_map(|c| c.as_variant()) {
                    seen_set.insert(idx);
                }
                let mut skipped_a_hidden_variant = false;

                for (idx, visibility) in variants.iter_enumerated() {
                    let ctor = Variant(idx);
                    if seen_set.contains(idx) {
                        present.push(ctor);
                    } else {
                        // We only put visible variants directly into `missing`.
                        match visibility {
                            VariantVisibility::Visible => missing.push(ctor),
                            VariantVisibility::Hidden => skipped_a_hidden_variant = true,
                            VariantVisibility::Empty => missing_empty.push(ctor),
                        }
                    }
                }

                if skipped_a_hidden_variant {
                    missing.push(Hidden);
                }
                if *non_exhaustive {
                    missing.push(NonExhaustive);
                }
            }
            ConstructorSet::Bool => {
                let mut seen_false = false;
                let mut seen_true = false;
                for b in seen.iter().filter_map(|ctor| ctor.as_bool()) {
                    if b {
                        seen_true = true;
                    } else {
                        seen_false = true;
                    }
                }
                if seen_false {
                    present.push(Bool(false));
                } else {
                    missing.push(Bool(false));
                }
                if seen_true {
                    present.push(Bool(true));
                } else {
                    missing.push(Bool(true));
                }
            }
            ConstructorSet::Integers { range_1, range_2 } => {
                let seen_ranges: Vec<_> =
                    seen.iter().filter_map(|ctor| ctor.as_int_range()).copied().collect();
                for (seen, splitted_range) in range_1.split(seen_ranges.iter().cloned()) {
                    match seen {
                        Presence::Unseen => missing.push(IntRange(splitted_range)),
                        Presence::Seen => present.push(IntRange(splitted_range)),
                    }
                }
                if let Some(range_2) = range_2 {
                    for (seen, splitted_range) in range_2.split(seen_ranges.into_iter()) {
                        match seen {
                            Presence::Unseen => missing.push(IntRange(splitted_range)),
                            Presence::Seen => present.push(IntRange(splitted_range)),
                        }
                    }
                }
            }
            ConstructorSet::Slice { array_len, subtype_is_empty } => {
                let seen_slices = seen.iter().filter_map(|c| c.as_slice());
                let base_slice = Slice::new(*array_len, VarLen(0, 0));
                for (seen, splitted_slice) in base_slice.split(seen_slices) {
                    let ctor = Slice(splitted_slice);
                    match seen {
                        Presence::Seen => present.push(ctor),
                        Presence::Unseen => {
                            if *subtype_is_empty && splitted_slice.arity() != 0 {
                                // We have subpatterns of an empty type, so the constructor is
                                // empty.
                                missing_empty.push(ctor);
                            } else {
                                missing.push(ctor);
                            }
                        }
                    }
                }
            }
            ConstructorSet::Unlistable => {
                // Since we can't list constructors, we take the ones in the column. This might list
                // some constructors several times but there's not much we can do.
                present.extend(seen);
                missing.push(NonExhaustive);
            }
            ConstructorSet::NoConstructors => {
                // In a `MaybeInvalid` place even an empty pattern may be reachable. We therefore
                // add a dummy empty constructor here, which will be ignored if the place is
                // `ValidOnly`.
                missing_empty.push(Never);
            }
        }

        SplitConstructorSet { present, missing, missing_empty }
    }

    /// Whether this set only contains empty constructors.
    pub(crate) fn all_empty(&self) -> bool {
        match self {
            ConstructorSet::Bool
            | ConstructorSet::Integers { .. }
            | ConstructorSet::Ref
            | ConstructorSet::Union
            | ConstructorSet::Unlistable => false,
            ConstructorSet::NoConstructors => true,
            ConstructorSet::Struct { empty } => *empty,
            ConstructorSet::Variants { variants, non_exhaustive } => {
                !*non_exhaustive
                    && variants
                        .iter()
                        .all(|visibility| matches!(visibility, VariantVisibility::Empty))
            }
            ConstructorSet::Slice { array_len, subtype_is_empty } => {
                *subtype_is_empty && matches!(array_len, Some(1..))
            }
        }
    }
}