rustc_ty_utils/instance.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
use rustc_errors::ErrorGuaranteed;
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::traits::{BuiltinImplSource, CodegenObligationError};
use rustc_middle::ty::util::AsyncDropGlueMorphology;
use rustc_middle::ty::{self, GenericArgsRef, Instance, TyCtxt, TypeVisitableExt};
use rustc_span::sym;
use rustc_trait_selection::traits;
use rustc_type_ir::ClosureKind;
use tracing::debug;
use traits::{Reveal, translate_args};
use crate::errors::UnexpectedFnPtrAssociatedItem;
fn resolve_instance_raw<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, (DefId, GenericArgsRef<'tcx>)>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
let (param_env, (def_id, args)) = key.into_parts();
let result = if let Some(trait_def_id) = tcx.trait_of_item(def_id) {
debug!(" => associated item, attempting to find impl in param_env {:#?}", param_env);
resolve_associated_item(
tcx,
def_id,
param_env,
trait_def_id,
tcx.normalize_erasing_regions(param_env, args),
)
} else {
let def = if tcx.intrinsic(def_id).is_some() {
debug!(" => intrinsic");
ty::InstanceKind::Intrinsic(def_id)
} else if tcx.is_lang_item(def_id, LangItem::DropInPlace) {
let ty = args.type_at(0);
if ty.needs_drop(tcx, param_env) {
debug!(" => nontrivial drop glue");
match *ty.kind() {
ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::Tuple(..)
| ty::Adt(..)
| ty::Dynamic(..)
| ty::Array(..)
| ty::Slice(..) => {}
// Drop shims can only be built from ADTs.
_ => return Ok(None),
}
ty::InstanceKind::DropGlue(def_id, Some(ty))
} else {
debug!(" => trivial drop glue");
ty::InstanceKind::DropGlue(def_id, None)
}
} else if tcx.is_lang_item(def_id, LangItem::AsyncDropInPlace) {
let ty = args.type_at(0);
if ty.async_drop_glue_morphology(tcx) != AsyncDropGlueMorphology::Noop {
match *ty.kind() {
ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::Tuple(..)
| ty::Adt(..)
| ty::Dynamic(..)
| ty::Array(..)
| ty::Slice(..) => {}
// Async destructor ctor shims can only be built from ADTs.
_ => return Ok(None),
}
debug!(" => nontrivial async drop glue ctor");
ty::InstanceKind::AsyncDropGlueCtorShim(def_id, Some(ty))
} else {
debug!(" => trivial async drop glue ctor");
ty::InstanceKind::AsyncDropGlueCtorShim(def_id, None)
}
} else {
debug!(" => free item");
// FIXME(effects): we may want to erase the effect param if that is present on this item.
ty::InstanceKind::Item(def_id)
};
Ok(Some(Instance { def, args }))
};
debug!("resolve_instance: result={:?}", result);
result
}
fn resolve_associated_item<'tcx>(
tcx: TyCtxt<'tcx>,
trait_item_id: DefId,
param_env: ty::ParamEnv<'tcx>,
trait_id: DefId,
rcvr_args: GenericArgsRef<'tcx>,
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
debug!(?trait_item_id, ?param_env, ?trait_id, ?rcvr_args, "resolve_associated_item");
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args);
let vtbl = match tcx.codegen_select_candidate((param_env, trait_ref)) {
Ok(vtbl) => vtbl,
Err(
CodegenObligationError::Ambiguity
| CodegenObligationError::Unimplemented
| CodegenObligationError::FulfillmentError,
) => return Ok(None),
};
// Now that we know which impl is being used, we can dispatch to
// the actual function:
Ok(match vtbl {
traits::ImplSource::UserDefined(impl_data) => {
debug!(
"resolving ImplSource::UserDefined: {:?}, {:?}, {:?}, {:?}",
param_env, trait_item_id, rcvr_args, impl_data
);
assert!(!rcvr_args.has_infer());
assert!(!trait_ref.has_infer());
let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap();
let trait_def = tcx.trait_def(trait_def_id);
let leaf_def = trait_def
.ancestors(tcx, impl_data.impl_def_id)?
.leaf_def(tcx, trait_item_id)
.unwrap_or_else(|| {
bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id);
});
let infcx = tcx.infer_ctxt().build();
let param_env = param_env.with_reveal_all_normalized(tcx);
let args = rcvr_args.rebase_onto(tcx, trait_def_id, impl_data.args);
let args = translate_args(
&infcx,
param_env,
impl_data.impl_def_id,
args,
leaf_def.defining_node,
);
let args = infcx.tcx.erase_regions(args);
// Since this is a trait item, we need to see if the item is either a trait default item
// or a specialization because we can't resolve those unless we can `Reveal::All`.
// NOTE: This should be kept in sync with the similar code in
// `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`.
let eligible = if leaf_def.is_final() {
// Non-specializable items are always projectable.
true
} else {
// Only reveal a specializable default if we're past type-checking
// and the obligation is monomorphic, otherwise passes such as
// transmute checking and polymorphic MIR optimizations could
// get a result which isn't correct for all monomorphizations.
if param_env.reveal() == Reveal::All {
!trait_ref.still_further_specializable()
} else {
false
}
};
if !eligible {
return Ok(None);
}
// HACK: We may have overlapping `dyn Trait` built-in impls and
// user-provided blanket impls. Detect that case here, and return
// ambiguity.
//
// This should not affect totally monomorphized contexts, only
// resolve calls that happen polymorphically, such as the mir-inliner
// and const-prop (and also some lints).
let self_ty = rcvr_args.type_at(0);
if !self_ty.is_known_rigid() {
let predicates = tcx
.predicates_of(impl_data.impl_def_id)
.instantiate(tcx, impl_data.args)
.predicates;
let sized_def_id = tcx.lang_items().sized_trait();
// If we find a `Self: Sized` bound on the item, then we know
// that `dyn Trait` can certainly never apply here.
if !predicates.into_iter().filter_map(ty::Clause::as_trait_clause).any(|clause| {
Some(clause.def_id()) == sized_def_id
&& clause.skip_binder().self_ty() == self_ty
}) {
return Ok(None);
}
}
// Any final impl is required to define all associated items.
if !leaf_def.item.defaultness(tcx).has_value() {
let guar = tcx.dcx().span_delayed_bug(
tcx.def_span(leaf_def.item.def_id),
"missing value for assoc item in impl",
);
return Err(guar);
}
// Make sure that we're projecting to an item that has compatible args.
// This may happen if we are resolving an instance before codegen, such
// as during inlining. This check is also done in projection.
if !tcx.check_args_compatible(leaf_def.item.def_id, args) {
let guar = tcx.dcx().span_delayed_bug(
tcx.def_span(leaf_def.item.def_id),
"missing value for assoc item in impl",
);
return Err(guar);
}
let args = tcx.erase_regions(args);
// Check if we just resolved an associated `const` declaration from
// a `trait` to an associated `const` definition in an `impl`, where
// the definition in the `impl` has the wrong type (for which an
// error has already been/will be emitted elsewhere).
if leaf_def.item.kind == ty::AssocKind::Const
&& trait_item_id != leaf_def.item.def_id
&& let Some(leaf_def_item) = leaf_def.item.def_id.as_local()
{
tcx.compare_impl_const((leaf_def_item, trait_item_id))?;
}
Some(ty::Instance::new(leaf_def.item.def_id, args))
}
traits::ImplSource::Builtin(BuiltinImplSource::Object(_), _) => {
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args);
if trait_ref.has_non_region_infer() || trait_ref.has_non_region_param() {
// We only resolve totally substituted vtable entries.
None
} else {
let vtable_base = tcx.first_method_vtable_slot(trait_ref);
let offset = tcx
.own_existential_vtable_entries(trait_id)
.iter()
.copied()
.position(|def_id| def_id == trait_item_id);
offset.map(|offset| Instance {
def: ty::InstanceKind::Virtual(trait_item_id, vtable_base + offset),
args: rcvr_args,
})
}
}
traits::ImplSource::Builtin(BuiltinImplSource::Misc, _) => {
if tcx.is_lang_item(trait_ref.def_id, LangItem::Clone) {
// FIXME(eddyb) use lang items for methods instead of names.
let name = tcx.item_name(trait_item_id);
if name == sym::clone {
let self_ty = trait_ref.self_ty();
match self_ty.kind() {
ty::FnDef(..) | ty::FnPtr(..) => (),
ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Tuple(..) => {}
_ => return Ok(None),
};
Some(Instance {
def: ty::InstanceKind::CloneShim(trait_item_id, self_ty),
args: rcvr_args,
})
} else {
assert_eq!(name, sym::clone_from);
// Use the default `fn clone_from` from `trait Clone`.
let args = tcx.erase_regions(rcvr_args);
Some(ty::Instance::new(trait_item_id, args))
}
} else if tcx.is_lang_item(trait_ref.def_id, LangItem::FnPtrTrait) {
if tcx.is_lang_item(trait_item_id, LangItem::FnPtrAddr) {
let self_ty = trait_ref.self_ty();
if !matches!(self_ty.kind(), ty::FnPtr(..)) {
return Ok(None);
}
Some(Instance {
def: ty::InstanceKind::FnPtrAddrShim(trait_item_id, self_ty),
args: rcvr_args,
})
} else {
tcx.dcx().emit_fatal(UnexpectedFnPtrAssociatedItem {
span: tcx.def_span(trait_item_id),
})
}
} else if let Some(target_kind) = tcx.fn_trait_kind_from_def_id(trait_ref.def_id) {
// FIXME: This doesn't check for malformed libcore that defines, e.g.,
// `trait Fn { fn call_once(&self) { .. } }`. This is mostly for extension
// methods.
if cfg!(debug_assertions)
&& ![sym::call, sym::call_mut, sym::call_once]
.contains(&tcx.item_name(trait_item_id))
{
// For compiler developers who'd like to add new items to `Fn`/`FnMut`/`FnOnce`,
// you either need to generate a shim body, or perhaps return
// `InstanceKind::Item` pointing to a trait default method body if
// it is given a default implementation by the trait.
bug!(
"no definition for `{trait_ref}::{}` for built-in callable type",
tcx.item_name(trait_item_id)
)
}
match *rcvr_args.type_at(0).kind() {
ty::Closure(closure_def_id, args) => {
Some(Instance::resolve_closure(tcx, closure_def_id, args, target_kind))
}
ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
def: ty::InstanceKind::FnPtrShim(trait_item_id, rcvr_args.type_at(0)),
args: rcvr_args,
}),
ty::CoroutineClosure(coroutine_closure_def_id, args) => {
// When a coroutine-closure implements the `Fn` traits, then it
// always dispatches to the `FnOnce` implementation. This is to
// ensure that the `closure_kind` of the resulting closure is in
// sync with the built-in trait implementations (since all of the
// implementations return `FnOnce::Output`).
if ty::ClosureKind::FnOnce == args.as_coroutine_closure().kind() {
Some(Instance::new(coroutine_closure_def_id, args))
} else {
Some(Instance {
def: ty::InstanceKind::ConstructCoroutineInClosureShim {
coroutine_closure_def_id,
receiver_by_ref: target_kind != ty::ClosureKind::FnOnce,
},
args,
})
}
}
_ => bug!(
"no built-in definition for `{trait_ref}::{}` for non-fn type",
tcx.item_name(trait_item_id)
),
}
} else if let Some(target_kind) = tcx.async_fn_trait_kind_from_def_id(trait_ref.def_id)
{
match *rcvr_args.type_at(0).kind() {
ty::CoroutineClosure(coroutine_closure_def_id, args) => {
if target_kind == ClosureKind::FnOnce
&& args.as_coroutine_closure().kind() != ClosureKind::FnOnce
{
// If we're computing `AsyncFnOnce` for a by-ref closure then
// construct a new body that has the right return types.
Some(Instance {
def: ty::InstanceKind::ConstructCoroutineInClosureShim {
coroutine_closure_def_id,
receiver_by_ref: false,
},
args,
})
} else {
Some(Instance::new(coroutine_closure_def_id, args))
}
}
ty::Closure(closure_def_id, args) => {
Some(Instance::resolve_closure(tcx, closure_def_id, args, target_kind))
}
ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
def: ty::InstanceKind::FnPtrShim(trait_item_id, rcvr_args.type_at(0)),
args: rcvr_args,
}),
_ => bug!(
"no built-in definition for `{trait_ref}::{}` for non-lending-closure type",
tcx.item_name(trait_item_id)
),
}
} else if tcx.is_lang_item(trait_ref.def_id, LangItem::TransmuteTrait) {
let name = tcx.item_name(trait_item_id);
assert_eq!(name, sym::transmute);
let args = tcx.erase_regions(rcvr_args);
Some(ty::Instance::new(trait_item_id, args))
} else {
Instance::try_resolve_item_for_coroutine(tcx, trait_item_id, trait_id, rcvr_args)
}
}
traits::ImplSource::Param(..)
| traits::ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
| traits::ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => None,
})
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { resolve_instance_raw, ..*providers };
}