1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
//! In this file we handle the "Tree" part of Tree Borrows, i.e. all tree
//! traversal functions, optimizations to trim branches, and keeping track of
//! the relative position of the access to each node being updated. This of course
//! also includes the definition of the tree structure.
//!
//! Functions here manipulate permissions but are oblivious to them: as
//! the internals of `Permission` are private, the update process is a black
//! box. All we need to know here are
//! - the fact that updates depend only on the old state, the status of protectors,
//!   and the relative position of the access;
//! - idempotency properties asserted in `perms.rs` (for optimizations)

use std::{fmt, mem};

use smallvec::SmallVec;

use rustc_data_structures::fx::FxHashSet;
use rustc_span::Span;
use rustc_target::abi::Size;

use crate::borrow_tracker::tree_borrows::{
    diagnostics::{self, NodeDebugInfo, TbError, TransitionError},
    perms::PermTransition,
    unimap::{UniEntry, UniIndex, UniKeyMap, UniValMap},
    Permission,
};
use crate::borrow_tracker::{GlobalState, ProtectorKind};
use crate::*;

mod tests;

/// Data for a single *location*.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(super) struct LocationState {
    /// A location is initialized when it is child-accessed for the first time (and the initial
    /// retag initializes the location for the range covered by the type), and it then stays
    /// initialized forever.
    /// For initialized locations, "permission" is the current permission. However, for
    /// uninitialized locations, we still need to track the "future initial permission": this will
    /// start out to be `default_initial_perm`, but foreign accesses need to be taken into account.
    /// Crucially however, while transitions to `Disabled` would usually be UB if this location is
    /// protected, that is *not* the case for uninitialized locations. Instead we just have a latent
    /// "future initial permission" of `Disabled`, causing UB only if an access is ever actually
    /// performed.
    /// Note that the tree root is also always initialized, as if the allocation was a write access.
    initialized: bool,
    /// This pointer's current permission / future initial permission.
    permission: Permission,
    /// Strongest foreign access whose effects have already been applied to
    /// this node and all its children since the last child access.
    /// This is `None` if the most recent access is a child access,
    /// `Some(Write)` if at least one foreign write access has been applied
    /// since the previous child access, and `Some(Read)` if at least one
    /// foreign read and no foreign write have occurred since the last child access.
    latest_foreign_access: Option<AccessKind>,
}

impl LocationState {
    /// Constructs a new initial state. It has neither been accessed, nor been subjected
    /// to any foreign access yet.
    /// The permission is not allowed to be `Active`.
    fn new_uninit(permission: Permission) -> Self {
        assert!(permission.is_initial() || permission.is_disabled());
        Self { permission, initialized: false, latest_foreign_access: None }
    }

    /// Constructs a new initial state. It has not yet been subjected
    /// to any foreign access. However, it is already marked as having been accessed.
    fn new_init(permission: Permission) -> Self {
        Self { permission, initialized: true, latest_foreign_access: None }
    }

    /// Check if the location has been initialized, i.e. if it has
    /// ever been accessed through a child pointer.
    pub fn is_initialized(&self) -> bool {
        self.initialized
    }

    /// Check if the state can exist as the initial permission of a pointer.
    ///
    /// Do not confuse with `is_initialized`, the two are almost orthogonal
    /// as apart from `Active` which is not initial and must be initialized,
    /// any other permission can have an arbitrary combination of being
    /// initial/initialized.
    /// FIXME: when the corresponding `assert` in `tree_borrows/mod.rs` finally
    /// passes and can be uncommented, remove this `#[allow(dead_code)]`.
    #[cfg_attr(not(test), allow(dead_code))]
    pub fn is_initial(&self) -> bool {
        self.permission.is_initial()
    }

    pub fn permission(&self) -> Permission {
        self.permission
    }

    /// Apply the effect of an access to one location, including
    /// - applying `Permission::perform_access` to the inner `Permission`,
    /// - emitting protector UB if the location is initialized,
    /// - updating the initialized status (child accesses produce initialized locations).
    fn perform_access(
        &mut self,
        access_kind: AccessKind,
        rel_pos: AccessRelatedness,
        protected: bool,
    ) -> Result<PermTransition, TransitionError> {
        let old_perm = self.permission;
        let transition = Permission::perform_access(access_kind, rel_pos, old_perm, protected)
            .ok_or(TransitionError::ChildAccessForbidden(old_perm))?;
        self.initialized |= !rel_pos.is_foreign();
        self.permission = transition.applied(old_perm).unwrap();
        // Why do only initialized locations cause protector errors?
        // Consider two mutable references `x`, `y` into disjoint parts of
        // the same allocation. A priori, these may actually both be used to
        // access the entire allocation, as long as only reads occur. However,
        // a write to `y` needs to somehow record that `x` can no longer be used
        // on that location at all. For these uninitialized locations (i.e., locations
        // that haven't been accessed with `x` yet), we track the "future initial state":
        // it defaults to whatever the initial state of the tag is,
        // but the access to `y` moves that "future initial state" of `x` to `Disabled`.
        // However, usually a `Reserved -> Disabled` transition would be UB due to the protector!
        // So clearly protectors shouldn't fire for such "future initial state" transitions.
        //
        // See the test `two_mut_protected_same_alloc` in `tests/pass/tree_borrows/tree-borrows.rs`
        // for an example of safe code that would be UB if we forgot to check `self.initialized`.
        if protected && self.initialized && transition.produces_disabled() {
            return Err(TransitionError::ProtectedDisabled(old_perm));
        }
        Ok(transition)
    }

    /// Like `perform_access`, but ignores the concrete error cause and also uses state-passing
    /// rather than a mutable reference. As such, it returns `Some(x)` if the transition succeeded,
    /// or `None` if there was an error.
    #[cfg(test)]
    fn perform_access_no_fluff(
        mut self,
        access_kind: AccessKind,
        rel_pos: AccessRelatedness,
        protected: bool,
    ) -> Option<Self> {
        match self.perform_access(access_kind, rel_pos, protected) {
            Ok(_) => Some(self),
            Err(_) => None,
        }
    }

    // Helper to optimize the tree traversal.
    // The optimization here consists of observing thanks to the tests
    // `foreign_read_is_noop_after_foreign_write` and `all_transitions_idempotent`,
    // that there are actually just three possible sequences of events that can occur
    // in between two child accesses that produce different results.
    //
    // Indeed,
    // - applying any number of foreign read accesses is the same as applying
    //   exactly one foreign read,
    // - applying any number of foreign read or write accesses is the same
    //   as applying exactly one foreign write.
    // therefore the three sequences of events that can produce different
    // outcomes are
    // - an empty sequence (`self.latest_foreign_access = None`)
    // - a nonempty read-only sequence (`self.latest_foreign_access = Some(Read)`)
    // - a nonempty sequence with at least one write (`self.latest_foreign_access = Some(Write)`)
    //
    // This function not only determines if skipping the propagation right now
    // is possible, it also updates the internal state to keep track of whether
    // the propagation can be skipped next time.
    // It is a performance loss not to call this function when a foreign access occurs.
    // FIXME: This optimization is wrong, and is currently disabled (by ignoring the
    // result returned here). Since we presumably want an optimization like this,
    // we should add it back. See #3864 for more information.
    fn skip_if_known_noop(
        &self,
        access_kind: AccessKind,
        rel_pos: AccessRelatedness,
    ) -> ContinueTraversal {
        if rel_pos.is_foreign() {
            let new_access_noop = match (self.latest_foreign_access, access_kind) {
                // Previously applied transition makes the new one a guaranteed
                // noop in the two following cases:
                // (1) justified by `foreign_read_is_noop_after_foreign_write`
                (Some(AccessKind::Write), AccessKind::Read) => true,
                // (2) justified by `all_transitions_idempotent`
                (Some(old), new) if old == new => true,
                // In all other cases there has been a recent enough
                // child access that the effects of the new foreign access
                // need to be applied to this subtree.
                _ => false,
            };
            if new_access_noop {
                // Abort traversal if the new transition is indeed guaranteed
                // to be noop.
                // No need to update `self.latest_foreign_access`,
                // the type of the current streak among nonempty read-only
                // or nonempty with at least one write has not changed.
                ContinueTraversal::SkipSelfAndChildren
            } else {
                // Otherwise propagate this time, and also record the
                // access that just occurred so that we can skip the propagation
                // next time.
                ContinueTraversal::Recurse
            }
        } else {
            // A child access occurred, this breaks the streak of foreign
            // accesses in a row and the sequence since the previous child access
            // is now empty.
            ContinueTraversal::Recurse
        }
    }

    /// Records a new access, so that future access can potentially be skipped
    /// by `skip_if_known_noop`.
    /// The invariants for this function are closely coupled to the function above:
    /// It MUST be called on child accesses, and on foreign accesses MUST be called
    /// when `skip_if_know_noop` returns `Recurse`, and MUST NOT be called otherwise.
    /// FIXME: This optimization is wrong, and is currently disabled (by ignoring the
    /// result returned here). Since we presumably want an optimization like this,
    /// we should add it back. See #3864 for more information.
    #[allow(unused)]
    fn record_new_access(&mut self, access_kind: AccessKind, rel_pos: AccessRelatedness) {
        if rel_pos.is_foreign() {
            self.latest_foreign_access = Some(access_kind);
        } else {
            self.latest_foreign_access = None;
        }
    }
}

impl fmt::Display for LocationState {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.permission)?;
        if !self.initialized {
            write!(f, "?")?;
        }
        Ok(())
    }
}

/// Tree structure with both parents and children since we want to be
/// able to traverse the tree efficiently in both directions.
#[derive(Clone, Debug)]
pub struct Tree {
    /// Mapping from tags to keys. The key obtained can then be used in
    /// any of the `UniValMap` relative to this allocation, i.e. both the
    /// `nodes` and `rperms` of the same `Tree`.
    /// The parent-child relationship in `Node` is encoded in terms of these same
    /// keys, so traversing the entire tree needs exactly one access to
    /// `tag_mapping`.
    pub(super) tag_mapping: UniKeyMap<BorTag>,
    /// All nodes of this tree.
    pub(super) nodes: UniValMap<Node>,
    /// Maps a tag and a location to a perm, with possible lazy
    /// initialization.
    ///
    /// NOTE: not all tags registered in `nodes` are necessarily in all
    /// ranges of `rperms`, because `rperms` is in part lazily initialized.
    /// Just because `nodes.get(key)` is `Some(_)` does not mean you can safely
    /// `unwrap` any `perm.get(key)`.
    ///
    /// We do uphold the fact that `keys(perms)` is a subset of `keys(nodes)`
    pub(super) rperms: RangeMap<UniValMap<LocationState>>,
    /// The index of the root node.
    pub(super) root: UniIndex,
}

/// A node in the borrow tree. Each node is uniquely identified by a tag via
/// the `nodes` map of `Tree`.
#[derive(Clone, Debug)]
pub(super) struct Node {
    /// The tag of this node.
    pub tag: BorTag,
    /// All tags except the root have a parent tag.
    pub parent: Option<UniIndex>,
    /// If the pointer was reborrowed, it has children.
    // FIXME: bench to compare this to FxHashSet and to other SmallVec sizes
    pub children: SmallVec<[UniIndex; 4]>,
    /// Either `Reserved`,  `Frozen`, or `Disabled`, it is the permission this tag will
    /// lazily be initialized to on the first access.
    /// It is only ever `Disabled` for a tree root, since the root is initialized to `Active` by
    /// its own separate mechanism.
    default_initial_perm: Permission,
    /// Some extra information useful only for debugging purposes
    pub debug_info: NodeDebugInfo,
}

/// Data given to the transition function
struct NodeAppArgs<'node> {
    /// Node on which the transition is currently being applied
    node: &'node mut Node,
    /// Mutable access to its permissions
    perm: UniEntry<'node, LocationState>,
    /// Relative position of the access
    rel_pos: AccessRelatedness,
}
/// Data given to the error handler
struct ErrHandlerArgs<'node, InErr> {
    /// Kind of error that occurred
    error_kind: InErr,
    /// Tag that triggered the error (not the tag that was accessed,
    /// rather the parent tag that had insufficient permissions or the
    /// non-parent tag that had a protector).
    conflicting_info: &'node NodeDebugInfo,
    /// Information about the tag that was accessed just before the
    /// error was triggered.
    accessed_info: &'node NodeDebugInfo,
}
/// Internal contents of `Tree` with the minimum of mutable access for
/// the purposes of the tree traversal functions: the permissions (`perms`) can be
/// updated but not the tree structure (`tag_mapping` and `nodes`)
struct TreeVisitor<'tree> {
    tag_mapping: &'tree UniKeyMap<BorTag>,
    nodes: &'tree mut UniValMap<Node>,
    perms: &'tree mut UniValMap<LocationState>,
}

/// Whether to continue exploring the children recursively or not.
enum ContinueTraversal {
    Recurse,
    SkipSelfAndChildren,
}

#[derive(Clone, Copy)]
pub enum ChildrenVisitMode {
    VisitChildrenOfAccessed,
    SkipChildrenOfAccessed,
}

enum RecursionState {
    BeforeChildren,
    AfterChildren,
}

/// Stack of nodes left to explore in a tree traversal.
/// See the docs of `traverse_this_parents_children_other` for details on the
/// traversal order.
struct TreeVisitorStack<NodeContinue, NodeApp, ErrHandler> {
    /// Identifier of the original access.
    initial: UniIndex,
    /// Function describing whether to continue at a tag.
    /// This is only invoked for foreign accesses.
    f_continue: NodeContinue,
    /// Function to apply to each tag.
    f_propagate: NodeApp,
    /// Handler to add the required context to diagnostics.
    err_builder: ErrHandler,
    /// Mutable state of the visit: the tags left to handle.
    /// Every tag pushed should eventually be handled,
    /// and the precise order is relevant for diagnostics.
    /// Since the traversal is piecewise bottom-up, we need to
    /// remember whether we're here initially, or after visiting all children.
    /// The last element indicates this.
    /// This is just an artifact of how you hand-roll recursion,
    /// it does not have a deeper meaning otherwise.
    stack: Vec<(UniIndex, AccessRelatedness, RecursionState)>,
}

impl<NodeContinue, NodeApp, InnErr, OutErr, ErrHandler>
    TreeVisitorStack<NodeContinue, NodeApp, ErrHandler>
where
    NodeContinue: Fn(&NodeAppArgs<'_>) -> ContinueTraversal,
    NodeApp: Fn(NodeAppArgs<'_>) -> Result<(), InnErr>,
    ErrHandler: Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
{
    fn should_continue_at(
        &self,
        this: &mut TreeVisitor<'_>,
        idx: UniIndex,
        rel_pos: AccessRelatedness,
    ) -> ContinueTraversal {
        let node = this.nodes.get_mut(idx).unwrap();
        let args = NodeAppArgs { node, perm: this.perms.entry(idx), rel_pos };
        (self.f_continue)(&args)
    }

    fn propagate_at(
        &mut self,
        this: &mut TreeVisitor<'_>,
        idx: UniIndex,
        rel_pos: AccessRelatedness,
    ) -> Result<(), OutErr> {
        let node = this.nodes.get_mut(idx).unwrap();
        (self.f_propagate)(NodeAppArgs { node, perm: this.perms.entry(idx), rel_pos }).map_err(
            |error_kind| {
                (self.err_builder)(ErrHandlerArgs {
                    error_kind,
                    conflicting_info: &this.nodes.get(idx).unwrap().debug_info,
                    accessed_info: &this.nodes.get(self.initial).unwrap().debug_info,
                })
            },
        )
    }

    fn go_upwards_from_accessed(
        &mut self,
        this: &mut TreeVisitor<'_>,
        accessed_node: UniIndex,
        visit_children: ChildrenVisitMode,
    ) -> Result<(), OutErr> {
        // We want to visit the accessed node's children first.
        // However, we will below walk up our parents and push their children (our cousins)
        // onto the stack. To ensure correct iteration order, this method thus finishes
        // by reversing the stack. This only works if the stack is empty initially.
        assert!(self.stack.is_empty());
        // First, handle accessed node. A bunch of things need to
        // be handled differently here compared to the further parents
        // of `accesssed_node`.
        {
            self.propagate_at(this, accessed_node, AccessRelatedness::This)?;
            if matches!(visit_children, ChildrenVisitMode::VisitChildrenOfAccessed) {
                let accessed_node = this.nodes.get(accessed_node).unwrap();
                // We `rev()` here because we reverse the entire stack later.
                for &child in accessed_node.children.iter().rev() {
                    self.stack.push((
                        child,
                        AccessRelatedness::AncestorAccess,
                        RecursionState::BeforeChildren,
                    ));
                }
            }
        }
        // Then, handle the accessed node's parents. Here, we need to
        // make sure we only mark the "cousin" subtrees for later visitation,
        // not the subtree that contains the accessed node.
        let mut last_node = accessed_node;
        while let Some(current) = this.nodes.get(last_node).unwrap().parent {
            self.propagate_at(this, current, AccessRelatedness::StrictChildAccess)?;
            let node = this.nodes.get(current).unwrap();
            // We `rev()` here because we reverse the entire stack later.
            for &child in node.children.iter().rev() {
                if last_node == child {
                    continue;
                }
                self.stack.push((
                    child,
                    AccessRelatedness::DistantAccess,
                    RecursionState::BeforeChildren,
                ));
            }
            last_node = current;
        }
        // Reverse the stack, as discussed above.
        self.stack.reverse();
        Ok(())
    }

    fn finish_foreign_accesses(&mut self, this: &mut TreeVisitor<'_>) -> Result<(), OutErr> {
        while let Some((idx, rel_pos, step)) = self.stack.last_mut() {
            let idx = *idx;
            let rel_pos = *rel_pos;
            match *step {
                // How to do bottom-up traversal, 101: Before you handle a node, you handle all children.
                // For this, you must first find the children, which is what this code here does.
                RecursionState::BeforeChildren => {
                    // Next time we come back will be when all the children are handled.
                    *step = RecursionState::AfterChildren;
                    // Now push the children, except if we are told to skip this subtree.
                    let handle_children = self.should_continue_at(this, idx, rel_pos);
                    match handle_children {
                        ContinueTraversal::Recurse => {
                            let node = this.nodes.get(idx).unwrap();
                            for &child in node.children.iter() {
                                self.stack.push((child, rel_pos, RecursionState::BeforeChildren));
                            }
                        }
                        ContinueTraversal::SkipSelfAndChildren => {
                            // skip self
                            self.stack.pop();
                            continue;
                        }
                    }
                }
                // All the children are handled, let's actually visit this node
                RecursionState::AfterChildren => {
                    self.stack.pop();
                    self.propagate_at(this, idx, rel_pos)?;
                }
            }
        }
        Ok(())
    }

    fn new(
        initial: UniIndex,
        f_continue: NodeContinue,
        f_propagate: NodeApp,
        err_builder: ErrHandler,
    ) -> Self {
        Self { initial, f_continue, f_propagate, err_builder, stack: Vec::new() }
    }
}

impl<'tree> TreeVisitor<'tree> {
    /// Applies `f_propagate` to every vertex of the tree in a piecewise bottom-up way: First, visit
    /// all ancestors of `start` (starting with `start` itself), then children of `start`, then the rest,
    /// going bottom-up in each of these two "pieces" / sections.
    /// This ensures that errors are triggered in the following order
    /// - first invalid accesses with insufficient permissions, closest to the accessed node first,
    /// - then protector violations, bottom-up, starting with the children of the accessed node, and then
    ///   going upwards and outwards.
    ///
    /// The following graphic visualizes it, with numbers indicating visitation order and `start` being
    /// the node that is visited first ("1"):
    ///
    /// ```text
    ///         3
    ///        /|
    ///       / |
    ///      9  2
    ///      |  |\
    ///      |  | \
    ///      8  1  7
    ///        / \
    ///       4   6
    ///           |
    ///           5
    /// ```
    ///
    /// `f_propagate` should follow the following format: for a given `Node` it updates its
    /// `Permission` depending on the position relative to `start` (given by an
    /// `AccessRelatedness`).
    /// `f_continue` is called earlier on foreign nodes, and describes whether to even start
    /// visiting the subtree at that node. If it e.g. returns `SkipSelfAndChildren` on node 6
    /// above, then nodes 5 _and_ 6 would not be visited by `f_propagate`. It is not used for
    /// notes having a child access (nodes 1, 2, 3).
    ///
    /// Finally, remember that the iteration order is not relevant for UB, it only affects
    /// diagnostics. It also affects tree traversal optimizations built on top of this, so
    /// those need to be reviewed carefully as well whenever this changes.
    fn traverse_this_parents_children_other<InnErr, OutErr>(
        mut self,
        start: BorTag,
        f_continue: impl Fn(&NodeAppArgs<'_>) -> ContinueTraversal,
        f_propagate: impl Fn(NodeAppArgs<'_>) -> Result<(), InnErr>,
        err_builder: impl Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
    ) -> Result<(), OutErr> {
        let start_idx = self.tag_mapping.get(&start).unwrap();
        let mut stack = TreeVisitorStack::new(start_idx, f_continue, f_propagate, err_builder);
        // Visits the accessed node itself, and all its parents, i.e. all nodes
        // undergoing a child access. Also pushes the children and the other
        // cousin nodes (i.e. all nodes undergoing a foreign access) to the stack
        // to be processed later.
        stack.go_upwards_from_accessed(
            &mut self,
            start_idx,
            ChildrenVisitMode::VisitChildrenOfAccessed,
        )?;
        // Now visit all the foreign nodes we remembered earlier.
        // For this we go bottom-up, but also allow f_continue to skip entire
        // subtrees from being visited if it would be a NOP.
        stack.finish_foreign_accesses(&mut self)
    }

    /// Like `traverse_this_parents_children_other`, but skips the children of `start`.
    fn traverse_nonchildren<InnErr, OutErr>(
        mut self,
        start: BorTag,
        f_continue: impl Fn(&NodeAppArgs<'_>) -> ContinueTraversal,
        f_propagate: impl Fn(NodeAppArgs<'_>) -> Result<(), InnErr>,
        err_builder: impl Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
    ) -> Result<(), OutErr> {
        let start_idx = self.tag_mapping.get(&start).unwrap();
        let mut stack = TreeVisitorStack::new(start_idx, f_continue, f_propagate, err_builder);
        // Visits the accessed node itself, and all its parents, i.e. all nodes
        // undergoing a child access. Also pushes the other cousin nodes to the
        // stack, but not the children of the accessed node.
        stack.go_upwards_from_accessed(
            &mut self,
            start_idx,
            ChildrenVisitMode::SkipChildrenOfAccessed,
        )?;
        // Now visit all the foreign nodes we remembered earlier.
        // For this we go bottom-up, but also allow f_continue to skip entire
        // subtrees from being visited if it would be a NOP.
        stack.finish_foreign_accesses(&mut self)
    }
}

impl Tree {
    /// Create a new tree, with only a root pointer.
    pub fn new(root_tag: BorTag, size: Size, span: Span) -> Self {
        // The root has `Disabled` as the default permission,
        // so that any access out of bounds is invalid.
        let root_default_perm = Permission::new_disabled();
        let mut tag_mapping = UniKeyMap::default();
        let root_idx = tag_mapping.insert(root_tag);
        let nodes = {
            let mut nodes = UniValMap::<Node>::default();
            let mut debug_info = NodeDebugInfo::new(root_tag, root_default_perm, span);
            // name the root so that all allocations contain one named pointer
            debug_info.add_name("root of the allocation");
            nodes.insert(
                root_idx,
                Node {
                    tag: root_tag,
                    parent: None,
                    children: SmallVec::default(),
                    default_initial_perm: root_default_perm,
                    debug_info,
                },
            );
            nodes
        };
        let rperms = {
            let mut perms = UniValMap::default();
            // We manually set it to `Active` on all in-bounds positions.
            // We also ensure that it is initialized, so that no `Active` but
            // not yet initialized nodes exist. Essentially, we pretend there
            // was a write that initialized these to `Active`.
            perms.insert(root_idx, LocationState::new_init(Permission::new_active()));
            RangeMap::new(size, perms)
        };
        Self { root: root_idx, nodes, rperms, tag_mapping }
    }
}

impl<'tcx> Tree {
    /// Insert a new tag in the tree
    pub fn new_child(
        &mut self,
        parent_tag: BorTag,
        new_tag: BorTag,
        default_initial_perm: Permission,
        reborrow_range: AllocRange,
        span: Span,
    ) -> InterpResult<'tcx> {
        assert!(!self.tag_mapping.contains_key(&new_tag));
        let idx = self.tag_mapping.insert(new_tag);
        let parent_idx = self.tag_mapping.get(&parent_tag).unwrap();
        // Create the node
        self.nodes.insert(
            idx,
            Node {
                tag: new_tag,
                parent: Some(parent_idx),
                children: SmallVec::default(),
                default_initial_perm,
                debug_info: NodeDebugInfo::new(new_tag, default_initial_perm, span),
            },
        );
        // Register new_tag as a child of parent_tag
        self.nodes.get_mut(parent_idx).unwrap().children.push(idx);
        // Initialize perms
        let perm = LocationState::new_init(default_initial_perm);
        for (_perms_range, perms) in self.rperms.iter_mut(reborrow_range.start, reborrow_range.size)
        {
            perms.insert(idx, perm);
        }
        Ok(())
    }

    /// Deallocation requires
    /// - a pointer that permits write accesses
    /// - the absence of Strong Protectors anywhere in the allocation
    pub fn dealloc(
        &mut self,
        tag: BorTag,
        access_range: AllocRange,
        global: &GlobalState,
        alloc_id: AllocId, // diagnostics
        span: Span,        // diagnostics
    ) -> InterpResult<'tcx> {
        self.perform_access(
            tag,
            Some((access_range, AccessKind::Write, diagnostics::AccessCause::Dealloc)),
            global,
            alloc_id,
            span,
        )?;
        for (perms_range, perms) in self.rperms.iter_mut(access_range.start, access_range.size) {
            TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
                .traverse_this_parents_children_other(
                    tag,
                    // visit all children, skipping none
                    |_| ContinueTraversal::Recurse,
                    |args: NodeAppArgs<'_>| -> Result<(), TransitionError> {
                        let NodeAppArgs { node, .. } = args;
                        if global.borrow().protected_tags.get(&node.tag)
                            == Some(&ProtectorKind::StrongProtector)
                        {
                            Err(TransitionError::ProtectedDealloc)
                        } else {
                            Ok(())
                        }
                    },
                    |args: ErrHandlerArgs<'_, TransitionError>| -> InterpError<'tcx> {
                        let ErrHandlerArgs { error_kind, conflicting_info, accessed_info } = args;
                        TbError {
                            conflicting_info,
                            access_cause: diagnostics::AccessCause::Dealloc,
                            alloc_id,
                            error_offset: perms_range.start,
                            error_kind,
                            accessed_info,
                        }
                        .build()
                    },
                )?;
        }
        Ok(())
    }

    /// Map the per-node and per-location `LocationState::perform_access`
    /// to each location of the first component of `access_range_and_kind`,
    /// on every tag of the allocation.
    ///
    /// If `access_range_and_kind` is `None`, this is interpreted as the special
    /// access that is applied on protector release:
    /// - the access will be applied only to initialized locations of the allocation,
    /// - it will not be visible to children,
    /// - it will be recorded as a `FnExit` diagnostic access
    /// - and it will be a read except if the location is `Active`, i.e. has been written to,
    ///   in which case it will be a write.
    ///
    /// `LocationState::perform_access` will take care of raising transition
    /// errors and updating the `initialized` status of each location,
    /// this traversal adds to that:
    /// - inserting into the map locations that do not exist yet,
    /// - trimming the traversal,
    /// - recording the history.
    pub fn perform_access(
        &mut self,
        tag: BorTag,
        access_range_and_kind: Option<(AllocRange, AccessKind, diagnostics::AccessCause)>,
        global: &GlobalState,
        alloc_id: AllocId, // diagnostics
        span: Span,        // diagnostics
    ) -> InterpResult<'tcx> {
        use std::ops::Range;
        // Performs the per-node work:
        // - insert the permission if it does not exist
        // - perform the access
        // - record the transition
        // to which some optimizations are added:
        // - skip the traversal of the children in some cases
        // - do not record noop transitions
        //
        // `perms_range` is only for diagnostics (it is the range of
        // the `RangeMap` on which we are currently working).
        let node_skipper = |access_kind: AccessKind, args: &NodeAppArgs<'_>| -> ContinueTraversal {
            let NodeAppArgs { node, perm, rel_pos } = args;

            let old_state = perm
                .get()
                .copied()
                .unwrap_or_else(|| LocationState::new_uninit(node.default_initial_perm));
            // FIXME: See #3684
            let _would_skip_if_not_for_fixme = old_state.skip_if_known_noop(access_kind, *rel_pos);
            ContinueTraversal::Recurse
        };
        let node_app = |perms_range: Range<u64>,
                        access_kind: AccessKind,
                        access_cause: diagnostics::AccessCause,
                        args: NodeAppArgs<'_>|
         -> Result<(), TransitionError> {
            let NodeAppArgs { node, mut perm, rel_pos } = args;

            let old_state = perm.or_insert(LocationState::new_uninit(node.default_initial_perm));

            // FIXME: See #3684
            // old_state.record_new_access(access_kind, rel_pos);

            let protected = global.borrow().protected_tags.contains_key(&node.tag);
            let transition = old_state.perform_access(access_kind, rel_pos, protected)?;
            // Record the event as part of the history
            if !transition.is_noop() {
                node.debug_info.history.push(diagnostics::Event {
                    transition,
                    is_foreign: rel_pos.is_foreign(),
                    access_cause,
                    access_range: access_range_and_kind.map(|x| x.0),
                    transition_range: perms_range,
                    span,
                });
            }
            Ok(())
        };

        // Error handler in case `node_app` goes wrong.
        // Wraps the faulty transition in more context for diagnostics.
        let err_handler = |perms_range: Range<u64>,
                           access_cause: diagnostics::AccessCause,
                           args: ErrHandlerArgs<'_, TransitionError>|
         -> InterpError<'tcx> {
            let ErrHandlerArgs { error_kind, conflicting_info, accessed_info } = args;
            TbError {
                conflicting_info,
                access_cause,
                alloc_id,
                error_offset: perms_range.start,
                error_kind,
                accessed_info,
            }
            .build()
        };

        if let Some((access_range, access_kind, access_cause)) = access_range_and_kind {
            // Default branch: this is a "normal" access through a known range.
            // We iterate over affected locations and traverse the tree for each of them.
            for (perms_range, perms) in self.rperms.iter_mut(access_range.start, access_range.size)
            {
                TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
                    .traverse_this_parents_children_other(
                        tag,
                        |args| node_skipper(access_kind, args),
                        |args| node_app(perms_range.clone(), access_kind, access_cause, args),
                        |args| err_handler(perms_range.clone(), access_cause, args),
                    )?;
            }
        } else {
            // This is a special access through the entire allocation.
            // It actually only affects `initialized` locations, so we need
            // to filter on those before initiating the traversal.
            //
            // In addition this implicit access should not be visible to children,
            // thus the use of `traverse_nonchildren`.
            // See the test case `returned_mut_is_usable` from
            // `tests/pass/tree_borrows/tree-borrows.rs` for an example of
            // why this is important.
            for (perms_range, perms) in self.rperms.iter_mut_all() {
                let idx = self.tag_mapping.get(&tag).unwrap();
                // Only visit initialized permissions
                if let Some(p) = perms.get(idx)
                    && p.initialized
                {
                    let access_kind =
                        if p.permission.is_active() { AccessKind::Write } else { AccessKind::Read };
                    let access_cause = diagnostics::AccessCause::FnExit(access_kind);
                    TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
                        .traverse_nonchildren(
                        tag,
                        |args| node_skipper(access_kind, args),
                        |args| node_app(perms_range.clone(), access_kind, access_cause, args),
                        |args| err_handler(perms_range.clone(), access_cause, args),
                    )?;
                }
            }
        }
        Ok(())
    }
}

/// Integration with the BorTag garbage collector
impl Tree {
    pub fn remove_unreachable_tags(&mut self, live_tags: &FxHashSet<BorTag>) {
        self.remove_useless_children(self.root, live_tags);
        // Right after the GC runs is a good moment to check if we can
        // merge some adjacent ranges that were made equal by the removal of some
        // tags (this does not necessarily mean that they have identical internal representations,
        // see the `PartialEq` impl for `UniValMap`)
        self.rperms.merge_adjacent_thorough();
    }

    /// Checks if a node is useless and should be GC'ed.
    /// A node is useless if it has no children and also the tag is no longer live.
    fn is_useless(&self, idx: UniIndex, live: &FxHashSet<BorTag>) -> bool {
        let node = self.nodes.get(idx).unwrap();
        node.children.is_empty() && !live.contains(&node.tag)
    }

    /// Checks whether a node can be replaced by its only child.
    /// If so, returns the index of said only child.
    /// If not, returns none.
    fn can_be_replaced_by_single_child(
        &self,
        idx: UniIndex,
        live: &FxHashSet<BorTag>,
    ) -> Option<UniIndex> {
        let node = self.nodes.get(idx).unwrap();

        // We never want to replace the root node, as it is also kept in `root_ptr_tags`.
        if node.children.len() != 1 || live.contains(&node.tag) || node.parent.is_none() {
            return None;
        }
        // Since protected nodes are never GC'd (see `borrow_tracker::FrameExtra::visit_provenance`),
        // we know that `node` is not protected because otherwise `live` would
        // have contained `node.tag`.
        let child_idx = node.children[0];
        let child = self.nodes.get(child_idx).unwrap();
        // Check that for that one child, `can_be_replaced_by_child` holds for the permission
        // on all locations.
        for (_, data) in self.rperms.iter_all() {
            let parent_perm =
                data.get(idx).map(|x| x.permission).unwrap_or_else(|| node.default_initial_perm);
            let child_perm = data
                .get(child_idx)
                .map(|x| x.permission)
                .unwrap_or_else(|| child.default_initial_perm);
            if !parent_perm.can_be_replaced_by_child(child_perm) {
                return None;
            }
        }

        Some(child_idx)
    }

    /// Properly removes a node.
    /// The node to be removed should not otherwise be usable. It also
    /// should have no children, but this is not checked, so that nodes
    /// whose children were rotated somewhere else can be deleted without
    /// having to first modify them to clear that array.
    fn remove_useless_node(&mut self, this: UniIndex) {
        // Due to the API of UniMap we must make sure to call
        // `UniValMap::remove` for the key of this node on *all* maps that used it
        // (which are `self.nodes` and every range of `self.rperms`)
        // before we can safely apply `UniKeyMap::remove` to truly remove
        // this tag from the `tag_mapping`.
        let node = self.nodes.remove(this).unwrap();
        for (_perms_range, perms) in self.rperms.iter_mut_all() {
            perms.remove(this);
        }
        self.tag_mapping.remove(&node.tag);
    }

    /// Traverses the entire tree looking for useless tags.
    /// Removes from the tree all useless child nodes of root.
    /// It will not delete the root itself.
    ///
    /// NOTE: This leaves in the middle of the tree tags that are unreachable but have
    /// reachable children. There is a potential for compacting the tree by reassigning
    /// children of dead tags to the nearest live parent, but it must be done with care
    /// not to remove UB.
    ///
    /// Example: Consider the tree `root - parent - child`, with `parent: Frozen` and
    /// `child: Reserved`. This tree can exist. If we blindly delete `parent` and reassign
    /// `child` to be a direct child of `root` then Writes to `child` are now permitted
    /// whereas they were not when `parent` was still there.
    fn remove_useless_children(&mut self, root: UniIndex, live: &FxHashSet<BorTag>) {
        // To avoid stack overflows, we roll our own stack.
        // Each element in the stack consists of the current tag, and the number of the
        // next child to be processed.

        // The other functions are written using the `TreeVisitorStack`, but that does not work here
        // since we need to 1) do a post-traversal and 2) remove nodes from the tree.
        // Since we do a post-traversal (by deleting nodes only after handling all children),
        // we also need to be a bit smarter than "pop node, push all children."
        let mut stack = vec![(root, 0)];
        while let Some((tag, nth_child)) = stack.last_mut() {
            let node = self.nodes.get(*tag).unwrap();
            if *nth_child < node.children.len() {
                // Visit the child by pushing it to the stack.
                // Also increase `nth_child` so that when we come back to the `tag` node, we
                // look at the next child.
                let next_child = node.children[*nth_child];
                *nth_child += 1;
                stack.push((next_child, 0));
                continue;
            } else {
                // We have processed all children of `node`, so now it is time to process `node` itself.
                // First, get the current children of `node`. To appease the borrow checker,
                // we have to temporarily move the list out of the node, and then put the
                // list of remaining children back in.
                let mut children_of_node =
                    mem::take(&mut self.nodes.get_mut(*tag).unwrap().children);
                // Remove all useless children.
                children_of_node.retain_mut(|idx| {
                    if self.is_useless(*idx, live) {
                        // Delete `idx` node everywhere else.
                        self.remove_useless_node(*idx);
                        // And delete it from children_of_node.
                        false
                    } else {
                        if let Some(nextchild) = self.can_be_replaced_by_single_child(*idx, live) {
                            // `nextchild` is our grandchild, and will become our direct child.
                            // Delete the in-between node, `idx`.
                            self.remove_useless_node(*idx);
                            // Set the new child's parent.
                            self.nodes.get_mut(nextchild).unwrap().parent = Some(*tag);
                            // Save the new child in children_of_node.
                            *idx = nextchild;
                        }
                        // retain it
                        true
                    }
                });
                // Put back the now-filtered vector.
                self.nodes.get_mut(*tag).unwrap().children = children_of_node;

                // We are done, the parent can continue.
                stack.pop();
                continue;
            }
        }
    }
}

impl VisitProvenance for Tree {
    fn visit_provenance(&self, visit: &mut VisitWith<'_>) {
        // To ensure that the root never gets removed, we visit it
        // (the `root` node of `Tree` is not an `Option<_>`)
        visit(None, Some(self.nodes.get(self.root).unwrap().tag))
    }
}

/// Relative position of the access
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum AccessRelatedness {
    /// The accessed pointer is the current one
    This,
    /// The accessed pointer is a (transitive) child of the current one.
    // Current pointer is excluded (unlike in some other places of this module
    // where "child" is inclusive).
    StrictChildAccess,
    /// The accessed pointer is a (transitive) parent of the current one.
    // Current pointer is excluded.
    AncestorAccess,
    /// The accessed pointer is neither of the above.
    // It's a cousin/uncle/etc., something in a side branch.
    // FIXME: find a better name ?
    DistantAccess,
}

impl AccessRelatedness {
    /// Check that access is either Ancestor or Distant, i.e. not
    /// a transitive child (initial pointer included).
    pub fn is_foreign(self) -> bool {
        matches!(self, AccessRelatedness::AncestorAccess | AccessRelatedness::DistantAccess)
    }

    /// Given the AccessRelatedness for the parent node, compute the AccessRelatedness
    /// for the child node. This function assumes that we propagate away from the initial
    /// access.
    pub fn for_child(self) -> Self {
        use AccessRelatedness::*;
        match self {
            AncestorAccess | This => AncestorAccess,
            StrictChildAccess | DistantAccess => DistantAccess,
        }
    }
}