use std::sync::atomic::{AtomicBool, Ordering};
use rustc_target::abi::Size;
use crate::*;
#[inline]
fn mutexattr_kind_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
interp_ok(match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "macos" | "freebsd" | "android" => 0,
os => throw_unsup_format!("`pthread_mutexattr` is not supported on {os}"),
})
}
fn mutexattr_get_kind<'tcx>(
ecx: &MiriInterpCx<'tcx>,
attr_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, i32> {
ecx.deref_pointer_and_read(
attr_ptr,
mutexattr_kind_offset(ecx)?,
ecx.libc_ty_layout("pthread_mutexattr_t"),
ecx.machine.layouts.i32,
)?
.to_i32()
}
fn mutexattr_set_kind<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
attr_ptr: &OpTy<'tcx>,
kind: i32,
) -> InterpResult<'tcx, ()> {
ecx.deref_pointer_and_write(
attr_ptr,
mutexattr_kind_offset(ecx)?,
Scalar::from_i32(kind),
ecx.libc_ty_layout("pthread_mutexattr_t"),
ecx.machine.layouts.i32,
)
}
const PTHREAD_MUTEX_KIND_UNCHANGED: i32 = 0x8000000;
#[derive(Debug, Clone, Copy)]
pub enum MutexKind {
Normal,
Default,
Recursive,
ErrorCheck,
}
#[derive(Debug)]
pub struct AdditionalMutexData {
pub kind: MutexKind,
pub address: u64,
}
fn mutex_id_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
let offset = match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
"macos" => 4,
os => throw_unsup_format!("`pthread_mutex` is not supported on {os}"),
};
static SANITY: AtomicBool = AtomicBool::new(false);
if !SANITY.swap(true, Ordering::Relaxed) {
let check_static_initializer = |name| {
let static_initializer = ecx.eval_path(&["libc", name]);
let id_field = static_initializer
.offset(Size::from_bytes(offset), ecx.machine.layouts.u32, ecx)
.unwrap();
let id = ecx.read_scalar(&id_field).unwrap().to_u32().unwrap();
assert_eq!(id, 0, "{name} is incompatible with our pthread_mutex layout: id is not 0");
};
check_static_initializer("PTHREAD_MUTEX_INITIALIZER");
match &*ecx.tcx.sess.target.os {
"linux" => {
check_static_initializer("PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP");
check_static_initializer("PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP");
check_static_initializer("PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP");
}
"illumos" | "solaris" | "macos" | "freebsd" | "android" => {
}
os => throw_unsup_format!("`pthread_mutex` is not supported on {os}"),
}
}
interp_ok(offset)
}
fn mutex_create<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
mutex_ptr: &OpTy<'tcx>,
kind: MutexKind,
) -> InterpResult<'tcx> {
let mutex = ecx.deref_pointer(mutex_ptr)?;
let address = mutex.ptr().addr().bytes();
let data = Box::new(AdditionalMutexData { address, kind });
ecx.mutex_create(&mutex, mutex_id_offset(ecx)?, Some(data))?;
interp_ok(())
}
fn mutex_get_id<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
mutex_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, MutexId> {
let mutex = ecx.deref_pointer(mutex_ptr)?;
let address = mutex.ptr().addr().bytes();
let id = ecx.mutex_get_or_create_id(&mutex, mutex_id_offset(ecx)?, |ecx| {
let kind = mutex_kind_from_static_initializer(ecx, &mutex)?;
interp_ok(Some(Box::new(AdditionalMutexData { kind, address })))
})?;
let data = ecx
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthreads");
if data.address != address {
throw_ub_format!("pthread_mutex_t can't be moved after first use")
}
interp_ok(id)
}
fn mutex_kind_from_static_initializer<'tcx>(
ecx: &MiriInterpCx<'tcx>,
mutex: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, MutexKind> {
interp_ok(match &*ecx.tcx.sess.target.os {
"linux" => {
let offset = if ecx.pointer_size().bytes() == 8 { 16 } else { 12 };
let kind_place =
mutex.offset(Size::from_bytes(offset), ecx.machine.layouts.i32, ecx)?;
let kind = ecx.read_scalar(&kind_place)?.to_i32()?;
if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_DEFAULT") {
MutexKind::Default
} else {
mutex_translate_kind(ecx, kind)?
}
}
_ => MutexKind::Default,
})
}
fn mutex_translate_kind<'tcx>(
ecx: &MiriInterpCx<'tcx>,
kind: i32,
) -> InterpResult<'tcx, MutexKind> {
interp_ok(if kind == (ecx.eval_libc_i32("PTHREAD_MUTEX_NORMAL")) {
MutexKind::Normal
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_ERRORCHECK") {
MutexKind::ErrorCheck
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_RECURSIVE") {
MutexKind::Recursive
} else if kind == ecx.eval_libc_i32("PTHREAD_MUTEX_DEFAULT")
|| kind == PTHREAD_MUTEX_KIND_UNCHANGED
{
MutexKind::Default
} else {
throw_unsup_format!("unsupported type of mutex: {kind}");
})
}
#[derive(Debug)]
pub struct AdditionalRwLockData {
pub address: u64,
}
fn rwlock_id_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
let offset = match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
"macos" => 4,
os => throw_unsup_format!("`pthread_rwlock` is not supported on {os}"),
};
static SANITY: AtomicBool = AtomicBool::new(false);
if !SANITY.swap(true, Ordering::Relaxed) {
let static_initializer = ecx.eval_path(&["libc", "PTHREAD_RWLOCK_INITIALIZER"]);
let id_field = static_initializer
.offset(Size::from_bytes(offset), ecx.machine.layouts.u32, ecx)
.unwrap();
let id = ecx.read_scalar(&id_field).unwrap().to_u32().unwrap();
assert_eq!(
id, 0,
"PTHREAD_RWLOCK_INITIALIZER is incompatible with our pthread_rwlock layout: id is not 0"
);
}
interp_ok(offset)
}
fn rwlock_get_id<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
rwlock_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, RwLockId> {
let rwlock = ecx.deref_pointer(rwlock_ptr)?;
let address = rwlock.ptr().addr().bytes();
let id = ecx.rwlock_get_or_create_id(&rwlock, rwlock_id_offset(ecx)?, |_| {
interp_ok(Some(Box::new(AdditionalRwLockData { address })))
})?;
let data = ecx
.rwlock_get_data::<AdditionalRwLockData>(id)
.expect("data should always exist for pthreads");
if data.address != address {
throw_ub_format!("pthread_rwlock_t can't be moved after first use")
}
interp_ok(id)
}
#[inline]
fn condattr_clock_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
interp_ok(match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
os => throw_unsup_format!("`pthread_condattr` clock field is not supported on {os}"),
})
}
fn condattr_get_clock_id<'tcx>(
ecx: &MiriInterpCx<'tcx>,
attr_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, i32> {
ecx.deref_pointer_and_read(
attr_ptr,
condattr_clock_offset(ecx)?,
ecx.libc_ty_layout("pthread_condattr_t"),
ecx.machine.layouts.i32,
)?
.to_i32()
}
fn cond_translate_clock_id<'tcx>(
ecx: &MiriInterpCx<'tcx>,
raw_id: i32,
) -> InterpResult<'tcx, ClockId> {
interp_ok(if raw_id == ecx.eval_libc_i32("CLOCK_REALTIME") {
ClockId::Realtime
} else if raw_id == ecx.eval_libc_i32("CLOCK_MONOTONIC") {
ClockId::Monotonic
} else {
throw_unsup_format!("unsupported clock id: {raw_id}");
})
}
fn condattr_set_clock_id<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
attr_ptr: &OpTy<'tcx>,
clock_id: i32,
) -> InterpResult<'tcx, ()> {
ecx.deref_pointer_and_write(
attr_ptr,
condattr_clock_offset(ecx)?,
Scalar::from_i32(clock_id),
ecx.libc_ty_layout("pthread_condattr_t"),
ecx.machine.layouts.i32,
)
}
fn cond_id_offset<'tcx>(ecx: &MiriInterpCx<'tcx>) -> InterpResult<'tcx, u64> {
let offset = match &*ecx.tcx.sess.target.os {
"linux" | "illumos" | "solaris" | "freebsd" | "android" => 0,
"macos" => 4,
os => throw_unsup_format!("`pthread_cond` is not supported on {os}"),
};
static SANITY: AtomicBool = AtomicBool::new(false);
if !SANITY.swap(true, Ordering::Relaxed) {
let static_initializer = ecx.eval_path(&["libc", "PTHREAD_COND_INITIALIZER"]);
let id_field = static_initializer
.offset(Size::from_bytes(offset), ecx.machine.layouts.u32, ecx)
.unwrap();
let id = ecx.read_scalar(&id_field).unwrap().to_u32().unwrap();
assert_eq!(
id, 0,
"PTHREAD_COND_INITIALIZER is incompatible with our pthread_cond layout: id is not 0"
);
}
interp_ok(offset)
}
#[derive(Debug, Clone, Copy)]
enum ClockId {
Realtime,
Monotonic,
}
#[derive(Debug)]
struct AdditionalCondData {
address: u64,
clock_id: ClockId,
}
fn cond_get_id<'tcx>(
ecx: &mut MiriInterpCx<'tcx>,
cond_ptr: &OpTy<'tcx>,
) -> InterpResult<'tcx, CondvarId> {
let cond = ecx.deref_pointer(cond_ptr)?;
let address = cond.ptr().addr().bytes();
let id = ecx.condvar_get_or_create_id(&cond, cond_id_offset(ecx)?, |_ecx| {
interp_ok(Some(Box::new(AdditionalCondData { address, clock_id: ClockId::Realtime })))
})?;
let data = ecx
.condvar_get_data::<AdditionalCondData>(id)
.expect("data should always exist for pthreads");
if data.address != address {
throw_ub_format!("pthread_cond_t can't be moved after first use")
}
interp_ok(id)
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn pthread_mutexattr_init(&mut self, attr_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
mutexattr_set_kind(this, attr_op, PTHREAD_MUTEX_KIND_UNCHANGED)?;
interp_ok(())
}
fn pthread_mutexattr_settype(
&mut self,
attr_op: &OpTy<'tcx>,
kind_op: &OpTy<'tcx>,
) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let kind = this.read_scalar(kind_op)?.to_i32()?;
if kind == this.eval_libc_i32("PTHREAD_MUTEX_NORMAL")
|| kind == this.eval_libc_i32("PTHREAD_MUTEX_DEFAULT")
|| kind == this.eval_libc_i32("PTHREAD_MUTEX_ERRORCHECK")
|| kind == this.eval_libc_i32("PTHREAD_MUTEX_RECURSIVE")
{
assert_ne!(kind, PTHREAD_MUTEX_KIND_UNCHANGED);
mutexattr_set_kind(this, attr_op, kind)?;
} else {
let einval = this.eval_libc_i32("EINVAL");
return interp_ok(Scalar::from_i32(einval));
}
interp_ok(Scalar::from_i32(0))
}
fn pthread_mutexattr_destroy(&mut self, attr_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
mutexattr_get_kind(this, attr_op)?;
this.write_uninit(
&this.deref_pointer_as(attr_op, this.libc_ty_layout("pthread_mutexattr_t"))?,
)?;
interp_ok(())
}
fn pthread_mutex_init(
&mut self,
mutex_op: &OpTy<'tcx>,
attr_op: &OpTy<'tcx>,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let attr = this.read_pointer(attr_op)?;
let kind = if this.ptr_is_null(attr)? {
MutexKind::Default
} else {
mutex_translate_kind(this, mutexattr_get_kind(this, attr_op)?)?
};
mutex_create(this, mutex_op, kind)?;
interp_ok(())
}
fn pthread_mutex_lock(
&mut self,
mutex_op: &OpTy<'tcx>,
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
let kind = this
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthread mutexes")
.kind;
let ret = if this.mutex_is_locked(id) {
let owner_thread = this.mutex_get_owner(id);
if owner_thread != this.active_thread() {
this.mutex_enqueue_and_block(id, Some((Scalar::from_i32(0), dest.clone())));
return interp_ok(());
} else {
match kind {
MutexKind::Default =>
throw_ub_format!(
"trying to acquire default mutex already locked by the current thread"
),
MutexKind::Normal => throw_machine_stop!(TerminationInfo::Deadlock),
MutexKind::ErrorCheck => this.eval_libc_i32("EDEADLK"),
MutexKind::Recursive => {
this.mutex_lock(id);
0
}
}
}
} else {
this.mutex_lock(id);
0
};
this.write_scalar(Scalar::from_i32(ret), dest)?;
interp_ok(())
}
fn pthread_mutex_trylock(&mut self, mutex_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
let kind = this
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthread mutexes")
.kind;
interp_ok(Scalar::from_i32(if this.mutex_is_locked(id) {
let owner_thread = this.mutex_get_owner(id);
if owner_thread != this.active_thread() {
this.eval_libc_i32("EBUSY")
} else {
match kind {
MutexKind::Default | MutexKind::Normal | MutexKind::ErrorCheck =>
this.eval_libc_i32("EBUSY"),
MutexKind::Recursive => {
this.mutex_lock(id);
0
}
}
}
} else {
this.mutex_lock(id);
0
}))
}
fn pthread_mutex_unlock(&mut self, mutex_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
let kind = this
.mutex_get_data::<AdditionalMutexData>(id)
.expect("data should always exist for pthread mutexes")
.kind;
if let Some(_old_locked_count) = this.mutex_unlock(id)? {
interp_ok(Scalar::from_i32(0))
} else {
match kind {
MutexKind::Default =>
throw_ub_format!(
"unlocked a default mutex that was not locked by the current thread"
),
MutexKind::Normal =>
throw_ub_format!(
"unlocked a PTHREAD_MUTEX_NORMAL mutex that was not locked by the current thread"
),
MutexKind::ErrorCheck | MutexKind::Recursive =>
interp_ok(Scalar::from_i32(this.eval_libc_i32("EPERM"))),
}
}
}
fn pthread_mutex_destroy(&mut self, mutex_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = mutex_get_id(this, mutex_op)?;
if this.mutex_is_locked(id) {
throw_ub_format!("destroyed a locked mutex");
}
this.write_uninit(
&this.deref_pointer_as(mutex_op, this.libc_ty_layout("pthread_mutex_t"))?,
)?;
interp_ok(())
}
fn pthread_rwlock_rdlock(
&mut self,
rwlock_op: &OpTy<'tcx>,
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
if this.rwlock_is_write_locked(id) {
this.rwlock_enqueue_and_block_reader(id, Scalar::from_i32(0), dest.clone());
} else {
this.rwlock_reader_lock(id);
this.write_null(dest)?;
}
interp_ok(())
}
fn pthread_rwlock_tryrdlock(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
if this.rwlock_is_write_locked(id) {
interp_ok(Scalar::from_i32(this.eval_libc_i32("EBUSY")))
} else {
this.rwlock_reader_lock(id);
interp_ok(Scalar::from_i32(0))
}
}
fn pthread_rwlock_wrlock(
&mut self,
rwlock_op: &OpTy<'tcx>,
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
if this.rwlock_is_locked(id) {
this.rwlock_enqueue_and_block_writer(id, Scalar::from_i32(0), dest.clone());
} else {
this.rwlock_writer_lock(id);
this.write_null(dest)?;
}
interp_ok(())
}
fn pthread_rwlock_trywrlock(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
if this.rwlock_is_locked(id) {
interp_ok(Scalar::from_i32(this.eval_libc_i32("EBUSY")))
} else {
this.rwlock_writer_lock(id);
interp_ok(Scalar::from_i32(0))
}
}
fn pthread_rwlock_unlock(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
#[allow(clippy::if_same_then_else)]
if this.rwlock_reader_unlock(id)? || this.rwlock_writer_unlock(id)? {
interp_ok(())
} else {
throw_ub_format!("unlocked an rwlock that was not locked by the active thread");
}
}
fn pthread_rwlock_destroy(&mut self, rwlock_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = rwlock_get_id(this, rwlock_op)?;
if this.rwlock_is_locked(id) {
throw_ub_format!("destroyed a locked rwlock");
}
this.write_uninit(
&this.deref_pointer_as(rwlock_op, this.libc_ty_layout("pthread_rwlock_t"))?,
)?;
interp_ok(())
}
fn pthread_condattr_init(&mut self, attr_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
if this.tcx.sess.target.os != "macos" {
let default_clock_id = this.eval_libc_i32("CLOCK_REALTIME");
condattr_set_clock_id(this, attr_op, default_clock_id)?;
}
interp_ok(())
}
fn pthread_condattr_setclock(
&mut self,
attr_op: &OpTy<'tcx>,
clock_id_op: &OpTy<'tcx>,
) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
let clock_id = this.read_scalar(clock_id_op)?.to_i32()?;
if clock_id == this.eval_libc_i32("CLOCK_REALTIME")
|| clock_id == this.eval_libc_i32("CLOCK_MONOTONIC")
{
condattr_set_clock_id(this, attr_op, clock_id)?;
} else {
let einval = this.eval_libc_i32("EINVAL");
return interp_ok(Scalar::from_i32(einval));
}
interp_ok(Scalar::from_i32(0))
}
fn pthread_condattr_getclock(
&mut self,
attr_op: &OpTy<'tcx>,
clk_id_op: &OpTy<'tcx>,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let clock_id = condattr_get_clock_id(this, attr_op)?;
this.write_scalar(Scalar::from_i32(clock_id), &this.deref_pointer(clk_id_op)?)?;
interp_ok(())
}
fn pthread_condattr_destroy(&mut self, attr_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
if this.tcx.sess.target.os != "macos" {
condattr_get_clock_id(this, attr_op)?;
}
this.write_uninit(
&this.deref_pointer_as(attr_op, this.libc_ty_layout("pthread_condattr_t"))?,
)?;
interp_ok(())
}
fn pthread_cond_init(
&mut self,
cond_op: &OpTy<'tcx>,
attr_op: &OpTy<'tcx>,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let attr = this.read_pointer(attr_op)?;
let clock_id = if this.ptr_is_null(attr)? || this.tcx.sess.target.os == "macos" {
this.eval_libc_i32("CLOCK_REALTIME")
} else {
condattr_get_clock_id(this, attr_op)?
};
let clock_id = cond_translate_clock_id(this, clock_id)?;
let cond = this.deref_pointer(cond_op)?;
let address = cond.ptr().addr().bytes();
this.condvar_create(
&cond,
cond_id_offset(this)?,
Some(Box::new(AdditionalCondData { address, clock_id })),
)?;
interp_ok(())
}
fn pthread_cond_signal(&mut self, cond_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
this.condvar_signal(id)?;
interp_ok(())
}
fn pthread_cond_broadcast(&mut self, cond_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
while this.condvar_signal(id)? {}
interp_ok(())
}
fn pthread_cond_wait(
&mut self,
cond_op: &OpTy<'tcx>,
mutex_op: &OpTy<'tcx>,
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
let mutex_id = mutex_get_id(this, mutex_op)?;
this.condvar_wait(
id,
mutex_id,
None, Scalar::from_i32(0),
Scalar::from_i32(0), dest.clone(),
)?;
interp_ok(())
}
fn pthread_cond_timedwait(
&mut self,
cond_op: &OpTy<'tcx>,
mutex_op: &OpTy<'tcx>,
abstime_op: &OpTy<'tcx>,
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
let mutex_id = mutex_get_id(this, mutex_op)?;
let clock_id = this
.condvar_get_data::<AdditionalCondData>(id)
.expect("additional data should always be present for pthreads")
.clock_id;
let duration = match this
.read_timespec(&this.deref_pointer_as(abstime_op, this.libc_ty_layout("timespec"))?)?
{
Some(duration) => duration,
None => {
let einval = this.eval_libc("EINVAL");
this.write_scalar(einval, dest)?;
return interp_ok(());
}
};
let timeout_clock = match clock_id {
ClockId::Realtime => {
this.check_no_isolation("`pthread_cond_timedwait` with `CLOCK_REALTIME`")?;
TimeoutClock::RealTime
}
ClockId::Monotonic => TimeoutClock::Monotonic,
};
this.condvar_wait(
id,
mutex_id,
Some((timeout_clock, TimeoutAnchor::Absolute, duration)),
Scalar::from_i32(0),
this.eval_libc("ETIMEDOUT"), dest.clone(),
)?;
interp_ok(())
}
fn pthread_cond_destroy(&mut self, cond_op: &OpTy<'tcx>) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let id = cond_get_id(this, cond_op)?;
if this.condvar_is_awaited(id) {
throw_ub_format!("destroying an awaited conditional variable");
}
this.write_uninit(&this.deref_pointer_as(cond_op, this.libc_ty_layout("pthread_cond_t"))?)?;
interp_ok(())
}
}