miri/shims/x86/
gfni.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use rustc_span::Symbol;
use rustc_target::spec::abi::Abi;

use crate::*;

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn emulate_x86_gfni_intrinsic(
        &mut self,
        link_name: Symbol,
        abi: Abi,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx, EmulateItemResult> {
        let this = self.eval_context_mut();

        // Prefix should have already been checked.
        let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.").unwrap();

        this.expect_target_feature_for_intrinsic(link_name, "gfni")?;
        if unprefixed_name.ends_with(".256") {
            this.expect_target_feature_for_intrinsic(link_name, "avx")?;
        } else if unprefixed_name.ends_with(".512") {
            this.expect_target_feature_for_intrinsic(link_name, "avx512f")?;
        }

        match unprefixed_name {
            // Used to implement the `_mm{, 256, 512}_gf2p8affine_epi64_epi8` functions.
            // See `affine_transform` for details.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=gf2p8affine_
            "vgf2p8affineqb.128" | "vgf2p8affineqb.256" | "vgf2p8affineqb.512" => {
                let [left, right, imm8] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                affine_transform(this, left, right, imm8, dest, /* inverse */ false)?;
            }
            // Used to implement the `_mm{, 256, 512}_gf2p8affineinv_epi64_epi8` functions.
            // See `affine_transform` for details.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=gf2p8affineinv
            "vgf2p8affineinvqb.128" | "vgf2p8affineinvqb.256" | "vgf2p8affineinvqb.512" => {
                let [left, right, imm8] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                affine_transform(this, left, right, imm8, dest, /* inverse */ true)?;
            }
            // Used to implement the `_mm{, 256, 512}_gf2p8mul_epi8` functions.
            // Multiplies packed 8-bit integers in `left` and `right` in the finite field GF(2^8)
            // and store the results in `dst`. The field GF(2^8) is represented in
            // polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.
            // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=gf2p8mul
            "vgf2p8mulb.128" | "vgf2p8mulb.256" | "vgf2p8mulb.512" => {
                let [left, right] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;

                let (left, left_len) = this.project_to_simd(left)?;
                let (right, right_len) = this.project_to_simd(right)?;
                let (dest, dest_len) = this.project_to_simd(dest)?;

                assert_eq!(left_len, right_len);
                assert_eq!(dest_len, right_len);

                for i in 0..dest_len {
                    let left = this.read_scalar(&this.project_index(&left, i)?)?.to_u8()?;
                    let right = this.read_scalar(&this.project_index(&right, i)?)?.to_u8()?;
                    let dest = this.project_index(&dest, i)?;
                    this.write_scalar(Scalar::from_u8(gf2p8_mul(left, right)), &dest)?;
                }
            }
            _ => return interp_ok(EmulateItemResult::NotSupported),
        }
        interp_ok(EmulateItemResult::NeedsReturn)
    }
}

/// Calculates the affine transformation `right * left + imm8` inside the finite field GF(2^8).
/// `right` is an 8x8 bit matrix, `left` and `imm8` are bit vectors.
/// If `inverse` is set, then the inverse transformation with respect to the reduction polynomial
/// x^8 + x^4 + x^3 + x + 1 is performed instead.
fn affine_transform<'tcx>(
    this: &mut MiriInterpCx<'tcx>,
    left: &OpTy<'tcx>,
    right: &OpTy<'tcx>,
    imm8: &OpTy<'tcx>,
    dest: &MPlaceTy<'tcx>,
    inverse: bool,
) -> InterpResult<'tcx, ()> {
    let (left, left_len) = this.project_to_simd(left)?;
    let (right, right_len) = this.project_to_simd(right)?;
    let (dest, dest_len) = this.project_to_simd(dest)?;

    assert_eq!(dest_len, right_len);
    assert_eq!(dest_len, left_len);

    let imm8 = this.read_scalar(imm8)?.to_u8()?;

    // Each 8x8 bit matrix gets multiplied with eight bit vectors.
    // Therefore, the iteration is done in chunks of eight.
    for i in (0..dest_len).step_by(8) {
        // Get the bit matrix.
        let mut matrix = [0u8; 8];
        for j in 0..8 {
            matrix[usize::try_from(j).unwrap()] =
                this.read_scalar(&this.project_index(&right, i.wrapping_add(j))?)?.to_u8()?;
        }

        // Multiply the matrix with the vector and perform the addition.
        for j in 0..8 {
            let index = i.wrapping_add(j);
            let left = this.read_scalar(&this.project_index(&left, index)?)?.to_u8()?;
            let left = if inverse { TABLE[usize::from(left)] } else { left };

            let mut res = 0;

            // Do the matrix multiplication.
            for bit in 0u8..8 {
                let mut b = matrix[usize::from(bit)] & left;

                // Calculate the parity bit.
                b = (b & 0b1111) ^ (b >> 4);
                b = (b & 0b11) ^ (b >> 2);
                b = (b & 0b1) ^ (b >> 1);

                res |= b << 7u8.wrapping_sub(bit);
            }

            // Perform the addition.
            res ^= imm8;

            let dest = this.project_index(&dest, index)?;
            this.write_scalar(Scalar::from_u8(res), &dest)?;
        }
    }

    interp_ok(())
}

/// A lookup table for computing the inverse byte for the inverse affine transformation.
// This is a evaluated at compile time. Trait based conversion is not available.
/// See <https://www.corsix.org/content/galois-field-instructions-2021-cpus> for the
/// definition of `gf_inv` which was used for the creation of this table.
#[allow(clippy::cast_possible_truncation)]
static TABLE: [u8; 256] = {
    let mut array = [0; 256];

    let mut i = 1;
    while i < 256 {
        let mut x = i as u8;
        let mut y = gf2p8_mul(x, x);
        x = y;
        let mut j = 2;
        while j < 8 {
            x = gf2p8_mul(x, x);
            y = gf2p8_mul(x, y);
            j += 1;
        }
        array[i] = y;
        i += 1;
    }

    array
};

/// Multiplies packed 8-bit integers in `left` and `right` in the finite field GF(2^8)
/// and store the results in `dst`. The field GF(2^8) is represented in
/// polynomial representation with the reduction polynomial x^8 + x^4 + x^3 + x + 1.
/// See <https://www.corsix.org/content/galois-field-instructions-2021-cpus> for details.
// This is a const function. Trait based conversion is not available.
#[allow(clippy::cast_possible_truncation)]
const fn gf2p8_mul(left: u8, right: u8) -> u8 {
    // This implementation is based on the `gf2p8mul_byte` definition found inside the Intel intrinsics guide.
    // See https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=gf2p8mul
    // for more information.

    const POLYNOMIAL: u32 = 0x11b;

    let left = left as u32;
    let right = right as u32;

    let mut result = 0u32;

    let mut i = 0u32;
    while i < 8 {
        if left & (1 << i) != 0 {
            result ^= right << i;
        }
        i = i.wrapping_add(1);
    }

    let mut i = 14u32;
    while i >= 8 {
        if result & (1 << i) != 0 {
            result ^= POLYNOMIAL << i.wrapping_sub(8);
        }
        i = i.wrapping_sub(1);
    }

    result as u8
}