rustc_builtin_macros/deriving/generic/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
//! Some code that abstracts away much of the boilerplate of writing
//! `derive` instances for traits. Among other things it manages getting
//! access to the fields of the 4 different sorts of structs and enum
//! variants, as well as creating the method and impl ast instances.
//!
//! Supported features (fairly exhaustive):
//!
//! - Methods taking any number of parameters of any type, and returning
//! any type, other than vectors, bottom and closures.
//! - Generating `impl`s for types with type parameters and lifetimes
//! (e.g., `Option<T>`), the parameters are automatically given the
//! current trait as a bound. (This includes separate type parameters
//! and lifetimes for methods.)
//! - Additional bounds on the type parameters (`TraitDef.additional_bounds`)
//!
//! The most important thing for implementors is the `Substructure` and
//! `SubstructureFields` objects. The latter groups 5 possibilities of the
//! arguments:
//!
//! - `Struct`, when `Self` is a struct (including tuple structs, e.g
//! `struct T(i32, char)`).
//! - `EnumMatching`, when `Self` is an enum and all the arguments are the
//! same variant of the enum (e.g., `Some(1)`, `Some(3)` and `Some(4)`)
//! - `EnumDiscr` when `Self` is an enum, for comparing the enum discriminants.
//! - `StaticEnum` and `StaticStruct` for static methods, where the type
//! being derived upon is either an enum or struct respectively. (Any
//! argument with type Self is just grouped among the non-self
//! arguments.)
//!
//! In the first two cases, the values from the corresponding fields in
//! all the arguments are grouped together.
//!
//! The non-static cases have `Option<ident>` in several places associated
//! with field `expr`s. This represents the name of the field it is
//! associated with. It is only not `None` when the associated field has
//! an identifier in the source code. For example, the `x`s in the
//! following snippet
//!
//! ```rust
//! struct A {
//! x: i32,
//! }
//!
//! struct B(i32);
//!
//! enum C {
//! C0(i32),
//! C1 { x: i32 }
//! }
//! ```
//!
//! The `i32`s in `B` and `C0` don't have an identifier, so the
//! `Option<ident>`s would be `None` for them.
//!
//! In the static cases, the structure is summarized, either into the just
//! spans of the fields or a list of spans and the field idents (for tuple
//! structs and record structs, respectively), or a list of these, for
//! enums (one for each variant). For empty struct and empty enum
//! variants, it is represented as a count of 0.
//!
//! # "`cs`" functions
//!
//! The `cs_...` functions ("combine substructure") are designed to
//! make life easier by providing some pre-made recipes for common
//! threads; mostly calling the function being derived on all the
//! arguments and then combining them back together in some way (or
//! letting the user chose that). They are not meant to be the only
//! way to handle the structures that this code creates.
//!
//! # Examples
//!
//! The following simplified `PartialEq` is used for in-code examples:
//!
//! ```rust
//! trait PartialEq {
//! fn eq(&self, other: &Self) -> bool;
//! }
//!
//! impl PartialEq for i32 {
//! fn eq(&self, other: &i32) -> bool {
//! *self == *other
//! }
//! }
//! ```
//!
//! Some examples of the values of `SubstructureFields` follow, using the
//! above `PartialEq`, `A`, `B` and `C`.
//!
//! ## Structs
//!
//! When generating the `expr` for the `A` impl, the `SubstructureFields` is
//!
//! ```text
//! Struct(vec![FieldInfo {
//! span: <span of x>,
//! name: Some(<ident of x>),
//! self_: <expr for &self.x>,
//! other: vec![<expr for &other.x>],
//! }])
//! ```
//!
//! For the `B` impl, called with `B(a)` and `B(b)`,
//!
//! ```text
//! Struct(vec![FieldInfo {
//! span: <span of i32>,
//! name: None,
//! self_: <expr for &a>,
//! other: vec![<expr for &b>],
//! }])
//! ```
//!
//! ## Enums
//!
//! When generating the `expr` for a call with `self == C0(a)` and `other
//! == C0(b)`, the SubstructureFields is
//!
//! ```text
//! EnumMatching(
//! 0,
//! <ast::Variant for C0>,
//! vec![FieldInfo {
//! span: <span of i32>,
//! name: None,
//! self_: <expr for &a>,
//! other: vec![<expr for &b>],
//! }],
//! )
//! ```
//!
//! For `C1 {x}` and `C1 {x}`,
//!
//! ```text
//! EnumMatching(
//! 1,
//! <ast::Variant for C1>,
//! vec![FieldInfo {
//! span: <span of x>,
//! name: Some(<ident of x>),
//! self_: <expr for &self.x>,
//! other: vec![<expr for &other.x>],
//! }],
//! )
//! ```
//!
//! For the discriminants,
//!
//! ```text
//! EnumDiscr(
//! &[<ident of self discriminant>, <ident of other discriminant>],
//! <expr to combine with>,
//! )
//! ```
//!
//! Note that this setup doesn't allow for the brute-force "match every variant
//! against every other variant" approach, which is bad because it produces a
//! quadratic amount of code (see #15375).
//!
//! ## Static
//!
//! A static method on the types above would result in,
//!
//! ```text
//! StaticStruct(<ast::VariantData of A>, Named(vec![(<ident of x>, <span of x>)]))
//!
//! StaticStruct(<ast::VariantData of B>, Unnamed(vec![<span of x>]))
//!
//! StaticEnum(
//! <ast::EnumDef of C>,
//! vec![
//! (<ident of C0>, <span of C0>, Unnamed(vec![<span of i32>])),
//! (<ident of C1>, <span of C1>, Named(vec![(<ident of x>, <span of x>)])),
//! ],
//! )
//! ```
use std::cell::RefCell;
use std::ops::Not;
use std::{iter, vec};
pub(crate) use StaticFields::*;
pub(crate) use SubstructureFields::*;
use rustc_ast::ptr::P;
use rustc_ast::{
self as ast, BindingMode, ByRef, EnumDef, Expr, GenericArg, GenericParamKind, Generics,
Mutability, PatKind, VariantData,
};
use rustc_attr as attr;
use rustc_expand::base::{Annotatable, ExtCtxt};
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_span::{DUMMY_SP, Span};
use thin_vec::{ThinVec, thin_vec};
use ty::{Bounds, Path, Ref, Self_, Ty};
use crate::{deriving, errors};
pub(crate) mod ty;
pub(crate) struct TraitDef<'a> {
/// The span for the current #[derive(Foo)] header.
pub span: Span,
/// Path of the trait, including any type parameters
pub path: Path,
/// Whether to skip adding the current trait as a bound to the type parameters of the type.
pub skip_path_as_bound: bool,
/// Whether `Copy` is needed as an additional bound on type parameters in a packed struct.
pub needs_copy_as_bound_if_packed: bool,
/// Additional bounds required of any type parameters of the type,
/// other than the current trait
pub additional_bounds: Vec<Ty>,
/// Can this trait be derived for unions?
pub supports_unions: bool,
pub methods: Vec<MethodDef<'a>>,
pub associated_types: Vec<(Ident, Ty)>,
pub is_const: bool,
}
pub(crate) struct MethodDef<'a> {
/// name of the method
pub name: Symbol,
/// List of generics, e.g., `R: rand::Rng`
pub generics: Bounds,
/// Is there is a `&self` argument? If not, it is a static function.
pub explicit_self: bool,
/// Arguments other than the self argument.
pub nonself_args: Vec<(Ty, Symbol)>,
/// Returns type
pub ret_ty: Ty,
pub attributes: ast::AttrVec,
pub fieldless_variants_strategy: FieldlessVariantsStrategy,
pub combine_substructure: RefCell<CombineSubstructureFunc<'a>>,
}
/// How to handle fieldless enum variants.
#[derive(PartialEq)]
pub(crate) enum FieldlessVariantsStrategy {
/// Combine fieldless variants into a single match arm.
/// This assumes that relevant information has been handled
/// by looking at the enum's discriminant.
Unify,
/// Don't do anything special about fieldless variants. They are
/// handled like any other variant.
Default,
/// If all variants of the enum are fieldless, expand the special
/// `AllFieldLessEnum` substructure, so that the entire enum can be handled
/// at once.
SpecializeIfAllVariantsFieldless,
}
/// All the data about the data structure/method being derived upon.
pub(crate) struct Substructure<'a> {
/// ident of self
pub type_ident: Ident,
/// Verbatim access to any non-selflike arguments, i.e. arguments that
/// don't have type `&Self`.
pub nonselflike_args: &'a [P<Expr>],
pub fields: &'a SubstructureFields<'a>,
}
/// Summary of the relevant parts of a struct/enum field.
pub(crate) struct FieldInfo {
pub span: Span,
/// None for tuple structs/normal enum variants, Some for normal
/// structs/struct enum variants.
pub name: Option<Ident>,
/// The expression corresponding to this field of `self`
/// (specifically, a reference to it).
pub self_expr: P<Expr>,
/// The expressions corresponding to references to this field in
/// the other selflike arguments.
pub other_selflike_exprs: Vec<P<Expr>>,
}
#[derive(Copy, Clone)]
pub(crate) enum IsTuple {
No,
Yes,
}
/// Fields for a static method
pub(crate) enum StaticFields {
/// Tuple and unit structs/enum variants like this.
Unnamed(Vec<Span>, IsTuple),
/// Normal structs/struct variants.
Named(Vec<(Ident, Span)>),
}
/// A summary of the possible sets of fields.
pub(crate) enum SubstructureFields<'a> {
/// A non-static method where `Self` is a struct.
Struct(&'a ast::VariantData, Vec<FieldInfo>),
/// A non-static method handling the entire enum at once
/// (after it has been determined that none of the enum
/// variants has any fields).
AllFieldlessEnum(&'a ast::EnumDef),
/// Matching variants of the enum: variant index, ast::Variant,
/// fields: the field name is only non-`None` in the case of a struct
/// variant.
EnumMatching(usize, &'a ast::Variant, Vec<FieldInfo>),
/// The discriminant of an enum. The first field is a `FieldInfo` for the discriminants, as
/// if they were fields. The second field is the expression to combine the
/// discriminant expression with; it will be `None` if no match is necessary.
EnumDiscr(FieldInfo, Option<P<Expr>>),
/// A static method where `Self` is a struct.
StaticStruct(&'a ast::VariantData, StaticFields),
/// A static method where `Self` is an enum.
StaticEnum(&'a ast::EnumDef, Vec<(Ident, Span, StaticFields)>),
}
/// Combine the values of all the fields together. The last argument is
/// all the fields of all the structures.
pub(crate) type CombineSubstructureFunc<'a> =
Box<dyn FnMut(&ExtCtxt<'_>, Span, &Substructure<'_>) -> BlockOrExpr + 'a>;
pub(crate) fn combine_substructure(
f: CombineSubstructureFunc<'_>,
) -> RefCell<CombineSubstructureFunc<'_>> {
RefCell::new(f)
}
struct TypeParameter {
bound_generic_params: ThinVec<ast::GenericParam>,
ty: P<ast::Ty>,
}
/// The code snippets built up for derived code are sometimes used as blocks
/// (e.g. in a function body) and sometimes used as expressions (e.g. in a match
/// arm). This structure avoids committing to either form until necessary,
/// avoiding the insertion of any unnecessary blocks.
///
/// The statements come before the expression.
pub(crate) struct BlockOrExpr(ThinVec<ast::Stmt>, Option<P<Expr>>);
impl BlockOrExpr {
pub(crate) fn new_stmts(stmts: ThinVec<ast::Stmt>) -> BlockOrExpr {
BlockOrExpr(stmts, None)
}
pub(crate) fn new_expr(expr: P<Expr>) -> BlockOrExpr {
BlockOrExpr(ThinVec::new(), Some(expr))
}
pub(crate) fn new_mixed(stmts: ThinVec<ast::Stmt>, expr: Option<P<Expr>>) -> BlockOrExpr {
BlockOrExpr(stmts, expr)
}
// Converts it into a block.
fn into_block(mut self, cx: &ExtCtxt<'_>, span: Span) -> P<ast::Block> {
if let Some(expr) = self.1 {
self.0.push(cx.stmt_expr(expr));
}
cx.block(span, self.0)
}
// Converts it into an expression.
fn into_expr(self, cx: &ExtCtxt<'_>, span: Span) -> P<Expr> {
if self.0.is_empty() {
match self.1 {
None => cx.expr_block(cx.block(span, ThinVec::new())),
Some(expr) => expr,
}
} else if let [stmt] = self.0.as_slice()
&& let ast::StmtKind::Expr(expr) = &stmt.kind
&& self.1.is_none()
{
// There's only a single statement expression. Pull it out.
expr.clone()
} else {
// Multiple statements and/or expressions.
cx.expr_block(self.into_block(cx, span))
}
}
}
/// This method helps to extract all the type parameters referenced from a
/// type. For a type parameter `<T>`, it looks for either a `TyPath` that
/// is not global and starts with `T`, or a `TyQPath`.
/// Also include bound generic params from the input type.
fn find_type_parameters(
ty: &ast::Ty,
ty_param_names: &[Symbol],
cx: &ExtCtxt<'_>,
) -> Vec<TypeParameter> {
use rustc_ast::visit;
struct Visitor<'a, 'b> {
cx: &'a ExtCtxt<'b>,
ty_param_names: &'a [Symbol],
bound_generic_params_stack: ThinVec<ast::GenericParam>,
type_params: Vec<TypeParameter>,
}
impl<'a, 'b> visit::Visitor<'a> for Visitor<'a, 'b> {
fn visit_ty(&mut self, ty: &'a ast::Ty) {
let stack_len = self.bound_generic_params_stack.len();
if let ast::TyKind::BareFn(bare_fn) = &ty.kind
&& !bare_fn.generic_params.is_empty()
{
// Given a field `x: for<'a> fn(T::SomeType<'a>)`, we wan't to account for `'a` so
// that we generate `where for<'a> T::SomeType<'a>: ::core::clone::Clone`. #122622
self.bound_generic_params_stack.extend(bare_fn.generic_params.iter().cloned());
}
if let ast::TyKind::Path(_, path) = &ty.kind
&& let Some(segment) = path.segments.first()
&& self.ty_param_names.contains(&segment.ident.name)
{
self.type_params.push(TypeParameter {
bound_generic_params: self.bound_generic_params_stack.clone(),
ty: P(ty.clone()),
});
}
visit::walk_ty(self, ty);
self.bound_generic_params_stack.truncate(stack_len);
}
// Place bound generic params on a stack, to extract them when a type is encountered.
fn visit_poly_trait_ref(&mut self, trait_ref: &'a ast::PolyTraitRef) {
let stack_len = self.bound_generic_params_stack.len();
self.bound_generic_params_stack.extend(trait_ref.bound_generic_params.iter().cloned());
visit::walk_poly_trait_ref(self, trait_ref);
self.bound_generic_params_stack.truncate(stack_len);
}
fn visit_mac_call(&mut self, mac: &ast::MacCall) {
self.cx.dcx().emit_err(errors::DeriveMacroCall { span: mac.span() });
}
}
let mut visitor = Visitor {
cx,
ty_param_names,
bound_generic_params_stack: ThinVec::new(),
type_params: Vec::new(),
};
visit::Visitor::visit_ty(&mut visitor, ty);
visitor.type_params
}
impl<'a> TraitDef<'a> {
pub(crate) fn expand(
self,
cx: &ExtCtxt<'_>,
mitem: &ast::MetaItem,
item: &'a Annotatable,
push: &mut dyn FnMut(Annotatable),
) {
self.expand_ext(cx, mitem, item, push, false);
}
pub(crate) fn expand_ext(
self,
cx: &ExtCtxt<'_>,
mitem: &ast::MetaItem,
item: &'a Annotatable,
push: &mut dyn FnMut(Annotatable),
from_scratch: bool,
) {
match item {
Annotatable::Item(item) => {
let is_packed = item.attrs.iter().any(|attr| {
for r in attr::find_repr_attrs(cx.sess, attr) {
if let attr::ReprPacked(_) = r {
return true;
}
}
false
});
let newitem = match &item.kind {
ast::ItemKind::Struct(struct_def, generics) => self.expand_struct_def(
cx,
struct_def,
item.ident,
generics,
from_scratch,
is_packed,
),
ast::ItemKind::Enum(enum_def, generics) => {
// We ignore `is_packed` here, because `repr(packed)`
// enums cause an error later on.
//
// This can only cause further compilation errors
// downstream in blatantly illegal code, so it is fine.
self.expand_enum_def(cx, enum_def, item.ident, generics, from_scratch)
}
ast::ItemKind::Union(struct_def, generics) => {
if self.supports_unions {
self.expand_struct_def(
cx,
struct_def,
item.ident,
generics,
from_scratch,
is_packed,
)
} else {
cx.dcx().emit_err(errors::DeriveUnion { span: mitem.span });
return;
}
}
_ => unreachable!(),
};
// Keep the lint attributes of the previous item to control how the
// generated implementations are linted
let mut attrs = newitem.attrs.clone();
attrs.extend(
item.attrs
.iter()
.filter(|a| {
[
sym::allow,
sym::warn,
sym::deny,
sym::forbid,
sym::stable,
sym::unstable,
]
.contains(&a.name_or_empty())
})
.cloned(),
);
push(Annotatable::Item(P(ast::Item { attrs, ..(*newitem).clone() })))
}
_ => unreachable!(),
}
}
/// Given that we are deriving a trait `DerivedTrait` for a type like:
///
/// ```ignore (only-for-syntax-highlight)
/// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
/// where
/// C: WhereTrait,
/// {
/// a: A,
/// b: B::Item,
/// b1: <B as DeclaredTrait>::Item,
/// c1: <C as WhereTrait>::Item,
/// c2: Option<<C as WhereTrait>::Item>,
/// ...
/// }
/// ```
///
/// create an impl like:
///
/// ```ignore (only-for-syntax-highlight)
/// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
/// where
/// C: WhereTrait,
/// A: DerivedTrait + B1 + ... + BN,
/// B: DerivedTrait + B1 + ... + BN,
/// C: DerivedTrait + B1 + ... + BN,
/// B::Item: DerivedTrait + B1 + ... + BN,
/// <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
/// ...
/// {
/// ...
/// }
/// ```
///
/// where B1, ..., BN are the bounds given by `bounds_paths`.'. Z is a phantom type, and
/// therefore does not get bound by the derived trait.
fn create_derived_impl(
&self,
cx: &ExtCtxt<'_>,
type_ident: Ident,
generics: &Generics,
field_tys: Vec<P<ast::Ty>>,
methods: Vec<P<ast::AssocItem>>,
is_packed: bool,
) -> P<ast::Item> {
let trait_path = self.path.to_path(cx, self.span, type_ident, generics);
// Transform associated types from `deriving::ty::Ty` into `ast::AssocItem`
let associated_types = self.associated_types.iter().map(|&(ident, ref type_def)| {
P(ast::AssocItem {
id: ast::DUMMY_NODE_ID,
span: self.span,
ident,
vis: ast::Visibility {
span: self.span.shrink_to_lo(),
kind: ast::VisibilityKind::Inherited,
tokens: None,
},
attrs: ast::AttrVec::new(),
kind: ast::AssocItemKind::Type(Box::new(ast::TyAlias {
defaultness: ast::Defaultness::Final,
generics: Generics::default(),
where_clauses: ast::TyAliasWhereClauses::default(),
bounds: Vec::new(),
ty: Some(type_def.to_ty(cx, self.span, type_ident, generics)),
})),
tokens: None,
})
});
let mut where_clause = ast::WhereClause::default();
where_clause.span = generics.where_clause.span;
let ctxt = self.span.ctxt();
let span = generics.span.with_ctxt(ctxt);
// Create the generic parameters
let params: ThinVec<_> = generics
.params
.iter()
.map(|param| match ¶m.kind {
GenericParamKind::Lifetime { .. } => param.clone(),
GenericParamKind::Type { .. } => {
// Extra restrictions on the generics parameters to the
// type being derived upon.
let bounds: Vec<_> = self
.additional_bounds
.iter()
.map(|p| {
cx.trait_bound(
p.to_path(cx, self.span, type_ident, generics),
self.is_const,
)
})
.chain(
// Add a bound for the current trait.
self.skip_path_as_bound
.not()
.then(|| cx.trait_bound(trait_path.clone(), self.is_const)),
)
.chain({
// Add a `Copy` bound if required.
if is_packed && self.needs_copy_as_bound_if_packed {
let p = deriving::path_std!(marker::Copy);
Some(cx.trait_bound(
p.to_path(cx, self.span, type_ident, generics),
self.is_const,
))
} else {
None
}
})
.chain(
// Also add in any bounds from the declaration.
param.bounds.iter().cloned(),
)
.collect();
cx.typaram(param.ident.span.with_ctxt(ctxt), param.ident, bounds, None)
}
GenericParamKind::Const { ty, kw_span, .. } => {
let const_nodefault_kind = GenericParamKind::Const {
ty: ty.clone(),
kw_span: kw_span.with_ctxt(ctxt),
// We can't have default values inside impl block
default: None,
};
let mut param_clone = param.clone();
param_clone.kind = const_nodefault_kind;
param_clone
}
})
.collect();
// and similarly for where clauses
where_clause.predicates.extend(generics.where_clause.predicates.iter().map(|clause| {
match clause {
ast::WherePredicate::BoundPredicate(wb) => {
let span = wb.span.with_ctxt(ctxt);
ast::WherePredicate::BoundPredicate(ast::WhereBoundPredicate {
span,
..wb.clone()
})
}
ast::WherePredicate::RegionPredicate(wr) => {
let span = wr.span.with_ctxt(ctxt);
ast::WherePredicate::RegionPredicate(ast::WhereRegionPredicate {
span,
..wr.clone()
})
}
ast::WherePredicate::EqPredicate(we) => {
let span = we.span.with_ctxt(ctxt);
ast::WherePredicate::EqPredicate(ast::WhereEqPredicate { span, ..we.clone() })
}
}
}));
let ty_param_names: Vec<Symbol> = params
.iter()
.filter(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
.map(|ty_param| ty_param.ident.name)
.collect();
if !ty_param_names.is_empty() {
for field_ty in field_tys {
let field_ty_params = find_type_parameters(&field_ty, &ty_param_names, cx);
for field_ty_param in field_ty_params {
// if we have already handled this type, skip it
if let ast::TyKind::Path(_, p) = &field_ty_param.ty.kind
&& let [sole_segment] = &*p.segments
&& ty_param_names.contains(&sole_segment.ident.name)
{
continue;
}
let mut bounds: Vec<_> = self
.additional_bounds
.iter()
.map(|p| {
cx.trait_bound(
p.to_path(cx, self.span, type_ident, generics),
self.is_const,
)
})
.collect();
// Require the current trait.
if !self.skip_path_as_bound {
bounds.push(cx.trait_bound(trait_path.clone(), self.is_const));
}
// Add a `Copy` bound if required.
if is_packed && self.needs_copy_as_bound_if_packed {
let p = deriving::path_std!(marker::Copy);
bounds.push(cx.trait_bound(
p.to_path(cx, self.span, type_ident, generics),
self.is_const,
));
}
if !bounds.is_empty() {
let predicate = ast::WhereBoundPredicate {
span: self.span,
bound_generic_params: field_ty_param.bound_generic_params,
bounded_ty: field_ty_param.ty,
bounds,
};
let predicate = ast::WherePredicate::BoundPredicate(predicate);
where_clause.predicates.push(predicate);
}
}
}
}
let trait_generics = Generics { params, where_clause, span };
// Create the reference to the trait.
let trait_ref = cx.trait_ref(trait_path);
let self_params: Vec<_> = generics
.params
.iter()
.map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
GenericArg::Lifetime(cx.lifetime(param.ident.span.with_ctxt(ctxt), param.ident))
}
GenericParamKind::Type { .. } => {
GenericArg::Type(cx.ty_ident(param.ident.span.with_ctxt(ctxt), param.ident))
}
GenericParamKind::Const { .. } => {
GenericArg::Const(cx.const_ident(param.ident.span.with_ctxt(ctxt), param.ident))
}
})
.collect();
// Create the type of `self`.
let path = cx.path_all(self.span, false, vec![type_ident], self_params);
let self_type = cx.ty_path(path);
let attrs = thin_vec![cx.attr_word(sym::automatically_derived, self.span),];
let opt_trait_ref = Some(trait_ref);
cx.item(
self.span,
Ident::empty(),
attrs,
ast::ItemKind::Impl(Box::new(ast::Impl {
safety: ast::Safety::Default,
polarity: ast::ImplPolarity::Positive,
defaultness: ast::Defaultness::Final,
constness: if self.is_const { ast::Const::Yes(DUMMY_SP) } else { ast::Const::No },
generics: trait_generics,
of_trait: opt_trait_ref,
self_ty: self_type,
items: methods.into_iter().chain(associated_types).collect(),
})),
)
}
fn expand_struct_def(
&self,
cx: &ExtCtxt<'_>,
struct_def: &'a VariantData,
type_ident: Ident,
generics: &Generics,
from_scratch: bool,
is_packed: bool,
) -> P<ast::Item> {
let field_tys: Vec<P<ast::Ty>> =
struct_def.fields().iter().map(|field| field.ty.clone()).collect();
let methods = self
.methods
.iter()
.map(|method_def| {
let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
method_def.extract_arg_details(cx, self, type_ident, generics);
let body = if from_scratch || method_def.is_static() {
method_def.expand_static_struct_method_body(
cx,
self,
struct_def,
type_ident,
&nonselflike_args,
)
} else {
method_def.expand_struct_method_body(
cx,
self,
struct_def,
type_ident,
&selflike_args,
&nonselflike_args,
is_packed,
)
};
method_def.create_method(
cx,
self,
type_ident,
generics,
explicit_self,
nonself_arg_tys,
body,
)
})
.collect();
self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
}
fn expand_enum_def(
&self,
cx: &ExtCtxt<'_>,
enum_def: &'a EnumDef,
type_ident: Ident,
generics: &Generics,
from_scratch: bool,
) -> P<ast::Item> {
let mut field_tys = Vec::new();
for variant in &enum_def.variants {
field_tys.extend(variant.data.fields().iter().map(|field| field.ty.clone()));
}
let methods = self
.methods
.iter()
.map(|method_def| {
let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
method_def.extract_arg_details(cx, self, type_ident, generics);
let body = if from_scratch || method_def.is_static() {
method_def.expand_static_enum_method_body(
cx,
self,
enum_def,
type_ident,
&nonselflike_args,
)
} else {
method_def.expand_enum_method_body(
cx,
self,
enum_def,
type_ident,
selflike_args,
&nonselflike_args,
)
};
method_def.create_method(
cx,
self,
type_ident,
generics,
explicit_self,
nonself_arg_tys,
body,
)
})
.collect();
let is_packed = false; // enums are never packed
self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
}
}
impl<'a> MethodDef<'a> {
fn call_substructure_method(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'_>,
type_ident: Ident,
nonselflike_args: &[P<Expr>],
fields: &SubstructureFields<'_>,
) -> BlockOrExpr {
let span = trait_.span;
let substructure = Substructure { type_ident, nonselflike_args, fields };
let mut f = self.combine_substructure.borrow_mut();
let f: &mut CombineSubstructureFunc<'_> = &mut *f;
f(cx, span, &substructure)
}
fn get_ret_ty(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'_>,
generics: &Generics,
type_ident: Ident,
) -> P<ast::Ty> {
self.ret_ty.to_ty(cx, trait_.span, type_ident, generics)
}
fn is_static(&self) -> bool {
!self.explicit_self
}
// The return value includes:
// - explicit_self: The `&self` arg, if present.
// - selflike_args: Expressions for `&self` (if present) and also any other
// args with the same type (e.g. the `other` arg in `PartialEq::eq`).
// - nonselflike_args: Expressions for all the remaining args.
// - nonself_arg_tys: Additional information about all the args other than
// `&self`.
fn extract_arg_details(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'_>,
type_ident: Ident,
generics: &Generics,
) -> (Option<ast::ExplicitSelf>, ThinVec<P<Expr>>, Vec<P<Expr>>, Vec<(Ident, P<ast::Ty>)>) {
let mut selflike_args = ThinVec::new();
let mut nonselflike_args = Vec::new();
let mut nonself_arg_tys = Vec::new();
let span = trait_.span;
let explicit_self = self.explicit_self.then(|| {
let (self_expr, explicit_self) = ty::get_explicit_self(cx, span);
selflike_args.push(self_expr);
explicit_self
});
for (ty, name) in self.nonself_args.iter() {
let ast_ty = ty.to_ty(cx, span, type_ident, generics);
let ident = Ident::new(*name, span);
nonself_arg_tys.push((ident, ast_ty));
let arg_expr = cx.expr_ident(span, ident);
match ty {
// Selflike (`&Self`) arguments only occur in non-static methods.
Ref(box Self_, _) if !self.is_static() => selflike_args.push(arg_expr),
Self_ => cx.dcx().span_bug(span, "`Self` in non-return position"),
_ => nonselflike_args.push(arg_expr),
}
}
(explicit_self, selflike_args, nonselflike_args, nonself_arg_tys)
}
fn create_method(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'_>,
type_ident: Ident,
generics: &Generics,
explicit_self: Option<ast::ExplicitSelf>,
nonself_arg_tys: Vec<(Ident, P<ast::Ty>)>,
body: BlockOrExpr,
) -> P<ast::AssocItem> {
let span = trait_.span;
// Create the generics that aren't for `Self`.
let fn_generics = self.generics.to_generics(cx, span, type_ident, generics);
let args = {
let self_arg = explicit_self.map(|explicit_self| {
let ident = Ident::with_dummy_span(kw::SelfLower).with_span_pos(span);
ast::Param::from_self(ast::AttrVec::default(), explicit_self, ident)
});
let nonself_args =
nonself_arg_tys.into_iter().map(|(name, ty)| cx.param(span, name, ty));
self_arg.into_iter().chain(nonself_args).collect()
};
let ret_type = self.get_ret_ty(cx, trait_, generics, type_ident);
let method_ident = Ident::new(self.name, span);
let fn_decl = cx.fn_decl(args, ast::FnRetTy::Ty(ret_type));
let body_block = body.into_block(cx, span);
let trait_lo_sp = span.shrink_to_lo();
let sig = ast::FnSig { header: ast::FnHeader::default(), decl: fn_decl, span };
let defaultness = ast::Defaultness::Final;
// Create the method.
P(ast::AssocItem {
id: ast::DUMMY_NODE_ID,
attrs: self.attributes.clone(),
span,
vis: ast::Visibility {
span: trait_lo_sp,
kind: ast::VisibilityKind::Inherited,
tokens: None,
},
ident: method_ident,
kind: ast::AssocItemKind::Fn(Box::new(ast::Fn {
defaultness,
sig,
generics: fn_generics,
body: Some(body_block),
})),
tokens: None,
})
}
/// The normal case uses field access.
///
/// ```
/// #[derive(PartialEq)]
/// # struct Dummy;
/// struct A { x: u8, y: u8 }
///
/// // equivalent to:
/// impl PartialEq for A {
/// fn eq(&self, other: &A) -> bool {
/// self.x == other.x && self.y == other.y
/// }
/// }
/// ```
///
/// But if the struct is `repr(packed)`, we can't use something like
/// `&self.x` because that might cause an unaligned ref. So for any trait
/// method that takes a reference, we use a local block to force a copy.
/// This requires that the field impl `Copy`.
///
/// ```rust,ignore (example)
/// # struct A { x: u8, y: u8 }
/// impl PartialEq for A {
/// fn eq(&self, other: &A) -> bool {
/// // Desugars to `{ self.x }.eq(&{ other.y }) && ...`
/// { self.x } == { other.y } && { self.y } == { other.y }
/// }
/// }
/// impl Hash for A {
/// fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
/// ::core::hash::Hash::hash(&{ self.x }, state);
/// ::core::hash::Hash::hash(&{ self.y }, state);
/// }
/// }
/// ```
fn expand_struct_method_body<'b>(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'b>,
struct_def: &'b VariantData,
type_ident: Ident,
selflike_args: &[P<Expr>],
nonselflike_args: &[P<Expr>],
is_packed: bool,
) -> BlockOrExpr {
assert!(selflike_args.len() == 1 || selflike_args.len() == 2);
let selflike_fields =
trait_.create_struct_field_access_fields(cx, selflike_args, struct_def, is_packed);
self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&Struct(struct_def, selflike_fields),
)
}
fn expand_static_struct_method_body(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'_>,
struct_def: &VariantData,
type_ident: Ident,
nonselflike_args: &[P<Expr>],
) -> BlockOrExpr {
let summary = trait_.summarise_struct(cx, struct_def);
self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&StaticStruct(struct_def, summary),
)
}
/// ```
/// #[derive(PartialEq)]
/// # struct Dummy;
/// enum A {
/// A1,
/// A2(i32)
/// }
/// ```
///
/// is equivalent to:
///
/// ```
/// #![feature(core_intrinsics)]
/// enum A {
/// A1,
/// A2(i32)
/// }
/// impl ::core::cmp::PartialEq for A {
/// #[inline]
/// fn eq(&self, other: &A) -> bool {
/// let __self_discr = ::core::intrinsics::discriminant_value(self);
/// let __arg1_discr = ::core::intrinsics::discriminant_value(other);
/// __self_discr == __arg1_discr
/// && match (self, other) {
/// (A::A2(__self_0), A::A2(__arg1_0)) => *__self_0 == *__arg1_0,
/// _ => true,
/// }
/// }
/// }
/// ```
///
/// Creates a discriminant check combined with a match for a tuple of all
/// `selflike_args`, with an arm for each variant with fields, possibly an
/// arm for each fieldless variant (if `unify_fieldless_variants` is not
/// `Unify`), and possibly a default arm.
fn expand_enum_method_body<'b>(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'b>,
enum_def: &'b EnumDef,
type_ident: Ident,
mut selflike_args: ThinVec<P<Expr>>,
nonselflike_args: &[P<Expr>],
) -> BlockOrExpr {
assert!(
!selflike_args.is_empty(),
"static methods must use `expand_static_enum_method_body`",
);
let span = trait_.span;
let variants = &enum_def.variants;
// Traits that unify fieldless variants always use the discriminant(s).
let unify_fieldless_variants =
self.fieldless_variants_strategy == FieldlessVariantsStrategy::Unify;
// For zero-variant enum, this function body is unreachable. Generate
// `match *self {}`. This produces machine code identical to `unsafe {
// core::intrinsics::unreachable() }` while being safe and stable.
if variants.is_empty() {
selflike_args.truncate(1);
let match_arg = cx.expr_deref(span, selflike_args.pop().unwrap());
let match_arms = ThinVec::new();
let expr = cx.expr_match(span, match_arg, match_arms);
return BlockOrExpr(ThinVec::new(), Some(expr));
}
let prefixes = iter::once("__self".to_string())
.chain(
selflike_args
.iter()
.enumerate()
.skip(1)
.map(|(arg_count, _selflike_arg)| format!("__arg{arg_count}")),
)
.collect::<Vec<String>>();
// Build a series of let statements mapping each selflike_arg
// to its discriminant value.
//
// e.g. for `PartialEq::eq` builds two statements:
// ```
// let __self_discr = ::core::intrinsics::discriminant_value(self);
// let __arg1_discr = ::core::intrinsics::discriminant_value(other);
// ```
let get_discr_pieces = |cx: &ExtCtxt<'_>| {
let discr_idents: Vec<_> = prefixes
.iter()
.map(|name| Ident::from_str_and_span(&format!("{name}_discr"), span))
.collect();
let mut discr_exprs: Vec<_> = discr_idents
.iter()
.map(|&ident| cx.expr_addr_of(span, cx.expr_ident(span, ident)))
.collect();
let self_expr = discr_exprs.remove(0);
let other_selflike_exprs = discr_exprs;
let discr_field = FieldInfo { span, name: None, self_expr, other_selflike_exprs };
let discr_let_stmts: ThinVec<_> = iter::zip(&discr_idents, &selflike_args)
.map(|(&ident, selflike_arg)| {
let variant_value =
deriving::call_intrinsic(cx, span, sym::discriminant_value, thin_vec![
selflike_arg.clone()
]);
cx.stmt_let(span, false, ident, variant_value)
})
.collect();
(discr_field, discr_let_stmts)
};
// There are some special cases involving fieldless enums where no
// match is necessary.
let all_fieldless = variants.iter().all(|v| v.data.fields().is_empty());
if all_fieldless {
if variants.len() > 1 {
match self.fieldless_variants_strategy {
FieldlessVariantsStrategy::Unify => {
// If the type is fieldless and the trait uses the discriminant and
// there are multiple variants, we need just an operation on
// the discriminant(s).
let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
let mut discr_check = self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&EnumDiscr(discr_field, None),
);
discr_let_stmts.append(&mut discr_check.0);
return BlockOrExpr(discr_let_stmts, discr_check.1);
}
FieldlessVariantsStrategy::SpecializeIfAllVariantsFieldless => {
return self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&AllFieldlessEnum(enum_def),
);
}
FieldlessVariantsStrategy::Default => (),
}
} else if let [variant] = variants.as_slice() {
// If there is a single variant, we don't need an operation on
// the discriminant(s). Just use the most degenerate result.
return self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&EnumMatching(0, variant, Vec::new()),
);
}
}
// These arms are of the form:
// (Variant1, Variant1, ...) => Body1
// (Variant2, Variant2, ...) => Body2
// ...
// where each tuple has length = selflike_args.len()
let mut match_arms: ThinVec<ast::Arm> = variants
.iter()
.enumerate()
.filter(|&(_, v)| !(unify_fieldless_variants && v.data.fields().is_empty()))
.map(|(index, variant)| {
// A single arm has form (&VariantK, &VariantK, ...) => BodyK
// (see "Final wrinkle" note below for why.)
let fields = trait_.create_struct_pattern_fields(cx, &variant.data, &prefixes);
let sp = variant.span.with_ctxt(trait_.span.ctxt());
let variant_path = cx.path(sp, vec![type_ident, variant.ident]);
let by_ref = ByRef::No; // because enums can't be repr(packed)
let mut subpats = trait_.create_struct_patterns(
cx,
variant_path,
&variant.data,
&prefixes,
by_ref,
);
// `(VariantK, VariantK, ...)` or just `VariantK`.
let single_pat = if subpats.len() == 1 {
subpats.pop().unwrap()
} else {
cx.pat_tuple(span, subpats)
};
// For the BodyK, we need to delegate to our caller,
// passing it an EnumMatching to indicate which case
// we are in.
//
// Now, for some given VariantK, we have built up
// expressions for referencing every field of every
// Self arg, assuming all are instances of VariantK.
// Build up code associated with such a case.
let substructure = EnumMatching(index, variant, fields);
let arm_expr = self
.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&substructure,
)
.into_expr(cx, span);
cx.arm(span, single_pat, arm_expr)
})
.collect();
// Add a default arm to the match, if necessary.
let first_fieldless = variants.iter().find(|v| v.data.fields().is_empty());
let default = match first_fieldless {
Some(v) if unify_fieldless_variants => {
// We need a default case that handles all the fieldless
// variants. The index and actual variant aren't meaningful in
// this case, so just use dummy values.
Some(
self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&EnumMatching(0, v, Vec::new()),
)
.into_expr(cx, span),
)
}
_ if variants.len() > 1 && selflike_args.len() > 1 => {
// Because we know that all the arguments will match if we reach
// the match expression we add the unreachable intrinsics as the
// result of the default which should help llvm in optimizing it.
Some(deriving::call_unreachable(cx, span))
}
_ => None,
};
if let Some(arm) = default {
match_arms.push(cx.arm(span, cx.pat_wild(span), arm));
}
// Create a match expression with one arm per discriminant plus
// possibly a default arm, e.g.:
// match (self, other) {
// (Variant1, Variant1, ...) => Body1
// (Variant2, Variant2, ...) => Body2,
// ...
// _ => ::core::intrinsics::unreachable(),
// }
let get_match_expr = |mut selflike_args: ThinVec<P<Expr>>| {
let match_arg = if selflike_args.len() == 1 {
selflike_args.pop().unwrap()
} else {
cx.expr(span, ast::ExprKind::Tup(selflike_args))
};
cx.expr_match(span, match_arg, match_arms)
};
// If the trait uses the discriminant and there are multiple variants, we need
// to add a discriminant check operation before the match. Otherwise, the match
// is enough.
if unify_fieldless_variants && variants.len() > 1 {
let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
// Combine a discriminant check with the match.
let mut discr_check_plus_match = self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&EnumDiscr(discr_field, Some(get_match_expr(selflike_args))),
);
discr_let_stmts.append(&mut discr_check_plus_match.0);
BlockOrExpr(discr_let_stmts, discr_check_plus_match.1)
} else {
BlockOrExpr(ThinVec::new(), Some(get_match_expr(selflike_args)))
}
}
fn expand_static_enum_method_body(
&self,
cx: &ExtCtxt<'_>,
trait_: &TraitDef<'_>,
enum_def: &EnumDef,
type_ident: Ident,
nonselflike_args: &[P<Expr>],
) -> BlockOrExpr {
let summary = enum_def
.variants
.iter()
.map(|v| {
let sp = v.span.with_ctxt(trait_.span.ctxt());
let summary = trait_.summarise_struct(cx, &v.data);
(v.ident, sp, summary)
})
.collect();
self.call_substructure_method(
cx,
trait_,
type_ident,
nonselflike_args,
&StaticEnum(enum_def, summary),
)
}
}
// general helper methods.
impl<'a> TraitDef<'a> {
fn summarise_struct(&self, cx: &ExtCtxt<'_>, struct_def: &VariantData) -> StaticFields {
let mut named_idents = Vec::new();
let mut just_spans = Vec::new();
for field in struct_def.fields() {
let sp = field.span.with_ctxt(self.span.ctxt());
match field.ident {
Some(ident) => named_idents.push((ident, sp)),
_ => just_spans.push(sp),
}
}
let is_tuple = match struct_def {
ast::VariantData::Tuple(..) => IsTuple::Yes,
_ => IsTuple::No,
};
match (just_spans.is_empty(), named_idents.is_empty()) {
(false, false) => cx
.dcx()
.span_bug(self.span, "a struct with named and unnamed fields in generic `derive`"),
// named fields
(_, false) => Named(named_idents),
// unnamed fields
(false, _) => Unnamed(just_spans, is_tuple),
// empty
_ => Named(Vec::new()),
}
}
fn create_struct_patterns(
&self,
cx: &ExtCtxt<'_>,
struct_path: ast::Path,
struct_def: &'a VariantData,
prefixes: &[String],
by_ref: ByRef,
) -> ThinVec<P<ast::Pat>> {
prefixes
.iter()
.map(|prefix| {
let pieces_iter =
struct_def.fields().iter().enumerate().map(|(i, struct_field)| {
let sp = struct_field.span.with_ctxt(self.span.ctxt());
let ident = self.mk_pattern_ident(prefix, i);
let path = ident.with_span_pos(sp);
(
sp,
struct_field.ident,
cx.pat(
path.span,
PatKind::Ident(BindingMode(by_ref, Mutability::Not), path, None),
),
)
});
let struct_path = struct_path.clone();
match *struct_def {
VariantData::Struct { .. } => {
let field_pats = pieces_iter
.map(|(sp, ident, pat)| {
if ident.is_none() {
cx.dcx().span_bug(
sp,
"a braced struct with unnamed fields in `derive`",
);
}
ast::PatField {
ident: ident.unwrap(),
is_shorthand: false,
attrs: ast::AttrVec::new(),
id: ast::DUMMY_NODE_ID,
span: pat.span.with_ctxt(self.span.ctxt()),
pat,
is_placeholder: false,
}
})
.collect();
cx.pat_struct(self.span, struct_path, field_pats)
}
VariantData::Tuple(..) => {
let subpats = pieces_iter.map(|(_, _, subpat)| subpat).collect();
cx.pat_tuple_struct(self.span, struct_path, subpats)
}
VariantData::Unit(..) => cx.pat_path(self.span, struct_path),
}
})
.collect()
}
fn create_fields<F>(&self, struct_def: &'a VariantData, mk_exprs: F) -> Vec<FieldInfo>
where
F: Fn(usize, &ast::FieldDef, Span) -> Vec<P<ast::Expr>>,
{
struct_def
.fields()
.iter()
.enumerate()
.map(|(i, struct_field)| {
// For this field, get an expr for each selflike_arg. E.g. for
// `PartialEq::eq`, one for each of `&self` and `other`.
let sp = struct_field.span.with_ctxt(self.span.ctxt());
let mut exprs: Vec<_> = mk_exprs(i, struct_field, sp);
let self_expr = exprs.remove(0);
let other_selflike_exprs = exprs;
FieldInfo {
span: sp.with_ctxt(self.span.ctxt()),
name: struct_field.ident,
self_expr,
other_selflike_exprs,
}
})
.collect()
}
fn mk_pattern_ident(&self, prefix: &str, i: usize) -> Ident {
Ident::from_str_and_span(&format!("{prefix}_{i}"), self.span)
}
fn create_struct_pattern_fields(
&self,
cx: &ExtCtxt<'_>,
struct_def: &'a VariantData,
prefixes: &[String],
) -> Vec<FieldInfo> {
self.create_fields(struct_def, |i, _struct_field, sp| {
prefixes
.iter()
.map(|prefix| {
let ident = self.mk_pattern_ident(prefix, i);
cx.expr_path(cx.path_ident(sp, ident))
})
.collect()
})
}
fn create_struct_field_access_fields(
&self,
cx: &ExtCtxt<'_>,
selflike_args: &[P<Expr>],
struct_def: &'a VariantData,
is_packed: bool,
) -> Vec<FieldInfo> {
self.create_fields(struct_def, |i, struct_field, sp| {
selflike_args
.iter()
.map(|selflike_arg| {
// Note: we must use `struct_field.span` rather than `sp` in the
// `unwrap_or_else` case otherwise the hygiene is wrong and we get
// "field `0` of struct `Point` is private" errors on tuple
// structs.
let mut field_expr = cx.expr(
sp,
ast::ExprKind::Field(
selflike_arg.clone(),
struct_field.ident.unwrap_or_else(|| {
Ident::from_str_and_span(&i.to_string(), struct_field.span)
}),
),
);
if is_packed {
// Fields in packed structs are wrapped in a block, e.g. `&{self.0}`,
// causing a copy instead of a (potentially misaligned) reference.
field_expr = cx.expr_block(
cx.block(struct_field.span, thin_vec![cx.stmt_expr(field_expr)]),
);
}
cx.expr_addr_of(sp, field_expr)
})
.collect()
})
}
}
/// The function passed to `cs_fold` is called repeatedly with a value of this
/// type. It describes one part of the code generation. The result is always an
/// expression.
pub(crate) enum CsFold<'a> {
/// The basic case: a field expression for one or more selflike args. E.g.
/// for `PartialEq::eq` this is something like `self.x == other.x`.
Single(&'a FieldInfo),
/// The combination of two field expressions. E.g. for `PartialEq::eq` this
/// is something like `<field1 equality> && <field2 equality>`.
Combine(Span, P<Expr>, P<Expr>),
// The fallback case for a struct or enum variant with no fields.
Fieldless,
}
/// Folds over fields, combining the expressions for each field in a sequence.
/// Statics may not be folded over.
pub(crate) fn cs_fold<F>(
use_foldl: bool,
cx: &ExtCtxt<'_>,
trait_span: Span,
substructure: &Substructure<'_>,
mut f: F,
) -> P<Expr>
where
F: FnMut(&ExtCtxt<'_>, CsFold<'_>) -> P<Expr>,
{
match substructure.fields {
EnumMatching(.., all_fields) | Struct(_, all_fields) => {
if all_fields.is_empty() {
return f(cx, CsFold::Fieldless);
}
let (base_field, rest) = if use_foldl {
all_fields.split_first().unwrap()
} else {
all_fields.split_last().unwrap()
};
let base_expr = f(cx, CsFold::Single(base_field));
let op = |old, field: &FieldInfo| {
let new = f(cx, CsFold::Single(field));
f(cx, CsFold::Combine(field.span, old, new))
};
if use_foldl {
rest.iter().fold(base_expr, op)
} else {
rest.iter().rfold(base_expr, op)
}
}
EnumDiscr(discr_field, match_expr) => {
let discr_check_expr = f(cx, CsFold::Single(discr_field));
if let Some(match_expr) = match_expr {
if use_foldl {
f(cx, CsFold::Combine(trait_span, discr_check_expr, match_expr.clone()))
} else {
f(cx, CsFold::Combine(trait_span, match_expr.clone(), discr_check_expr))
}
} else {
discr_check_expr
}
}
StaticEnum(..) | StaticStruct(..) => {
cx.dcx().span_bug(trait_span, "static function in `derive`")
}
AllFieldlessEnum(..) => cx.dcx().span_bug(trait_span, "fieldless enum in `derive`"),
}
}