1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
//! Functionality for statements, operands, places, and things that appear in them.

use super::interpret::GlobalAlloc;
use super::*;

///////////////////////////////////////////////////////////////////////////
// Statements

/// A statement in a basic block, including information about its source code.
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct Statement<'tcx> {
    pub source_info: SourceInfo,
    pub kind: StatementKind<'tcx>,
}

impl Statement<'_> {
    /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
    /// invalidating statement indices in `Location`s.
    pub fn make_nop(&mut self) {
        self.kind = StatementKind::Nop
    }

    /// Changes a statement to a nop and returns the original statement.
    #[must_use = "If you don't need the statement, use `make_nop` instead"]
    pub fn replace_nop(&mut self) -> Self {
        Statement {
            source_info: self.source_info,
            kind: mem::replace(&mut self.kind, StatementKind::Nop),
        }
    }
}

impl<'tcx> StatementKind<'tcx> {
    pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
        match self {
            StatementKind::Assign(x) => Some(x),
            _ => None,
        }
    }

    pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
        match self {
            StatementKind::Assign(x) => Some(x),
            _ => None,
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Places

impl<V, T> ProjectionElem<V, T> {
    /// Returns `true` if the target of this projection may refer to a different region of memory
    /// than the base.
    fn is_indirect(&self) -> bool {
        match self {
            Self::Deref => true,

            Self::Field(_, _)
            | Self::Index(_)
            | Self::OpaqueCast(_)
            | Self::Subtype(_)
            | Self::ConstantIndex { .. }
            | Self::Subslice { .. }
            | Self::Downcast(_, _) => false,
        }
    }

    /// Returns `true` if the target of this projection always refers to the same memory region
    /// whatever the state of the program.
    pub fn is_stable_offset(&self) -> bool {
        match self {
            Self::Deref | Self::Index(_) => false,
            Self::Field(_, _)
            | Self::OpaqueCast(_)
            | Self::Subtype(_)
            | Self::ConstantIndex { .. }
            | Self::Subslice { .. }
            | Self::Downcast(_, _) => true,
        }
    }

    /// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
    pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
        matches!(*self, Self::Downcast(_, x) if x == v)
    }

    /// Returns `true` if this is a `Field` projection with the given index.
    pub fn is_field_to(&self, f: FieldIdx) -> bool {
        matches!(*self, Self::Field(x, _) if x == f)
    }

    /// Returns `true` if this is accepted inside `VarDebugInfoContents::Place`.
    pub fn can_use_in_debuginfo(&self) -> bool {
        match self {
            Self::ConstantIndex { from_end: false, .. }
            | Self::Deref
            | Self::Downcast(_, _)
            | Self::Field(_, _) => true,
            Self::ConstantIndex { from_end: true, .. }
            | Self::Index(_)
            | Self::Subtype(_)
            | Self::OpaqueCast(_)
            | Self::Subslice { .. } => false,
        }
    }
}

/// Alias for projections as they appear in `UserTypeProjection`, where we
/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
pub type ProjectionKind = ProjectionElem<(), ()>;

#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct PlaceRef<'tcx> {
    pub local: Local,
    pub projection: &'tcx [PlaceElem<'tcx>],
}

// Once we stop implementing `Ord` for `DefId`,
// this impl will be unnecessary. Until then, we'll
// leave this impl in place to prevent re-adding a
// dependency on the `Ord` impl for `DefId`
impl<'tcx> !PartialOrd for PlaceRef<'tcx> {}

impl<'tcx> Place<'tcx> {
    // FIXME change this to a const fn by also making List::empty a const fn.
    pub fn return_place() -> Place<'tcx> {
        Place { local: RETURN_PLACE, projection: List::empty() }
    }

    /// Returns `true` if this `Place` contains a `Deref` projection.
    ///
    /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
    /// same region of memory as its base.
    pub fn is_indirect(&self) -> bool {
        self.projection.iter().any(|elem| elem.is_indirect())
    }

    /// Returns `true` if this `Place`'s first projection is `Deref`.
    ///
    /// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
    /// `Deref` projections can only occur as the first projection. In that case this method
    /// is equivalent to `is_indirect`, but faster.
    pub fn is_indirect_first_projection(&self) -> bool {
        self.as_ref().is_indirect_first_projection()
    }

    /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
    /// a single deref of a local.
    #[inline(always)]
    pub fn local_or_deref_local(&self) -> Option<Local> {
        self.as_ref().local_or_deref_local()
    }

    /// If this place represents a local variable like `_X` with no
    /// projections, return `Some(_X)`.
    #[inline(always)]
    pub fn as_local(&self) -> Option<Local> {
        self.as_ref().as_local()
    }

    #[inline]
    pub fn as_ref(&self) -> PlaceRef<'tcx> {
        PlaceRef { local: self.local, projection: self.projection }
    }

    /// Iterate over the projections in evaluation order, i.e., the first element is the base with
    /// its projection and then subsequently more projections are added.
    /// As a concrete example, given the place a.b.c, this would yield:
    /// - (a, .b)
    /// - (a.b, .c)
    ///
    /// Given a place without projections, the iterator is empty.
    #[inline]
    pub fn iter_projections(
        self,
    ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
        self.as_ref().iter_projections()
    }

    /// Generates a new place by appending `more_projections` to the existing ones
    /// and interning the result.
    pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
        if more_projections.is_empty() {
            return self;
        }

        self.as_ref().project_deeper(more_projections, tcx)
    }
}

impl From<Local> for Place<'_> {
    #[inline]
    fn from(local: Local) -> Self {
        Place { local, projection: List::empty() }
    }
}

impl<'tcx> PlaceRef<'tcx> {
    /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
    /// a single deref of a local.
    pub fn local_or_deref_local(&self) -> Option<Local> {
        match *self {
            PlaceRef { local, projection: [] }
            | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
            _ => None,
        }
    }

    /// Returns `true` if this `Place` contains a `Deref` projection.
    ///
    /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
    /// same region of memory as its base.
    pub fn is_indirect(&self) -> bool {
        self.projection.iter().any(|elem| elem.is_indirect())
    }

    /// Returns `true` if this `Place`'s first projection is `Deref`.
    ///
    /// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
    /// `Deref` projections can only occur as the first projection. In that case this method
    /// is equivalent to `is_indirect`, but faster.
    pub fn is_indirect_first_projection(&self) -> bool {
        // To make sure this is not accidentally used in wrong mir phase
        debug_assert!(
            self.projection.is_empty() || !self.projection[1..].contains(&PlaceElem::Deref)
        );
        self.projection.first() == Some(&PlaceElem::Deref)
    }

    /// If this place represents a local variable like `_X` with no
    /// projections, return `Some(_X)`.
    #[inline]
    pub fn as_local(&self) -> Option<Local> {
        match *self {
            PlaceRef { local, projection: [] } => Some(local),
            _ => None,
        }
    }

    #[inline]
    pub fn to_place(&self, tcx: TyCtxt<'tcx>) -> Place<'tcx> {
        Place { local: self.local, projection: tcx.mk_place_elems(self.projection) }
    }

    #[inline]
    pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
        if let &[ref proj_base @ .., elem] = self.projection {
            Some((PlaceRef { local: self.local, projection: proj_base }, elem))
        } else {
            None
        }
    }

    /// Iterate over the projections in evaluation order, i.e., the first element is the base with
    /// its projection and then subsequently more projections are added.
    /// As a concrete example, given the place a.b.c, this would yield:
    /// - (a, .b)
    /// - (a.b, .c)
    ///
    /// Given a place without projections, the iterator is empty.
    #[inline]
    pub fn iter_projections(
        self,
    ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
        self.projection.iter().enumerate().map(move |(i, proj)| {
            let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
            (base, *proj)
        })
    }

    /// Generates a new place by appending `more_projections` to the existing ones
    /// and interning the result.
    pub fn project_deeper(
        self,
        more_projections: &[PlaceElem<'tcx>],
        tcx: TyCtxt<'tcx>,
    ) -> Place<'tcx> {
        let mut v: Vec<PlaceElem<'tcx>>;

        let new_projections = if self.projection.is_empty() {
            more_projections
        } else {
            v = Vec::with_capacity(self.projection.len() + more_projections.len());
            v.extend(self.projection);
            v.extend(more_projections);
            &v
        };

        Place { local: self.local, projection: tcx.mk_place_elems(new_projections) }
    }
}

impl From<Local> for PlaceRef<'_> {
    #[inline]
    fn from(local: Local) -> Self {
        PlaceRef { local, projection: &[] }
    }
}

///////////////////////////////////////////////////////////////////////////
// Operands

impl<'tcx> Operand<'tcx> {
    /// Convenience helper to make a constant that refers to the fn
    /// with given `DefId` and args. Since this is used to synthesize
    /// MIR, assumes `user_ty` is None.
    pub fn function_handle(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        args: impl IntoIterator<Item = GenericArg<'tcx>>,
        span: Span,
    ) -> Self {
        let ty = Ty::new_fn_def(tcx, def_id, args);
        Operand::Constant(Box::new(ConstOperand {
            span,
            user_ty: None,
            const_: Const::Val(ConstValue::ZeroSized, ty),
        }))
    }

    pub fn is_move(&self) -> bool {
        matches!(self, Operand::Move(..))
    }

    /// Convenience helper to make a literal-like constant from a given scalar value.
    /// Since this is used to synthesize MIR, assumes `user_ty` is None.
    pub fn const_from_scalar(
        tcx: TyCtxt<'tcx>,
        ty: Ty<'tcx>,
        val: Scalar,
        span: Span,
    ) -> Operand<'tcx> {
        debug_assert!({
            let param_env_and_ty = ty::ParamEnv::empty().and(ty);
            let type_size = tcx
                .layout_of(param_env_and_ty)
                .unwrap_or_else(|e| panic!("could not compute layout for {ty:?}: {e:?}"))
                .size;
            let scalar_size = match val {
                Scalar::Int(int) => int.size(),
                _ => panic!("Invalid scalar type {val:?}"),
            };
            scalar_size == type_size
        });
        Operand::Constant(Box::new(ConstOperand {
            span,
            user_ty: None,
            const_: Const::Val(ConstValue::Scalar(val), ty),
        }))
    }

    pub fn to_copy(&self) -> Self {
        match *self {
            Operand::Copy(_) | Operand::Constant(_) => self.clone(),
            Operand::Move(place) => Operand::Copy(place),
        }
    }

    /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
    /// constant.
    pub fn place(&self) -> Option<Place<'tcx>> {
        match self {
            Operand::Copy(place) | Operand::Move(place) => Some(*place),
            Operand::Constant(_) => None,
        }
    }

    /// Returns the `ConstOperand` that is the target of this `Operand`, or `None` if this `Operand` is a
    /// place.
    pub fn constant(&self) -> Option<&ConstOperand<'tcx>> {
        match self {
            Operand::Constant(x) => Some(&**x),
            Operand::Copy(_) | Operand::Move(_) => None,
        }
    }

    /// Gets the `ty::FnDef` from an operand if it's a constant function item.
    ///
    /// While this is unlikely in general, it's the normal case of what you'll
    /// find as the `func` in a [`TerminatorKind::Call`].
    pub fn const_fn_def(&self) -> Option<(DefId, GenericArgsRef<'tcx>)> {
        let const_ty = self.constant()?.const_.ty();
        if let ty::FnDef(def_id, args) = *const_ty.kind() { Some((def_id, args)) } else { None }
    }
}

impl<'tcx> ConstOperand<'tcx> {
    pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
        match self.const_.try_to_scalar() {
            Some(Scalar::Ptr(ptr, _size)) => match tcx.global_alloc(ptr.provenance.alloc_id()) {
                GlobalAlloc::Static(def_id) => {
                    assert!(!tcx.is_thread_local_static(def_id));
                    Some(def_id)
                }
                _ => None,
            },
            _ => None,
        }
    }

    #[inline]
    pub fn ty(&self) -> Ty<'tcx> {
        self.const_.ty()
    }
}

///////////////////////////////////////////////////////////////////////////
/// Rvalues

impl<'tcx> Rvalue<'tcx> {
    /// Returns true if rvalue can be safely removed when the result is unused.
    #[inline]
    pub fn is_safe_to_remove(&self) -> bool {
        match self {
            // Pointer to int casts may be side-effects due to exposing the provenance.
            // While the model is undecided, we should be conservative. See
            // <https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html>
            Rvalue::Cast(CastKind::PointerExposeProvenance, _, _) => false,

            Rvalue::Use(_)
            | Rvalue::CopyForDeref(_)
            | Rvalue::Repeat(_, _)
            | Rvalue::Ref(_, _, _)
            | Rvalue::ThreadLocalRef(_)
            | Rvalue::RawPtr(_, _)
            | Rvalue::Len(_)
            | Rvalue::Cast(
                CastKind::IntToInt
                | CastKind::FloatToInt
                | CastKind::FloatToFloat
                | CastKind::IntToFloat
                | CastKind::FnPtrToPtr
                | CastKind::PtrToPtr
                | CastKind::PointerCoercion(_)
                | CastKind::PointerWithExposedProvenance
                | CastKind::DynStar
                | CastKind::Transmute,
                _,
                _,
            )
            | Rvalue::BinaryOp(_, _)
            | Rvalue::NullaryOp(_, _)
            | Rvalue::UnaryOp(_, _)
            | Rvalue::Discriminant(_)
            | Rvalue::Aggregate(_, _)
            | Rvalue::ShallowInitBox(_, _) => true,
        }
    }
}

impl BorrowKind {
    pub fn mutability(&self) -> Mutability {
        match *self {
            BorrowKind::Shared | BorrowKind::Fake(_) => Mutability::Not,
            BorrowKind::Mut { .. } => Mutability::Mut,
        }
    }

    pub fn allows_two_phase_borrow(&self) -> bool {
        match *self {
            BorrowKind::Shared
            | BorrowKind::Fake(_)
            | BorrowKind::Mut { kind: MutBorrowKind::Default | MutBorrowKind::ClosureCapture } => {
                false
            }
            BorrowKind::Mut { kind: MutBorrowKind::TwoPhaseBorrow } => true,
        }
    }
}