rustc_middle/ty/
sty.rs

1//! This module contains `TyKind` and its major components.
2
3#![allow(rustc::usage_of_ty_tykind)]
4
5use std::assert_matches::debug_assert_matches;
6use std::borrow::Cow;
7use std::ops::{ControlFlow, Range};
8
9use hir::def::{CtorKind, DefKind};
10use rustc_abi::{FIRST_VARIANT, FieldIdx, VariantIdx};
11use rustc_errors::{ErrorGuaranteed, MultiSpan};
12use rustc_hir as hir;
13use rustc_hir::LangItem;
14use rustc_hir::def_id::DefId;
15use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, extension};
16use rustc_span::{DUMMY_SP, Span, Symbol, sym};
17use rustc_type_ir::TyKind::*;
18use rustc_type_ir::solve::SizedTraitKind;
19use rustc_type_ir::walk::TypeWalker;
20use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, DynKind, TypeVisitableExt, elaborate};
21use tracing::instrument;
22use ty::util::IntTypeExt;
23
24use super::GenericParamDefKind;
25use crate::infer::canonical::Canonical;
26use crate::ty::InferTy::*;
27use crate::ty::{
28    self, AdtDef, BoundRegionKind, Discr, GenericArg, GenericArgs, GenericArgsRef, List, ParamEnv,
29    Region, Ty, TyCtxt, TypeFlags, TypeSuperVisitable, TypeVisitable, TypeVisitor, UintTy,
30};
31
32// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
33#[rustc_diagnostic_item = "TyKind"]
34pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>;
35pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>;
36pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>;
37pub type FnSig<'tcx> = ir::FnSig<TyCtxt<'tcx>>;
38pub type Binder<'tcx, T> = ir::Binder<TyCtxt<'tcx>, T>;
39pub type EarlyBinder<'tcx, T> = ir::EarlyBinder<TyCtxt<'tcx>, T>;
40pub type TypingMode<'tcx> = ir::TypingMode<TyCtxt<'tcx>>;
41
42pub trait Article {
43    fn article(&self) -> &'static str;
44}
45
46impl<'tcx> Article for TyKind<'tcx> {
47    /// Get the article ("a" or "an") to use with this type.
48    fn article(&self) -> &'static str {
49        match self {
50            Int(_) | Float(_) | Array(_, _) => "an",
51            Adt(def, _) if def.is_enum() => "an",
52            // This should never happen, but ICEing and causing the user's code
53            // to not compile felt too harsh.
54            Error(_) => "a",
55            _ => "a",
56        }
57    }
58}
59
60#[extension(pub trait CoroutineArgsExt<'tcx>)]
61impl<'tcx> ty::CoroutineArgs<TyCtxt<'tcx>> {
62    /// Coroutine has not been resumed yet.
63    const UNRESUMED: usize = 0;
64    /// Coroutine has returned or is completed.
65    const RETURNED: usize = 1;
66    /// Coroutine has been poisoned.
67    const POISONED: usize = 2;
68    /// Number of variants to reserve in coroutine state. Corresponds to
69    /// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
70    /// (end of a coroutine) states.
71    const RESERVED_VARIANTS: usize = 3;
72
73    const UNRESUMED_NAME: &'static str = "Unresumed";
74    const RETURNED_NAME: &'static str = "Returned";
75    const POISONED_NAME: &'static str = "Panicked";
76
77    /// The valid variant indices of this coroutine.
78    #[inline]
79    fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
80        // FIXME requires optimized MIR
81        FIRST_VARIANT..tcx.coroutine_layout(def_id, self.args).unwrap().variant_fields.next_index()
82    }
83
84    /// The discriminant for the given variant. Panics if the `variant_index` is
85    /// out of range.
86    #[inline]
87    fn discriminant_for_variant(
88        &self,
89        def_id: DefId,
90        tcx: TyCtxt<'tcx>,
91        variant_index: VariantIdx,
92    ) -> Discr<'tcx> {
93        // Coroutines don't support explicit discriminant values, so they are
94        // the same as the variant index.
95        assert!(self.variant_range(def_id, tcx).contains(&variant_index));
96        Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
97    }
98
99    /// The set of all discriminants for the coroutine, enumerated with their
100    /// variant indices.
101    #[inline]
102    fn discriminants(
103        self,
104        def_id: DefId,
105        tcx: TyCtxt<'tcx>,
106    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> {
107        self.variant_range(def_id, tcx).map(move |index| {
108            (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
109        })
110    }
111
112    /// Calls `f` with a reference to the name of the enumerator for the given
113    /// variant `v`.
114    fn variant_name(v: VariantIdx) -> Cow<'static, str> {
115        match v.as_usize() {
116            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
117            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
118            Self::POISONED => Cow::from(Self::POISONED_NAME),
119            _ => Cow::from(format!("Suspend{}", v.as_usize() - Self::RESERVED_VARIANTS)),
120        }
121    }
122
123    /// The type of the state discriminant used in the coroutine type.
124    #[inline]
125    fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
126        tcx.types.u32
127    }
128
129    /// This returns the types of the MIR locals which had to be stored across suspension points.
130    /// It is calculated in rustc_mir_transform::coroutine::StateTransform.
131    /// All the types here must be in the tuple in CoroutineInterior.
132    ///
133    /// The locals are grouped by their variant number. Note that some locals may
134    /// be repeated in multiple variants.
135    #[inline]
136    fn state_tys(
137        self,
138        def_id: DefId,
139        tcx: TyCtxt<'tcx>,
140    ) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>>> {
141        let layout = tcx.coroutine_layout(def_id, self.args).unwrap();
142        layout.variant_fields.iter().map(move |variant| {
143            variant.iter().map(move |field| {
144                if tcx.is_async_drop_in_place_coroutine(def_id) {
145                    layout.field_tys[*field].ty
146                } else {
147                    ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args)
148                }
149            })
150        })
151    }
152
153    /// This is the types of the fields of a coroutine which are not stored in a
154    /// variant.
155    #[inline]
156    fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> {
157        self.upvar_tys()
158    }
159}
160
161#[derive(Debug, Copy, Clone, HashStable, TypeFoldable, TypeVisitable)]
162pub enum UpvarArgs<'tcx> {
163    Closure(GenericArgsRef<'tcx>),
164    Coroutine(GenericArgsRef<'tcx>),
165    CoroutineClosure(GenericArgsRef<'tcx>),
166}
167
168impl<'tcx> UpvarArgs<'tcx> {
169    /// Returns an iterator over the list of types of captured paths by the closure/coroutine.
170    /// In case there was a type error in figuring out the types of the captured path, an
171    /// empty iterator is returned.
172    #[inline]
173    pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
174        let tupled_tys = match self {
175            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
176            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
177            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
178        };
179
180        match tupled_tys.kind() {
181            TyKind::Error(_) => ty::List::empty(),
182            TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
183            TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
184            ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
185        }
186    }
187
188    #[inline]
189    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
190        match self {
191            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
192            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
193            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
194        }
195    }
196}
197
198/// An inline const is modeled like
199/// ```ignore (illustrative)
200/// const InlineConst<'l0...'li, T0...Tj, R>: R;
201/// ```
202/// where:
203///
204/// - 'l0...'li and T0...Tj are the generic parameters
205///   inherited from the item that defined the inline const,
206/// - R represents the type of the constant.
207///
208/// When the inline const is instantiated, `R` is instantiated as the actual inferred
209/// type of the constant. The reason that `R` is represented as an extra type parameter
210/// is the same reason that [`ty::ClosureArgs`] have `CS` and `U` as type parameters:
211/// inline const can reference lifetimes that are internal to the creating function.
212#[derive(Copy, Clone, Debug)]
213pub struct InlineConstArgs<'tcx> {
214    /// Generic parameters from the enclosing item,
215    /// concatenated with the inferred type of the constant.
216    pub args: GenericArgsRef<'tcx>,
217}
218
219/// Struct returned by `split()`.
220pub struct InlineConstArgsParts<'tcx, T> {
221    pub parent_args: &'tcx [GenericArg<'tcx>],
222    pub ty: T,
223}
224
225impl<'tcx> InlineConstArgs<'tcx> {
226    /// Construct `InlineConstArgs` from `InlineConstArgsParts`.
227    pub fn new(
228        tcx: TyCtxt<'tcx>,
229        parts: InlineConstArgsParts<'tcx, Ty<'tcx>>,
230    ) -> InlineConstArgs<'tcx> {
231        InlineConstArgs {
232            args: tcx.mk_args_from_iter(
233                parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())),
234            ),
235        }
236    }
237
238    /// Divides the inline const args into their respective components.
239    /// The ordering assumed here must match that used by `InlineConstArgs::new` above.
240    fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> {
241        match self.args[..] {
242            [ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty },
243            _ => bug!("inline const args missing synthetics"),
244        }
245    }
246
247    /// Returns the generic parameters of the inline const's parent.
248    pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
249        self.split().parent_args
250    }
251
252    /// Returns the type of this inline const.
253    pub fn ty(self) -> Ty<'tcx> {
254        self.split().ty.expect_ty()
255    }
256}
257
258#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
259#[derive(HashStable)]
260pub enum BoundVariableKind {
261    Ty(BoundTyKind),
262    Region(BoundRegionKind),
263    Const,
264}
265
266impl BoundVariableKind {
267    pub fn expect_region(self) -> BoundRegionKind {
268        match self {
269            BoundVariableKind::Region(lt) => lt,
270            _ => bug!("expected a region, but found another kind"),
271        }
272    }
273
274    pub fn expect_ty(self) -> BoundTyKind {
275        match self {
276            BoundVariableKind::Ty(ty) => ty,
277            _ => bug!("expected a type, but found another kind"),
278        }
279    }
280
281    pub fn expect_const(self) {
282        match self {
283            BoundVariableKind::Const => (),
284            _ => bug!("expected a const, but found another kind"),
285        }
286    }
287}
288
289pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
290pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
291
292#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
293#[derive(HashStable)]
294pub struct ParamTy {
295    pub index: u32,
296    pub name: Symbol,
297}
298
299impl rustc_type_ir::inherent::ParamLike for ParamTy {
300    fn index(self) -> u32 {
301        self.index
302    }
303}
304
305impl<'tcx> ParamTy {
306    pub fn new(index: u32, name: Symbol) -> ParamTy {
307        ParamTy { index, name }
308    }
309
310    pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
311        ParamTy::new(def.index, def.name)
312    }
313
314    #[inline]
315    pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
316        Ty::new_param(tcx, self.index, self.name)
317    }
318
319    pub fn span_from_generics(self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span {
320        let generics = tcx.generics_of(item_with_generics);
321        let type_param = generics.type_param(self, tcx);
322        tcx.def_span(type_param.def_id)
323    }
324}
325
326#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
327#[derive(HashStable)]
328pub struct ParamConst {
329    pub index: u32,
330    pub name: Symbol,
331}
332
333impl rustc_type_ir::inherent::ParamLike for ParamConst {
334    fn index(self) -> u32 {
335        self.index
336    }
337}
338
339impl ParamConst {
340    pub fn new(index: u32, name: Symbol) -> ParamConst {
341        ParamConst { index, name }
342    }
343
344    pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
345        ParamConst::new(def.index, def.name)
346    }
347
348    #[instrument(level = "debug")]
349    pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
350        let mut candidates = env.caller_bounds().iter().filter_map(|clause| {
351            // `ConstArgHasType` are never desugared to be higher ranked.
352            match clause.kind().skip_binder() {
353                ty::ClauseKind::ConstArgHasType(param_ct, ty) => {
354                    assert!(!(param_ct, ty).has_escaping_bound_vars());
355
356                    match param_ct.kind() {
357                        ty::ConstKind::Param(param_ct) if param_ct.index == self.index => Some(ty),
358                        _ => None,
359                    }
360                }
361                _ => None,
362            }
363        });
364
365        // N.B. it may be tempting to fix ICEs by making this function return
366        // `Option<Ty<'tcx>>` instead of `Ty<'tcx>`; however, this is generally
367        // considered to be a bandaid solution, since it hides more important
368        // underlying issues with how we construct generics and predicates of
369        // items. It's advised to fix the underlying issue rather than trying
370        // to modify this function.
371        let ty = candidates.next().unwrap_or_else(|| {
372            bug!("cannot find `{self:?}` in param-env: {env:#?}");
373        });
374        assert!(
375            candidates.next().is_none(),
376            "did not expect duplicate `ConstParamHasTy` for `{self:?}` in param-env: {env:#?}"
377        );
378        ty
379    }
380}
381
382#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
383#[derive(HashStable)]
384pub struct BoundTy {
385    pub var: BoundVar,
386    pub kind: BoundTyKind,
387}
388
389impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundTy {
390    fn var(self) -> BoundVar {
391        self.var
392    }
393
394    fn assert_eq(self, var: ty::BoundVariableKind) {
395        assert_eq!(self.kind, var.expect_ty())
396    }
397}
398
399#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
400#[derive(HashStable)]
401pub enum BoundTyKind {
402    Anon,
403    Param(DefId),
404}
405
406impl From<BoundVar> for BoundTy {
407    fn from(var: BoundVar) -> Self {
408        BoundTy { var, kind: BoundTyKind::Anon }
409    }
410}
411
412/// Constructors for `Ty`
413impl<'tcx> Ty<'tcx> {
414    /// Avoid using this in favour of more specific `new_*` methods, where possible.
415    /// The more specific methods will often optimize their creation.
416    #[allow(rustc::usage_of_ty_tykind)]
417    #[inline]
418    fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> {
419        tcx.mk_ty_from_kind(st)
420    }
421
422    #[inline]
423    pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> {
424        Ty::new(tcx, TyKind::Infer(infer))
425    }
426
427    #[inline]
428    pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> {
429        // Use a pre-interned one when possible.
430        tcx.types
431            .ty_vars
432            .get(v.as_usize())
433            .copied()
434            .unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v))))
435    }
436
437    #[inline]
438    pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> {
439        Ty::new_infer(tcx, IntVar(v))
440    }
441
442    #[inline]
443    pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> {
444        Ty::new_infer(tcx, FloatVar(v))
445    }
446
447    #[inline]
448    pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
449        // Use a pre-interned one when possible.
450        tcx.types
451            .fresh_tys
452            .get(n as usize)
453            .copied()
454            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n)))
455    }
456
457    #[inline]
458    pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
459        // Use a pre-interned one when possible.
460        tcx.types
461            .fresh_int_tys
462            .get(n as usize)
463            .copied()
464            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n)))
465    }
466
467    #[inline]
468    pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
469        // Use a pre-interned one when possible.
470        tcx.types
471            .fresh_float_tys
472            .get(n as usize)
473            .copied()
474            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n)))
475    }
476
477    #[inline]
478    pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> {
479        Ty::new(tcx, Param(ParamTy { index, name }))
480    }
481
482    #[inline]
483    pub fn new_bound(
484        tcx: TyCtxt<'tcx>,
485        index: ty::DebruijnIndex,
486        bound_ty: ty::BoundTy,
487    ) -> Ty<'tcx> {
488        // Use a pre-interned one when possible.
489        if let ty::BoundTy { var, kind: ty::BoundTyKind::Anon } = bound_ty
490            && let Some(inner) = tcx.types.anon_bound_tys.get(index.as_usize())
491            && let Some(ty) = inner.get(var.as_usize()).copied()
492        {
493            ty
494        } else {
495            Ty::new(tcx, Bound(index, bound_ty))
496        }
497    }
498
499    #[inline]
500    pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Ty<'tcx> {
501        Ty::new(tcx, Placeholder(placeholder))
502    }
503
504    #[inline]
505    pub fn new_alias(
506        tcx: TyCtxt<'tcx>,
507        kind: ty::AliasTyKind,
508        alias_ty: ty::AliasTy<'tcx>,
509    ) -> Ty<'tcx> {
510        debug_assert_matches!(
511            (kind, tcx.def_kind(alias_ty.def_id)),
512            (ty::Opaque, DefKind::OpaqueTy)
513                | (ty::Projection | ty::Inherent, DefKind::AssocTy)
514                | (ty::Free, DefKind::TyAlias)
515        );
516        Ty::new(tcx, Alias(kind, alias_ty))
517    }
518
519    #[inline]
520    pub fn new_pat(tcx: TyCtxt<'tcx>, base: Ty<'tcx>, pat: ty::Pattern<'tcx>) -> Ty<'tcx> {
521        Ty::new(tcx, Pat(base, pat))
522    }
523
524    #[inline]
525    #[instrument(level = "debug", skip(tcx))]
526    pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
527        Ty::new_alias(tcx, ty::Opaque, AliasTy::new_from_args(tcx, def_id, args))
528    }
529
530    /// Constructs a `TyKind::Error` type with current `ErrorGuaranteed`
531    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> {
532        Ty::new(tcx, Error(guar))
533    }
534
535    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used.
536    #[track_caller]
537    pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
538        Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported")
539    }
540
541    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to
542    /// ensure it gets used.
543    #[track_caller]
544    pub fn new_error_with_message<S: Into<MultiSpan>>(
545        tcx: TyCtxt<'tcx>,
546        span: S,
547        msg: impl Into<Cow<'static, str>>,
548    ) -> Ty<'tcx> {
549        let reported = tcx.dcx().span_delayed_bug(span, msg);
550        Ty::new(tcx, Error(reported))
551    }
552
553    #[inline]
554    pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> {
555        use ty::IntTy::*;
556        match i {
557            Isize => tcx.types.isize,
558            I8 => tcx.types.i8,
559            I16 => tcx.types.i16,
560            I32 => tcx.types.i32,
561            I64 => tcx.types.i64,
562            I128 => tcx.types.i128,
563        }
564    }
565
566    #[inline]
567    pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> {
568        use ty::UintTy::*;
569        match ui {
570            Usize => tcx.types.usize,
571            U8 => tcx.types.u8,
572            U16 => tcx.types.u16,
573            U32 => tcx.types.u32,
574            U64 => tcx.types.u64,
575            U128 => tcx.types.u128,
576        }
577    }
578
579    #[inline]
580    pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> {
581        use ty::FloatTy::*;
582        match f {
583            F16 => tcx.types.f16,
584            F32 => tcx.types.f32,
585            F64 => tcx.types.f64,
586            F128 => tcx.types.f128,
587        }
588    }
589
590    #[inline]
591    pub fn new_ref(
592        tcx: TyCtxt<'tcx>,
593        r: Region<'tcx>,
594        ty: Ty<'tcx>,
595        mutbl: ty::Mutability,
596    ) -> Ty<'tcx> {
597        Ty::new(tcx, Ref(r, ty, mutbl))
598    }
599
600    #[inline]
601    pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
602        Ty::new_ref(tcx, r, ty, hir::Mutability::Mut)
603    }
604
605    #[inline]
606    pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
607        Ty::new_ref(tcx, r, ty, hir::Mutability::Not)
608    }
609
610    pub fn new_pinned_ref(
611        tcx: TyCtxt<'tcx>,
612        r: Region<'tcx>,
613        ty: Ty<'tcx>,
614        mutbl: ty::Mutability,
615    ) -> Ty<'tcx> {
616        let pin = tcx.adt_def(tcx.require_lang_item(LangItem::Pin, DUMMY_SP));
617        Ty::new_adt(tcx, pin, tcx.mk_args(&[Ty::new_ref(tcx, r, ty, mutbl).into()]))
618    }
619
620    #[inline]
621    pub fn new_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, mutbl: ty::Mutability) -> Ty<'tcx> {
622        Ty::new(tcx, ty::RawPtr(ty, mutbl))
623    }
624
625    #[inline]
626    pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
627        Ty::new_ptr(tcx, ty, hir::Mutability::Mut)
628    }
629
630    #[inline]
631    pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
632        Ty::new_ptr(tcx, ty, hir::Mutability::Not)
633    }
634
635    #[inline]
636    pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
637        tcx.debug_assert_args_compatible(def.did(), args);
638        if cfg!(debug_assertions) {
639            match tcx.def_kind(def.did()) {
640                DefKind::Struct | DefKind::Union | DefKind::Enum => {}
641                DefKind::Mod
642                | DefKind::Variant
643                | DefKind::Trait
644                | DefKind::TyAlias
645                | DefKind::ForeignTy
646                | DefKind::TraitAlias
647                | DefKind::AssocTy
648                | DefKind::TyParam
649                | DefKind::Fn
650                | DefKind::Const
651                | DefKind::ConstParam
652                | DefKind::Static { .. }
653                | DefKind::Ctor(..)
654                | DefKind::AssocFn
655                | DefKind::AssocConst
656                | DefKind::Macro(..)
657                | DefKind::ExternCrate
658                | DefKind::Use
659                | DefKind::ForeignMod
660                | DefKind::AnonConst
661                | DefKind::InlineConst
662                | DefKind::OpaqueTy
663                | DefKind::Field
664                | DefKind::LifetimeParam
665                | DefKind::GlobalAsm
666                | DefKind::Impl { .. }
667                | DefKind::Closure
668                | DefKind::SyntheticCoroutineBody => {
669                    bug!("not an adt: {def:?} ({:?})", tcx.def_kind(def.did()))
670                }
671            }
672        }
673        Ty::new(tcx, Adt(def, args))
674    }
675
676    #[inline]
677    pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
678        Ty::new(tcx, Foreign(def_id))
679    }
680
681    #[inline]
682    pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> {
683        Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n)))
684    }
685
686    #[inline]
687    pub fn new_array_with_const_len(
688        tcx: TyCtxt<'tcx>,
689        ty: Ty<'tcx>,
690        ct: ty::Const<'tcx>,
691    ) -> Ty<'tcx> {
692        Ty::new(tcx, Array(ty, ct))
693    }
694
695    #[inline]
696    pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
697        Ty::new(tcx, Slice(ty))
698    }
699
700    #[inline]
701    pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> {
702        if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) }
703    }
704
705    pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output
706    where
707        I: Iterator<Item = T>,
708        T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>,
709    {
710        T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts))
711    }
712
713    #[inline]
714    pub fn new_fn_def(
715        tcx: TyCtxt<'tcx>,
716        def_id: DefId,
717        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
718    ) -> Ty<'tcx> {
719        debug_assert_matches!(
720            tcx.def_kind(def_id),
721            DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn)
722        );
723        let args = tcx.check_and_mk_args(def_id, args);
724        Ty::new(tcx, FnDef(def_id, args))
725    }
726
727    #[inline]
728    pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> {
729        let (sig_tys, hdr) = fty.split();
730        Ty::new(tcx, FnPtr(sig_tys, hdr))
731    }
732
733    #[inline]
734    pub fn new_unsafe_binder(tcx: TyCtxt<'tcx>, b: Binder<'tcx, Ty<'tcx>>) -> Ty<'tcx> {
735        Ty::new(tcx, UnsafeBinder(b.into()))
736    }
737
738    #[inline]
739    pub fn new_dynamic(
740        tcx: TyCtxt<'tcx>,
741        obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
742        reg: ty::Region<'tcx>,
743        repr: DynKind,
744    ) -> Ty<'tcx> {
745        if cfg!(debug_assertions) {
746            let projection_count = obj
747                .projection_bounds()
748                .filter(|item| !tcx.generics_require_sized_self(item.item_def_id()))
749                .count();
750            let expected_count: usize = obj
751                .principal_def_id()
752                .into_iter()
753                .flat_map(|principal_def_id| {
754                    // NOTE: This should agree with `needed_associated_types` in
755                    // dyn trait lowering, or else we'll have ICEs.
756                    elaborate::supertraits(
757                        tcx,
758                        ty::Binder::dummy(ty::TraitRef::identity(tcx, principal_def_id)),
759                    )
760                    .map(|principal| {
761                        tcx.associated_items(principal.def_id())
762                            .in_definition_order()
763                            .filter(|item| item.is_type())
764                            .filter(|item| !item.is_impl_trait_in_trait())
765                            .filter(|item| !tcx.generics_require_sized_self(item.def_id))
766                            .count()
767                    })
768                })
769                .sum();
770            assert_eq!(
771                projection_count, expected_count,
772                "expected {obj:?} to have {expected_count} projections, \
773                but it has {projection_count}"
774            );
775        }
776        Ty::new(tcx, Dynamic(obj, reg, repr))
777    }
778
779    #[inline]
780    pub fn new_projection_from_args(
781        tcx: TyCtxt<'tcx>,
782        item_def_id: DefId,
783        args: ty::GenericArgsRef<'tcx>,
784    ) -> Ty<'tcx> {
785        Ty::new_alias(tcx, ty::Projection, AliasTy::new_from_args(tcx, item_def_id, args))
786    }
787
788    #[inline]
789    pub fn new_projection(
790        tcx: TyCtxt<'tcx>,
791        item_def_id: DefId,
792        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
793    ) -> Ty<'tcx> {
794        Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args))
795    }
796
797    #[inline]
798    pub fn new_closure(
799        tcx: TyCtxt<'tcx>,
800        def_id: DefId,
801        closure_args: GenericArgsRef<'tcx>,
802    ) -> Ty<'tcx> {
803        tcx.debug_assert_args_compatible(def_id, closure_args);
804        Ty::new(tcx, Closure(def_id, closure_args))
805    }
806
807    #[inline]
808    pub fn new_coroutine_closure(
809        tcx: TyCtxt<'tcx>,
810        def_id: DefId,
811        closure_args: GenericArgsRef<'tcx>,
812    ) -> Ty<'tcx> {
813        tcx.debug_assert_args_compatible(def_id, closure_args);
814        Ty::new(tcx, CoroutineClosure(def_id, closure_args))
815    }
816
817    #[inline]
818    pub fn new_coroutine(
819        tcx: TyCtxt<'tcx>,
820        def_id: DefId,
821        coroutine_args: GenericArgsRef<'tcx>,
822    ) -> Ty<'tcx> {
823        tcx.debug_assert_args_compatible(def_id, coroutine_args);
824        Ty::new(tcx, Coroutine(def_id, coroutine_args))
825    }
826
827    #[inline]
828    pub fn new_coroutine_witness(
829        tcx: TyCtxt<'tcx>,
830        id: DefId,
831        args: GenericArgsRef<'tcx>,
832    ) -> Ty<'tcx> {
833        Ty::new(tcx, CoroutineWitness(id, args))
834    }
835
836    // misc
837
838    #[inline]
839    pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
840        Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_)
841    }
842
843    #[inline]
844    pub fn new_diverging_default(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
845        if tcx.features().never_type_fallback() { tcx.types.never } else { tcx.types.unit }
846    }
847
848    // lang and diagnostic tys
849
850    fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> {
851        let adt_def = tcx.adt_def(wrapper_def_id);
852        let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind {
853            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(),
854            GenericParamDefKind::Type { has_default, .. } => {
855                if param.index == 0 {
856                    ty_param.into()
857                } else {
858                    assert!(has_default);
859                    tcx.type_of(param.def_id).instantiate(tcx, args).into()
860                }
861            }
862        });
863        Ty::new_adt(tcx, adt_def, args)
864    }
865
866    #[inline]
867    pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> {
868        let def_id = tcx.lang_items().get(item)?;
869        Some(Ty::new_generic_adt(tcx, def_id, ty))
870    }
871
872    #[inline]
873    pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> {
874        let def_id = tcx.get_diagnostic_item(name)?;
875        Some(Ty::new_generic_adt(tcx, def_id, ty))
876    }
877
878    #[inline]
879    pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
880        let def_id = tcx.require_lang_item(LangItem::OwnedBox, DUMMY_SP);
881        Ty::new_generic_adt(tcx, def_id, ty)
882    }
883
884    #[inline]
885    pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
886        let def_id = tcx.require_lang_item(LangItem::MaybeUninit, DUMMY_SP);
887        Ty::new_generic_adt(tcx, def_id, ty)
888    }
889
890    /// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes.
891    pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
892        let context_did = tcx.require_lang_item(LangItem::Context, DUMMY_SP);
893        let context_adt_ref = tcx.adt_def(context_did);
894        let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]);
895        let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args);
896        Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty)
897    }
898}
899
900impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
901    fn new_bool(tcx: TyCtxt<'tcx>) -> Self {
902        tcx.types.bool
903    }
904
905    fn new_u8(tcx: TyCtxt<'tcx>) -> Self {
906        tcx.types.u8
907    }
908
909    fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Self {
910        Ty::new_infer(tcx, infer)
911    }
912
913    fn new_var(tcx: TyCtxt<'tcx>, vid: ty::TyVid) -> Self {
914        Ty::new_var(tcx, vid)
915    }
916
917    fn new_param(tcx: TyCtxt<'tcx>, param: ty::ParamTy) -> Self {
918        Ty::new_param(tcx, param.index, param.name)
919    }
920
921    fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Self {
922        Ty::new_placeholder(tcx, placeholder)
923    }
924
925    fn new_bound(interner: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundTy) -> Self {
926        Ty::new_bound(interner, debruijn, var)
927    }
928
929    fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
930        Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
931    }
932
933    fn new_alias(
934        interner: TyCtxt<'tcx>,
935        kind: ty::AliasTyKind,
936        alias_ty: ty::AliasTy<'tcx>,
937    ) -> Self {
938        Ty::new_alias(interner, kind, alias_ty)
939    }
940
941    fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
942        Ty::new_error(interner, guar)
943    }
944
945    fn new_adt(
946        interner: TyCtxt<'tcx>,
947        adt_def: ty::AdtDef<'tcx>,
948        args: ty::GenericArgsRef<'tcx>,
949    ) -> Self {
950        Ty::new_adt(interner, adt_def, args)
951    }
952
953    fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self {
954        Ty::new_foreign(interner, def_id)
955    }
956
957    fn new_dynamic(
958        interner: TyCtxt<'tcx>,
959        preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
960        region: ty::Region<'tcx>,
961        kind: ty::DynKind,
962    ) -> Self {
963        Ty::new_dynamic(interner, preds, region, kind)
964    }
965
966    fn new_coroutine(
967        interner: TyCtxt<'tcx>,
968        def_id: DefId,
969        args: ty::GenericArgsRef<'tcx>,
970    ) -> Self {
971        Ty::new_coroutine(interner, def_id, args)
972    }
973
974    fn new_coroutine_closure(
975        interner: TyCtxt<'tcx>,
976        def_id: DefId,
977        args: ty::GenericArgsRef<'tcx>,
978    ) -> Self {
979        Ty::new_coroutine_closure(interner, def_id, args)
980    }
981
982    fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
983        Ty::new_closure(interner, def_id, args)
984    }
985
986    fn new_coroutine_witness(
987        interner: TyCtxt<'tcx>,
988        def_id: DefId,
989        args: ty::GenericArgsRef<'tcx>,
990    ) -> Self {
991        Ty::new_coroutine_witness(interner, def_id, args)
992    }
993
994    fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self {
995        Ty::new_ptr(interner, ty, mutbl)
996    }
997
998    fn new_ref(
999        interner: TyCtxt<'tcx>,
1000        region: ty::Region<'tcx>,
1001        ty: Self,
1002        mutbl: hir::Mutability,
1003    ) -> Self {
1004        Ty::new_ref(interner, region, ty, mutbl)
1005    }
1006
1007    fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self {
1008        Ty::new_array_with_const_len(interner, ty, len)
1009    }
1010
1011    fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self {
1012        Ty::new_slice(interner, ty)
1013    }
1014
1015    fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self {
1016        Ty::new_tup(interner, tys)
1017    }
1018
1019    fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output
1020    where
1021        It: Iterator<Item = T>,
1022        T: CollectAndApply<Self, Self>,
1023    {
1024        Ty::new_tup_from_iter(interner, iter)
1025    }
1026
1027    fn tuple_fields(self) -> &'tcx ty::List<Ty<'tcx>> {
1028        self.tuple_fields()
1029    }
1030
1031    fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1032        self.to_opt_closure_kind()
1033    }
1034
1035    fn from_closure_kind(interner: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Self {
1036        Ty::from_closure_kind(interner, kind)
1037    }
1038
1039    fn from_coroutine_closure_kind(
1040        interner: TyCtxt<'tcx>,
1041        kind: rustc_type_ir::ClosureKind,
1042    ) -> Self {
1043        Ty::from_coroutine_closure_kind(interner, kind)
1044    }
1045
1046    fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
1047        Ty::new_fn_def(interner, def_id, args)
1048    }
1049
1050    fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self {
1051        Ty::new_fn_ptr(interner, sig)
1052    }
1053
1054    fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self {
1055        Ty::new_pat(interner, ty, pat)
1056    }
1057
1058    fn new_unsafe_binder(interner: TyCtxt<'tcx>, ty: ty::Binder<'tcx, Ty<'tcx>>) -> Self {
1059        Ty::new_unsafe_binder(interner, ty)
1060    }
1061
1062    fn new_unit(interner: TyCtxt<'tcx>) -> Self {
1063        interner.types.unit
1064    }
1065
1066    fn new_usize(interner: TyCtxt<'tcx>) -> Self {
1067        interner.types.usize
1068    }
1069
1070    fn discriminant_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> {
1071        self.discriminant_ty(interner)
1072    }
1073
1074    fn has_unsafe_fields(self) -> bool {
1075        Ty::has_unsafe_fields(self)
1076    }
1077}
1078
1079/// Type utilities
1080impl<'tcx> Ty<'tcx> {
1081    // It would be nicer if this returned the value instead of a reference,
1082    // like how `Predicate::kind` and `Region::kind` do. (It would result in
1083    // many fewer subsequent dereferences.) But that gives a small but
1084    // noticeable performance hit. See #126069 for details.
1085    #[inline(always)]
1086    pub fn kind(self) -> &'tcx TyKind<'tcx> {
1087        self.0.0
1088    }
1089
1090    // FIXME(compiler-errors): Think about removing this.
1091    #[inline(always)]
1092    pub fn flags(self) -> TypeFlags {
1093        self.0.0.flags
1094    }
1095
1096    #[inline]
1097    pub fn is_unit(self) -> bool {
1098        match self.kind() {
1099            Tuple(tys) => tys.is_empty(),
1100            _ => false,
1101        }
1102    }
1103
1104    /// Check if type is an `usize`.
1105    #[inline]
1106    pub fn is_usize(self) -> bool {
1107        matches!(self.kind(), Uint(UintTy::Usize))
1108    }
1109
1110    /// Check if type is an `usize` or an integral type variable.
1111    #[inline]
1112    pub fn is_usize_like(self) -> bool {
1113        matches!(self.kind(), Uint(UintTy::Usize) | Infer(IntVar(_)))
1114    }
1115
1116    #[inline]
1117    pub fn is_never(self) -> bool {
1118        matches!(self.kind(), Never)
1119    }
1120
1121    #[inline]
1122    pub fn is_primitive(self) -> bool {
1123        matches!(self.kind(), Bool | Char | Int(_) | Uint(_) | Float(_))
1124    }
1125
1126    #[inline]
1127    pub fn is_adt(self) -> bool {
1128        matches!(self.kind(), Adt(..))
1129    }
1130
1131    #[inline]
1132    pub fn is_ref(self) -> bool {
1133        matches!(self.kind(), Ref(..))
1134    }
1135
1136    #[inline]
1137    pub fn is_ty_var(self) -> bool {
1138        matches!(self.kind(), Infer(TyVar(_)))
1139    }
1140
1141    #[inline]
1142    pub fn ty_vid(self) -> Option<ty::TyVid> {
1143        match self.kind() {
1144            &Infer(TyVar(vid)) => Some(vid),
1145            _ => None,
1146        }
1147    }
1148
1149    #[inline]
1150    pub fn is_ty_or_numeric_infer(self) -> bool {
1151        matches!(self.kind(), Infer(_))
1152    }
1153
1154    #[inline]
1155    pub fn is_phantom_data(self) -> bool {
1156        if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
1157    }
1158
1159    #[inline]
1160    pub fn is_bool(self) -> bool {
1161        *self.kind() == Bool
1162    }
1163
1164    /// Returns `true` if this type is a `str`.
1165    #[inline]
1166    pub fn is_str(self) -> bool {
1167        *self.kind() == Str
1168    }
1169
1170    #[inline]
1171    pub fn is_param(self, index: u32) -> bool {
1172        match self.kind() {
1173            ty::Param(data) => data.index == index,
1174            _ => false,
1175        }
1176    }
1177
1178    #[inline]
1179    pub fn is_slice(self) -> bool {
1180        matches!(self.kind(), Slice(_))
1181    }
1182
1183    #[inline]
1184    pub fn is_array_slice(self) -> bool {
1185        match self.kind() {
1186            Slice(_) => true,
1187            ty::RawPtr(ty, _) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
1188            _ => false,
1189        }
1190    }
1191
1192    #[inline]
1193    pub fn is_array(self) -> bool {
1194        matches!(self.kind(), Array(..))
1195    }
1196
1197    #[inline]
1198    pub fn is_simd(self) -> bool {
1199        match self.kind() {
1200            Adt(def, _) => def.repr().simd(),
1201            _ => false,
1202        }
1203    }
1204
1205    pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1206        match self.kind() {
1207            Array(ty, _) | Slice(ty) => *ty,
1208            Str => tcx.types.u8,
1209            _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
1210        }
1211    }
1212
1213    pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
1214        let Adt(def, args) = self.kind() else {
1215            bug!("`simd_size_and_type` called on invalid type")
1216        };
1217        assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
1218        let variant = def.non_enum_variant();
1219        assert_eq!(variant.fields.len(), 1);
1220        let field_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);
1221        let Array(f0_elem_ty, f0_len) = field_ty.kind() else {
1222            bug!("Simd type has non-array field type {field_ty:?}")
1223        };
1224        // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
1225        // The way we evaluate the `N` in `[T; N]` here only works since we use
1226        // `simd_size_and_type` post-monomorphization. It will probably start to ICE
1227        // if we use it in generic code. See the `simd-array-trait` ui test.
1228        (
1229            f0_len
1230                .try_to_target_usize(tcx)
1231                .expect("expected SIMD field to have definite array size"),
1232            *f0_elem_ty,
1233        )
1234    }
1235
1236    #[inline]
1237    pub fn is_mutable_ptr(self) -> bool {
1238        matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut))
1239    }
1240
1241    /// Get the mutability of the reference or `None` when not a reference
1242    #[inline]
1243    pub fn ref_mutability(self) -> Option<hir::Mutability> {
1244        match self.kind() {
1245            Ref(_, _, mutability) => Some(*mutability),
1246            _ => None,
1247        }
1248    }
1249
1250    #[inline]
1251    pub fn is_raw_ptr(self) -> bool {
1252        matches!(self.kind(), RawPtr(_, _))
1253    }
1254
1255    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
1256    /// `Box` is *not* considered a pointer here!
1257    #[inline]
1258    pub fn is_any_ptr(self) -> bool {
1259        self.is_ref() || self.is_raw_ptr() || self.is_fn_ptr()
1260    }
1261
1262    #[inline]
1263    pub fn is_box(self) -> bool {
1264        match self.kind() {
1265            Adt(def, _) => def.is_box(),
1266            _ => false,
1267        }
1268    }
1269
1270    /// Tests whether this is a Box definitely using the global allocator.
1271    ///
1272    /// If the allocator is still generic, the answer is `false`, but it may
1273    /// later turn out that it does use the global allocator.
1274    #[inline]
1275    pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
1276        match self.kind() {
1277            Adt(def, args) if def.is_box() => {
1278                let Some(alloc) = args.get(1) else {
1279                    // Single-argument Box is always global. (for "minicore" tests)
1280                    return true;
1281                };
1282                alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
1283                    tcx.is_lang_item(alloc_adt.did(), LangItem::GlobalAlloc)
1284                })
1285            }
1286            _ => false,
1287        }
1288    }
1289
1290    pub fn boxed_ty(self) -> Option<Ty<'tcx>> {
1291        match self.kind() {
1292            Adt(def, args) if def.is_box() => Some(args.type_at(0)),
1293            _ => None,
1294        }
1295    }
1296
1297    /// Panics if called on any type other than `Box<T>`.
1298    pub fn expect_boxed_ty(self) -> Ty<'tcx> {
1299        self.boxed_ty()
1300            .unwrap_or_else(|| bug!("`expect_boxed_ty` is called on non-box type {:?}", self))
1301    }
1302
1303    /// A scalar type is one that denotes an atomic datum, with no sub-components.
1304    /// (A RawPtr is scalar because it represents a non-managed pointer, so its
1305    /// contents are abstract to rustc.)
1306    #[inline]
1307    pub fn is_scalar(self) -> bool {
1308        matches!(
1309            self.kind(),
1310            Bool | Char
1311                | Int(_)
1312                | Float(_)
1313                | Uint(_)
1314                | FnDef(..)
1315                | FnPtr(..)
1316                | RawPtr(_, _)
1317                | Infer(IntVar(_) | FloatVar(_))
1318        )
1319    }
1320
1321    /// Returns `true` if this type is a floating point type.
1322    #[inline]
1323    pub fn is_floating_point(self) -> bool {
1324        matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
1325    }
1326
1327    #[inline]
1328    pub fn is_trait(self) -> bool {
1329        matches!(self.kind(), Dynamic(_, _, ty::Dyn))
1330    }
1331
1332    #[inline]
1333    pub fn is_enum(self) -> bool {
1334        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
1335    }
1336
1337    #[inline]
1338    pub fn is_union(self) -> bool {
1339        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
1340    }
1341
1342    #[inline]
1343    pub fn is_closure(self) -> bool {
1344        matches!(self.kind(), Closure(..))
1345    }
1346
1347    #[inline]
1348    pub fn is_coroutine(self) -> bool {
1349        matches!(self.kind(), Coroutine(..))
1350    }
1351
1352    #[inline]
1353    pub fn is_coroutine_closure(self) -> bool {
1354        matches!(self.kind(), CoroutineClosure(..))
1355    }
1356
1357    #[inline]
1358    pub fn is_integral(self) -> bool {
1359        matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
1360    }
1361
1362    #[inline]
1363    pub fn is_fresh_ty(self) -> bool {
1364        matches!(self.kind(), Infer(FreshTy(_)))
1365    }
1366
1367    #[inline]
1368    pub fn is_fresh(self) -> bool {
1369        matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
1370    }
1371
1372    #[inline]
1373    pub fn is_char(self) -> bool {
1374        matches!(self.kind(), Char)
1375    }
1376
1377    #[inline]
1378    pub fn is_numeric(self) -> bool {
1379        self.is_integral() || self.is_floating_point()
1380    }
1381
1382    #[inline]
1383    pub fn is_signed(self) -> bool {
1384        matches!(self.kind(), Int(_))
1385    }
1386
1387    #[inline]
1388    pub fn is_ptr_sized_integral(self) -> bool {
1389        matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
1390    }
1391
1392    #[inline]
1393    pub fn has_concrete_skeleton(self) -> bool {
1394        !matches!(self.kind(), Param(_) | Infer(_) | Error(_))
1395    }
1396
1397    /// Checks whether a type recursively contains another type
1398    ///
1399    /// Example: `Option<()>` contains `()`
1400    pub fn contains(self, other: Ty<'tcx>) -> bool {
1401        struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
1402
1403        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
1404            type Result = ControlFlow<()>;
1405
1406            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1407                if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
1408            }
1409        }
1410
1411        let cf = self.visit_with(&mut ContainsTyVisitor(other));
1412        cf.is_break()
1413    }
1414
1415    /// Checks whether a type recursively contains any closure
1416    ///
1417    /// Example: `Option<{closure@file.rs:4:20}>` returns true
1418    pub fn contains_closure(self) -> bool {
1419        struct ContainsClosureVisitor;
1420
1421        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
1422            type Result = ControlFlow<()>;
1423
1424            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1425                if let ty::Closure(..) = t.kind() {
1426                    ControlFlow::Break(())
1427                } else {
1428                    t.super_visit_with(self)
1429                }
1430            }
1431        }
1432
1433        let cf = self.visit_with(&mut ContainsClosureVisitor);
1434        cf.is_break()
1435    }
1436
1437    /// Returns the deepest `async_drop_in_place::{closure}` implementation.
1438    ///
1439    /// `async_drop_in_place<T>::{closure}`, when T is a coroutine, is a proxy-impl
1440    /// to call async drop poll from impl coroutine.
1441    pub fn find_async_drop_impl_coroutine<F: FnMut(Ty<'tcx>)>(
1442        self,
1443        tcx: TyCtxt<'tcx>,
1444        mut f: F,
1445    ) -> Ty<'tcx> {
1446        assert!(self.is_coroutine());
1447        let mut cor_ty = self;
1448        let mut ty = cor_ty;
1449        loop {
1450            if let ty::Coroutine(def_id, args) = ty.kind() {
1451                cor_ty = ty;
1452                f(ty);
1453                if tcx.is_async_drop_in_place_coroutine(*def_id) {
1454                    ty = args.first().unwrap().expect_ty();
1455                    continue;
1456                } else {
1457                    return cor_ty;
1458                }
1459            } else {
1460                return cor_ty;
1461            }
1462        }
1463    }
1464
1465    /// Returns the type and mutability of `*ty`.
1466    ///
1467    /// The parameter `explicit` indicates if this is an *explicit* dereference.
1468    /// Some types -- notably raw ptrs -- can only be dereferenced explicitly.
1469    pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> {
1470        match *self.kind() {
1471            _ if let Some(boxed) = self.boxed_ty() => Some(boxed),
1472            Ref(_, ty, _) => Some(ty),
1473            RawPtr(ty, _) if explicit => Some(ty),
1474            _ => None,
1475        }
1476    }
1477
1478    /// Returns the type of `ty[i]`.
1479    pub fn builtin_index(self) -> Option<Ty<'tcx>> {
1480        match self.kind() {
1481            Array(ty, _) | Slice(ty) => Some(*ty),
1482            _ => None,
1483        }
1484    }
1485
1486    #[tracing::instrument(level = "trace", skip(tcx))]
1487    pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
1488        self.kind().fn_sig(tcx)
1489    }
1490
1491    #[inline]
1492    pub fn is_fn(self) -> bool {
1493        matches!(self.kind(), FnDef(..) | FnPtr(..))
1494    }
1495
1496    #[inline]
1497    pub fn is_fn_ptr(self) -> bool {
1498        matches!(self.kind(), FnPtr(..))
1499    }
1500
1501    #[inline]
1502    pub fn is_impl_trait(self) -> bool {
1503        matches!(self.kind(), Alias(ty::Opaque, ..))
1504    }
1505
1506    #[inline]
1507    pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
1508        match self.kind() {
1509            Adt(adt, _) => Some(*adt),
1510            _ => None,
1511        }
1512    }
1513
1514    /// Iterates over tuple fields.
1515    /// Panics when called on anything but a tuple.
1516    #[inline]
1517    pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
1518        match self.kind() {
1519            Tuple(args) => args,
1520            _ => bug!("tuple_fields called on non-tuple: {self:?}"),
1521        }
1522    }
1523
1524    /// If the type contains variants, returns the valid range of variant indices.
1525    //
1526    // FIXME: This requires the optimized MIR in the case of coroutines.
1527    #[inline]
1528    pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
1529        match self.kind() {
1530            TyKind::Adt(adt, _) => Some(adt.variant_range()),
1531            TyKind::Coroutine(def_id, args) => {
1532                Some(args.as_coroutine().variant_range(*def_id, tcx))
1533            }
1534            _ => None,
1535        }
1536    }
1537
1538    /// If the type contains variants, returns the variant for `variant_index`.
1539    /// Panics if `variant_index` is out of range.
1540    //
1541    // FIXME: This requires the optimized MIR in the case of coroutines.
1542    #[inline]
1543    pub fn discriminant_for_variant(
1544        self,
1545        tcx: TyCtxt<'tcx>,
1546        variant_index: VariantIdx,
1547    ) -> Option<Discr<'tcx>> {
1548        match self.kind() {
1549            TyKind::Adt(adt, _) if adt.is_enum() => {
1550                Some(adt.discriminant_for_variant(tcx, variant_index))
1551            }
1552            TyKind::Coroutine(def_id, args) => {
1553                Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
1554            }
1555            _ => None,
1556        }
1557    }
1558
1559    /// Returns the type of the discriminant of this type.
1560    pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1561        match self.kind() {
1562            ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
1563            ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),
1564
1565            ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
1566                let assoc_items = tcx.associated_item_def_ids(
1567                    tcx.require_lang_item(hir::LangItem::DiscriminantKind, DUMMY_SP),
1568                );
1569                Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
1570            }
1571
1572            ty::Pat(ty, _) => ty.discriminant_ty(tcx),
1573
1574            ty::Bool
1575            | ty::Char
1576            | ty::Int(_)
1577            | ty::Uint(_)
1578            | ty::Float(_)
1579            | ty::Adt(..)
1580            | ty::Foreign(_)
1581            | ty::Str
1582            | ty::Array(..)
1583            | ty::Slice(_)
1584            | ty::RawPtr(_, _)
1585            | ty::Ref(..)
1586            | ty::FnDef(..)
1587            | ty::FnPtr(..)
1588            | ty::Dynamic(..)
1589            | ty::Closure(..)
1590            | ty::CoroutineClosure(..)
1591            | ty::CoroutineWitness(..)
1592            | ty::Never
1593            | ty::Tuple(_)
1594            | ty::UnsafeBinder(_)
1595            | ty::Error(_)
1596            | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
1597
1598            ty::Bound(..)
1599            | ty::Placeholder(_)
1600            | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1601                bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
1602            }
1603        }
1604    }
1605
1606    /// Returns the type of metadata for (potentially wide) pointers to this type,
1607    /// or the struct tail if the metadata type cannot be determined.
1608    pub fn ptr_metadata_ty_or_tail(
1609        self,
1610        tcx: TyCtxt<'tcx>,
1611        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1612    ) -> Result<Ty<'tcx>, Ty<'tcx>> {
1613        let tail = tcx.struct_tail_raw(self, normalize, || {});
1614        match tail.kind() {
1615            // Sized types
1616            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1617            | ty::Uint(_)
1618            | ty::Int(_)
1619            | ty::Bool
1620            | ty::Float(_)
1621            | ty::FnDef(..)
1622            | ty::FnPtr(..)
1623            | ty::RawPtr(..)
1624            | ty::Char
1625            | ty::Ref(..)
1626            | ty::Coroutine(..)
1627            | ty::CoroutineWitness(..)
1628            | ty::Array(..)
1629            | ty::Closure(..)
1630            | ty::CoroutineClosure(..)
1631            | ty::Never
1632            | ty::Error(_)
1633            // Extern types have metadata = ().
1634            | ty::Foreign(..)
1635            // If returned by `struct_tail_raw` this is a unit struct
1636            // without any fields, or not a struct, and therefore is Sized.
1637            | ty::Adt(..)
1638            // If returned by `struct_tail_raw` this is the empty tuple,
1639            // a.k.a. unit type, which is Sized
1640            | ty::Tuple(..) => Ok(tcx.types.unit),
1641
1642            ty::Str | ty::Slice(_) => Ok(tcx.types.usize),
1643
1644            ty::Dynamic(_, _, ty::Dyn) => {
1645                let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, DUMMY_SP);
1646                Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
1647            }
1648
1649            // We don't know the metadata of `self`, but it must be equal to the
1650            // metadata of `tail`.
1651            ty::Param(_) | ty::Alias(..) => Err(tail),
1652
1653            | ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
1654
1655            ty::Infer(ty::TyVar(_))
1656            | ty::Pat(..)
1657            | ty::Bound(..)
1658            | ty::Placeholder(..)
1659            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!(
1660                "`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
1661            ),
1662        }
1663    }
1664
1665    /// Returns the type of metadata for (potentially wide) pointers to this type.
1666    /// Causes an ICE if the metadata type cannot be determined.
1667    pub fn ptr_metadata_ty(
1668        self,
1669        tcx: TyCtxt<'tcx>,
1670        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1671    ) -> Ty<'tcx> {
1672        match self.ptr_metadata_ty_or_tail(tcx, normalize) {
1673            Ok(metadata) => metadata,
1674            Err(tail) => bug!(
1675                "`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
1676            ),
1677        }
1678    }
1679
1680    /// Given a pointer or reference type, returns the type of the *pointee*'s
1681    /// metadata. If it can't be determined exactly (perhaps due to still
1682    /// being generic) then a projection through `ptr::Pointee` will be returned.
1683    ///
1684    /// This is particularly useful for getting the type of the result of
1685    /// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata).
1686    ///
1687    /// Panics if `self` is not dereferenceable.
1688    #[track_caller]
1689    pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1690        let Some(pointee_ty) = self.builtin_deref(true) else {
1691            bug!("Type {self:?} is not a pointer or reference type")
1692        };
1693        if pointee_ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized) {
1694            tcx.types.unit
1695        } else {
1696            match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) {
1697                Ok(metadata_ty) => metadata_ty,
1698                Err(tail_ty) => {
1699                    let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, DUMMY_SP);
1700                    Ty::new_projection(tcx, metadata_def_id, [tail_ty])
1701                }
1702            }
1703        }
1704    }
1705
1706    /// When we create a closure, we record its kind (i.e., what trait
1707    /// it implements, constrained by how it uses its borrows) into its
1708    /// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
1709    /// parameter. This is kind of a phantom type, except that the
1710    /// most convenient thing for us to are the integral types. This
1711    /// function converts such a special type into the closure
1712    /// kind. To go the other way, use [`Ty::from_closure_kind`].
1713    ///
1714    /// Note that during type checking, we use an inference variable
1715    /// to represent the closure kind, because it has not yet been
1716    /// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
1717    /// is complete, that type variable will be unified with one of
1718    /// the integral types.
1719    ///
1720    /// ```rust,ignore (snippet of compiler code)
1721    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1722    ///     && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
1723    /// {
1724    ///     println!("{closure_kind:?}");
1725    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1726    ///     && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
1727    /// {
1728    ///     println!("{closure_kind:?}");
1729    /// }
1730    /// ```
1731    ///
1732    /// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`]
1733    /// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
1734    /// has been constrained instead of manually calling this method.
1735    ///
1736    /// ```rust,ignore (snippet of compiler code)
1737    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1738    /// {
1739    ///     println!("{:?}", args.as_closure().kind());
1740    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1741    /// {
1742    ///     println!("{:?}", args.as_coroutine_closure().kind());
1743    /// }
1744    /// ```
1745    pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1746        match self.kind() {
1747            Int(int_ty) => match int_ty {
1748                ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
1749                ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
1750                ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
1751                _ => bug!("cannot convert type `{:?}` to a closure kind", self),
1752            },
1753
1754            // "Bound" types appear in canonical queries when the
1755            // closure type is not yet known, and `Placeholder` and `Param`
1756            // may be encountered in generic `AsyncFnKindHelper` goals.
1757            Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,
1758
1759            Error(_) => Some(ty::ClosureKind::Fn),
1760
1761            _ => bug!("cannot convert type `{:?}` to a closure kind", self),
1762        }
1763    }
1764
1765    /// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
1766    /// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
1767    pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1768        match kind {
1769            ty::ClosureKind::Fn => tcx.types.i8,
1770            ty::ClosureKind::FnMut => tcx.types.i16,
1771            ty::ClosureKind::FnOnce => tcx.types.i32,
1772        }
1773    }
1774
1775    /// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind
1776    /// to `FnMut`. This is because although we have three capability states,
1777    /// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine
1778    /// bodies: by-ref and by-value.
1779    ///
1780    /// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture`
1781    /// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and
1782    /// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies.
1783    ///
1784    /// This method should be used when constructing a `Coroutine` out of a
1785    /// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated
1786    /// directly from the `CoroutineClosure`'s `kind`.
1787    pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1788        match kind {
1789            ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16,
1790            ty::ClosureKind::FnOnce => tcx.types.i32,
1791        }
1792    }
1793
1794    /// Fast path helper for testing if a type is `Sized` or `MetaSized`.
1795    ///
1796    /// Returning true means the type is known to implement the sizedness trait. Returning `false`
1797    /// means nothing -- could be sized, might not be.
1798    ///
1799    /// Note that we could never rely on the fact that a type such as `[_]` is trivially `!Sized`
1800    /// because we could be in a type environment with a bound such as `[_]: Copy`. A function with
1801    /// such a bound obviously never can be called, but that doesn't mean it shouldn't typecheck.
1802    /// This is why this method doesn't return `Option<bool>`.
1803    #[instrument(skip(tcx), level = "debug")]
1804    pub fn has_trivial_sizedness(self, tcx: TyCtxt<'tcx>, sizedness: SizedTraitKind) -> bool {
1805        match self.kind() {
1806            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1807            | ty::Uint(_)
1808            | ty::Int(_)
1809            | ty::Bool
1810            | ty::Float(_)
1811            | ty::FnDef(..)
1812            | ty::FnPtr(..)
1813            | ty::UnsafeBinder(_)
1814            | ty::RawPtr(..)
1815            | ty::Char
1816            | ty::Ref(..)
1817            | ty::Coroutine(..)
1818            | ty::CoroutineWitness(..)
1819            | ty::Array(..)
1820            | ty::Pat(..)
1821            | ty::Closure(..)
1822            | ty::CoroutineClosure(..)
1823            | ty::Never
1824            | ty::Error(_) => true,
1825
1826            ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) => match sizedness {
1827                SizedTraitKind::Sized => false,
1828                SizedTraitKind::MetaSized => true,
1829            },
1830
1831            ty::Foreign(..) => match sizedness {
1832                SizedTraitKind::Sized | SizedTraitKind::MetaSized => false,
1833            },
1834
1835            ty::Tuple(tys) => tys.last().is_none_or(|ty| ty.has_trivial_sizedness(tcx, sizedness)),
1836
1837            ty::Adt(def, args) => def
1838                .sizedness_constraint(tcx, sizedness)
1839                .is_none_or(|ty| ty.instantiate(tcx, args).has_trivial_sizedness(tcx, sizedness)),
1840
1841            ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,
1842
1843            ty::Infer(ty::TyVar(_)) => false,
1844
1845            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1846                bug!("`has_trivial_sizedness` applied to unexpected type: {:?}", self)
1847            }
1848        }
1849    }
1850
1851    /// Fast path helper for primitives which are always `Copy` and which
1852    /// have a side-effect-free `Clone` impl.
1853    ///
1854    /// Returning true means the type is known to be pure and `Copy+Clone`.
1855    /// Returning `false` means nothing -- could be `Copy`, might not be.
1856    ///
1857    /// This is mostly useful for optimizations, as these are the types
1858    /// on which we can replace cloning with dereferencing.
1859    pub fn is_trivially_pure_clone_copy(self) -> bool {
1860        match self.kind() {
1861            ty::Bool | ty::Char | ty::Never => true,
1862
1863            // These aren't even `Clone`
1864            ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
1865
1866            ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
1867            | ty::Int(..)
1868            | ty::Uint(..)
1869            | ty::Float(..) => true,
1870
1871            // ZST which can't be named are fine.
1872            ty::FnDef(..) => true,
1873
1874            ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
1875
1876            // A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
1877            ty::Tuple(field_tys) => {
1878                field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
1879            }
1880
1881            ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(),
1882
1883            // Sometimes traits aren't implemented for every ABI or arity,
1884            // because we can't be generic over everything yet.
1885            ty::FnPtr(..) => false,
1886
1887            // Definitely absolutely not copy.
1888            ty::Ref(_, _, hir::Mutability::Mut) => false,
1889
1890            // The standard library has a blanket Copy impl for shared references and raw pointers,
1891            // for all unsized types.
1892            ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => true,
1893
1894            ty::Coroutine(..) | ty::CoroutineWitness(..) => false,
1895
1896            // Might be, but not "trivial" so just giving the safe answer.
1897            ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,
1898
1899            ty::UnsafeBinder(_) => false,
1900
1901            // Needs normalization or revealing to determine, so no is the safe answer.
1902            ty::Alias(..) => false,
1903
1904            ty::Param(..) | ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(..) => {
1905                false
1906            }
1907        }
1908    }
1909
1910    pub fn is_trivially_wf(self, tcx: TyCtxt<'tcx>) -> bool {
1911        match *self.kind() {
1912            ty::Bool
1913            | ty::Char
1914            | ty::Int(_)
1915            | ty::Uint(_)
1916            | ty::Float(_)
1917            | ty::Str
1918            | ty::Never
1919            | ty::Param(_)
1920            | ty::Placeholder(_)
1921            | ty::Bound(..) => true,
1922
1923            ty::Slice(ty) => {
1924                ty.is_trivially_wf(tcx) && ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized)
1925            }
1926            ty::RawPtr(ty, _) => ty.is_trivially_wf(tcx),
1927
1928            ty::FnPtr(sig_tys, _) => {
1929                sig_tys.skip_binder().inputs_and_output.iter().all(|ty| ty.is_trivially_wf(tcx))
1930            }
1931            ty::Ref(_, ty, _) => ty.is_global() && ty.is_trivially_wf(tcx),
1932
1933            ty::Infer(infer) => match infer {
1934                ty::TyVar(_) => false,
1935                ty::IntVar(_) | ty::FloatVar(_) => true,
1936                ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => true,
1937            },
1938
1939            ty::Adt(_, _)
1940            | ty::Tuple(_)
1941            | ty::Array(..)
1942            | ty::Foreign(_)
1943            | ty::Pat(_, _)
1944            | ty::FnDef(..)
1945            | ty::UnsafeBinder(..)
1946            | ty::Dynamic(..)
1947            | ty::Closure(..)
1948            | ty::CoroutineClosure(..)
1949            | ty::Coroutine(..)
1950            | ty::CoroutineWitness(..)
1951            | ty::Alias(..)
1952            | ty::Error(_) => false,
1953        }
1954    }
1955
1956    /// If `self` is a primitive, return its [`Symbol`].
1957    pub fn primitive_symbol(self) -> Option<Symbol> {
1958        match self.kind() {
1959            ty::Bool => Some(sym::bool),
1960            ty::Char => Some(sym::char),
1961            ty::Float(f) => match f {
1962                ty::FloatTy::F16 => Some(sym::f16),
1963                ty::FloatTy::F32 => Some(sym::f32),
1964                ty::FloatTy::F64 => Some(sym::f64),
1965                ty::FloatTy::F128 => Some(sym::f128),
1966            },
1967            ty::Int(f) => match f {
1968                ty::IntTy::Isize => Some(sym::isize),
1969                ty::IntTy::I8 => Some(sym::i8),
1970                ty::IntTy::I16 => Some(sym::i16),
1971                ty::IntTy::I32 => Some(sym::i32),
1972                ty::IntTy::I64 => Some(sym::i64),
1973                ty::IntTy::I128 => Some(sym::i128),
1974            },
1975            ty::Uint(f) => match f {
1976                ty::UintTy::Usize => Some(sym::usize),
1977                ty::UintTy::U8 => Some(sym::u8),
1978                ty::UintTy::U16 => Some(sym::u16),
1979                ty::UintTy::U32 => Some(sym::u32),
1980                ty::UintTy::U64 => Some(sym::u64),
1981                ty::UintTy::U128 => Some(sym::u128),
1982            },
1983            ty::Str => Some(sym::str),
1984            _ => None,
1985        }
1986    }
1987
1988    pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
1989        match self.kind() {
1990            ty::Adt(adt, _) => tcx.is_lang_item(adt.did(), LangItem::CVoid),
1991            _ => false,
1992        }
1993    }
1994
1995    pub fn is_async_drop_in_place_coroutine(self, tcx: TyCtxt<'_>) -> bool {
1996        match self.kind() {
1997            ty::Coroutine(def, ..) => tcx.is_async_drop_in_place_coroutine(*def),
1998            _ => false,
1999        }
2000    }
2001
2002    /// Returns `true` when the outermost type cannot be further normalized,
2003    /// resolved, or instantiated. This includes all primitive types, but also
2004    /// things like ADTs and trait objects, since even if their arguments or
2005    /// nested types may be further simplified, the outermost [`TyKind`] or
2006    /// type constructor remains the same.
2007    pub fn is_known_rigid(self) -> bool {
2008        self.kind().is_known_rigid()
2009    }
2010
2011    /// Iterator that walks `self` and any types reachable from
2012    /// `self`, in depth-first order. Note that just walks the types
2013    /// that appear in `self`, it does not descend into the fields of
2014    /// structs or variants. For example:
2015    ///
2016    /// ```text
2017    /// isize => { isize }
2018    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2019    /// [isize] => { [isize], isize }
2020    /// ```
2021    pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> {
2022        TypeWalker::new(self.into())
2023    }
2024}
2025
2026impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> {
2027    fn inputs(self) -> &'tcx [Ty<'tcx>] {
2028        self.split_last().unwrap().1
2029    }
2030
2031    fn output(self) -> Ty<'tcx> {
2032        *self.split_last().unwrap().0
2033    }
2034}
2035
2036// Some types are used a lot. Make sure they don't unintentionally get bigger.
2037#[cfg(target_pointer_width = "64")]
2038mod size_asserts {
2039    use rustc_data_structures::static_assert_size;
2040
2041    use super::*;
2042    // tidy-alphabetical-start
2043    static_assert_size!(TyKind<'_>, 24);
2044    static_assert_size!(ty::WithCachedTypeInfo<TyKind<'_>>, 48);
2045    // tidy-alphabetical-end
2046}