rustc_parse_format/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
//! Macro support for format strings
//!
//! These structures are used when parsing format strings for the compiler.
//! Parsing does not happen at runtime: structures of `std::fmt::rt` are
//! generated instead.
// tidy-alphabetical-start
// We want to be able to build this crate with a stable compiler,
// so no `#![feature]` attributes should be added.
#![deny(unstable_features)]
#![doc(
html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
html_playground_url = "https://play.rust-lang.org/",
test(attr(deny(warnings)))
)]
#![warn(unreachable_pub)]
// tidy-alphabetical-end
use std::{iter, str, string};
pub use Alignment::*;
pub use Count::*;
pub use Piece::*;
pub use Position::*;
use rustc_lexer::unescape;
// Note: copied from rustc_span
/// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct InnerSpan {
pub start: usize,
pub end: usize,
}
impl InnerSpan {
pub fn new(start: usize, end: usize) -> InnerSpan {
InnerSpan { start, end }
}
}
/// The location and before/after width of a character whose width has changed from its source code
/// representation
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct InnerWidthMapping {
/// Index of the character in the source
pub position: usize,
/// The inner width in characters
pub before: usize,
/// The transformed width in characters
pub after: usize,
}
impl InnerWidthMapping {
pub fn new(position: usize, before: usize, after: usize) -> InnerWidthMapping {
InnerWidthMapping { position, before, after }
}
}
/// Whether the input string is a literal. If yes, it contains the inner width mappings.
#[derive(Clone, PartialEq, Eq)]
enum InputStringKind {
NotALiteral,
Literal { width_mappings: Vec<InnerWidthMapping> },
}
/// The type of format string that we are parsing.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum ParseMode {
/// A normal format string as per `format_args!`.
Format,
/// An inline assembly template string for `asm!`.
InlineAsm,
}
#[derive(Copy, Clone)]
struct InnerOffset(usize);
impl InnerOffset {
fn to(self, end: InnerOffset) -> InnerSpan {
InnerSpan::new(self.0, end.0)
}
}
/// A piece is a portion of the format string which represents the next part
/// to emit. These are emitted as a stream by the `Parser` class.
#[derive(Clone, Debug, PartialEq)]
pub enum Piece<'a> {
/// A literal string which should directly be emitted
String(&'a str),
/// This describes that formatting should process the next argument (as
/// specified inside) for emission.
NextArgument(Box<Argument<'a>>),
}
/// Representation of an argument specification.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Argument<'a> {
/// Where to find this argument
pub position: Position<'a>,
/// The span of the position indicator. Includes any whitespace in implicit
/// positions (`{ }`).
pub position_span: InnerSpan,
/// How to format the argument
pub format: FormatSpec<'a>,
}
/// Specification for the formatting of an argument in the format string.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct FormatSpec<'a> {
/// Optionally specified character to fill alignment with.
pub fill: Option<char>,
/// Span of the optionally specified fill character.
pub fill_span: Option<InnerSpan>,
/// Optionally specified alignment.
pub align: Alignment,
/// The `+` or `-` flag.
pub sign: Option<Sign>,
/// The `#` flag.
pub alternate: bool,
/// The `0` flag.
pub zero_pad: bool,
/// The `x` or `X` flag. (Only for `Debug`.)
pub debug_hex: Option<DebugHex>,
/// The integer precision to use.
pub precision: Count<'a>,
/// The span of the precision formatting flag (for diagnostics).
pub precision_span: Option<InnerSpan>,
/// The string width requested for the resulting format.
pub width: Count<'a>,
/// The span of the width formatting flag (for diagnostics).
pub width_span: Option<InnerSpan>,
/// The descriptor string representing the name of the format desired for
/// this argument, this can be empty or any number of characters, although
/// it is required to be one word.
pub ty: &'a str,
/// The span of the descriptor string (for diagnostics).
pub ty_span: Option<InnerSpan>,
}
/// Enum describing where an argument for a format can be located.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Position<'a> {
/// The argument is implied to be located at an index
ArgumentImplicitlyIs(usize),
/// The argument is located at a specific index given in the format,
ArgumentIs(usize),
/// The argument has a name.
ArgumentNamed(&'a str),
}
impl Position<'_> {
pub fn index(&self) -> Option<usize> {
match self {
ArgumentIs(i, ..) | ArgumentImplicitlyIs(i) => Some(*i),
_ => None,
}
}
}
/// Enum of alignments which are supported.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Alignment {
/// The value will be aligned to the left.
AlignLeft,
/// The value will be aligned to the right.
AlignRight,
/// The value will be aligned in the center.
AlignCenter,
/// The value will take on a default alignment.
AlignUnknown,
}
/// Enum for the sign flags.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Sign {
/// The `+` flag.
Plus,
/// The `-` flag.
Minus,
}
/// Enum for the debug hex flags.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum DebugHex {
/// The `x` flag in `{:x?}`.
Lower,
/// The `X` flag in `{:X?}`.
Upper,
}
/// A count is used for the precision and width parameters of an integer, and
/// can reference either an argument or a literal integer.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum Count<'a> {
/// The count is specified explicitly.
CountIs(usize),
/// The count is specified by the argument with the given name.
CountIsName(&'a str, InnerSpan),
/// The count is specified by the argument at the given index.
CountIsParam(usize),
/// The count is specified by a star (like in `{:.*}`) that refers to the argument at the given index.
CountIsStar(usize),
/// The count is implied and cannot be explicitly specified.
CountImplied,
}
pub struct ParseError {
pub description: string::String,
pub note: Option<string::String>,
pub label: string::String,
pub span: InnerSpan,
pub secondary_label: Option<(string::String, InnerSpan)>,
pub suggestion: Suggestion,
}
pub enum Suggestion {
None,
/// Replace inline argument with positional argument:
/// `format!("{foo.bar}")` -> `format!("{}", foo.bar)`
UsePositional,
/// Remove `r#` from identifier:
/// `format!("{r#foo}")` -> `format!("{foo}")`
RemoveRawIdent(InnerSpan),
}
/// The parser structure for interpreting the input format string. This is
/// modeled as an iterator over `Piece` structures to form a stream of tokens
/// being output.
///
/// This is a recursive-descent parser for the sake of simplicity, and if
/// necessary there's probably lots of room for improvement performance-wise.
pub struct Parser<'a> {
mode: ParseMode,
input: &'a str,
cur: iter::Peekable<str::CharIndices<'a>>,
/// Error messages accumulated during parsing
pub errors: Vec<ParseError>,
/// Current position of implicit positional argument pointer
pub curarg: usize,
/// `Some(raw count)` when the string is "raw", used to position spans correctly
style: Option<usize>,
/// Start and end byte offset of every successfully parsed argument
pub arg_places: Vec<InnerSpan>,
/// Characters whose length has been changed from their in-code representation
width_map: Vec<InnerWidthMapping>,
/// Span of the last opening brace seen, used for error reporting
last_opening_brace: Option<InnerSpan>,
/// Whether the source string is comes from `println!` as opposed to `format!` or `print!`
append_newline: bool,
/// Whether this formatting string was written directly in the source. This controls whether we
/// can use spans to refer into it and give better error messages.
/// N.B: This does _not_ control whether implicit argument captures can be used.
pub is_source_literal: bool,
/// Start position of the current line.
cur_line_start: usize,
/// Start and end byte offset of every line of the format string. Excludes
/// newline characters and leading whitespace.
pub line_spans: Vec<InnerSpan>,
}
impl<'a> Iterator for Parser<'a> {
type Item = Piece<'a>;
fn next(&mut self) -> Option<Piece<'a>> {
if let Some(&(pos, c)) = self.cur.peek() {
match c {
'{' => {
let curr_last_brace = self.last_opening_brace;
let byte_pos = self.to_span_index(pos);
let lbrace_end = InnerOffset(byte_pos.0 + self.to_span_width(pos));
self.last_opening_brace = Some(byte_pos.to(lbrace_end));
self.cur.next();
if self.consume('{') {
self.last_opening_brace = curr_last_brace;
Some(String(self.string(pos + 1)))
} else {
let arg = self.argument(lbrace_end);
if let Some(rbrace_pos) = self.consume_closing_brace(&arg) {
if self.is_source_literal {
let lbrace_byte_pos = self.to_span_index(pos);
let rbrace_byte_pos = self.to_span_index(rbrace_pos);
let width = self.to_span_width(rbrace_pos);
self.arg_places.push(
lbrace_byte_pos.to(InnerOffset(rbrace_byte_pos.0 + width)),
);
}
} else if let Some(&(_, maybe)) = self.cur.peek() {
match maybe {
'?' => self.suggest_format_debug(),
'<' | '^' | '>' => self.suggest_format_align(maybe),
_ => self.suggest_positional_arg_instead_of_captured_arg(arg),
}
}
Some(NextArgument(Box::new(arg)))
}
}
'}' => {
self.cur.next();
if self.consume('}') {
Some(String(self.string(pos + 1)))
} else {
let err_pos = self.to_span_index(pos);
self.err_with_note(
"unmatched `}` found",
"unmatched `}`",
"if you intended to print `}`, you can escape it using `}}`",
err_pos.to(err_pos),
);
None
}
}
_ => Some(String(self.string(pos))),
}
} else {
if self.is_source_literal {
let span = self.span(self.cur_line_start, self.input.len());
if self.line_spans.last() != Some(&span) {
self.line_spans.push(span);
}
}
None
}
}
}
impl<'a> Parser<'a> {
/// Creates a new parser for the given format string
pub fn new(
s: &'a str,
style: Option<usize>,
snippet: Option<string::String>,
append_newline: bool,
mode: ParseMode,
) -> Parser<'a> {
let input_string_kind = find_width_map_from_snippet(s, snippet, style);
let (width_map, is_source_literal) = match input_string_kind {
InputStringKind::Literal { width_mappings } => (width_mappings, true),
InputStringKind::NotALiteral => (Vec::new(), false),
};
Parser {
mode,
input: s,
cur: s.char_indices().peekable(),
errors: vec![],
curarg: 0,
style,
arg_places: vec![],
width_map,
last_opening_brace: None,
append_newline,
is_source_literal,
cur_line_start: 0,
line_spans: vec![],
}
}
/// Notifies of an error. The message doesn't actually need to be of type
/// String, but I think it does when this eventually uses conditions so it
/// might as well start using it now.
fn err<S1: Into<string::String>, S2: Into<string::String>>(
&mut self,
description: S1,
label: S2,
span: InnerSpan,
) {
self.errors.push(ParseError {
description: description.into(),
note: None,
label: label.into(),
span,
secondary_label: None,
suggestion: Suggestion::None,
});
}
/// Notifies of an error. The message doesn't actually need to be of type
/// String, but I think it does when this eventually uses conditions so it
/// might as well start using it now.
fn err_with_note<
S1: Into<string::String>,
S2: Into<string::String>,
S3: Into<string::String>,
>(
&mut self,
description: S1,
label: S2,
note: S3,
span: InnerSpan,
) {
self.errors.push(ParseError {
description: description.into(),
note: Some(note.into()),
label: label.into(),
span,
secondary_label: None,
suggestion: Suggestion::None,
});
}
/// Optionally consumes the specified character. If the character is not at
/// the current position, then the current iterator isn't moved and `false` is
/// returned, otherwise the character is consumed and `true` is returned.
fn consume(&mut self, c: char) -> bool {
self.consume_pos(c).is_some()
}
/// Optionally consumes the specified character. If the character is not at
/// the current position, then the current iterator isn't moved and `None` is
/// returned, otherwise the character is consumed and the current position is
/// returned.
fn consume_pos(&mut self, c: char) -> Option<usize> {
if let Some(&(pos, maybe)) = self.cur.peek() {
if c == maybe {
self.cur.next();
return Some(pos);
}
}
None
}
fn remap_pos(&self, mut pos: usize) -> InnerOffset {
for width in &self.width_map {
if pos > width.position {
pos += width.before - width.after;
} else if pos == width.position && width.after == 0 {
pos += width.before;
} else {
break;
}
}
InnerOffset(pos)
}
fn to_span_index(&self, pos: usize) -> InnerOffset {
// This handles the raw string case, the raw argument is the number of #
// in r###"..."### (we need to add one because of the `r`).
let raw = self.style.map_or(0, |raw| raw + 1);
let pos = self.remap_pos(pos);
InnerOffset(raw + pos.0 + 1)
}
fn to_span_width(&self, pos: usize) -> usize {
let pos = self.remap_pos(pos);
match self.width_map.iter().find(|w| w.position == pos.0) {
Some(w) => w.before,
None => 1,
}
}
fn span(&self, start_pos: usize, end_pos: usize) -> InnerSpan {
let start = self.to_span_index(start_pos);
let end = self.to_span_index(end_pos);
start.to(end)
}
/// Forces consumption of the specified character. If the character is not
/// found, an error is emitted.
fn consume_closing_brace(&mut self, arg: &Argument<'_>) -> Option<usize> {
self.ws();
let pos;
let description;
if let Some(&(peek_pos, maybe)) = self.cur.peek() {
if maybe == '}' {
self.cur.next();
return Some(peek_pos);
}
pos = peek_pos;
description = format!("expected `'}}'`, found `{maybe:?}`");
} else {
description = "expected `'}'` but string was terminated".to_owned();
// point at closing `"`
pos = self.input.len() - if self.append_newline { 1 } else { 0 };
}
let pos = self.to_span_index(pos);
let label = "expected `'}'`".to_owned();
let (note, secondary_label) = if arg.format.fill == Some('}') {
(
Some("the character `'}'` is interpreted as a fill character because of the `:` that precedes it".to_owned()),
arg.format.fill_span.map(|sp| ("this is not interpreted as a formatting closing brace".to_owned(), sp)),
)
} else {
(
Some("if you intended to print `{`, you can escape it using `{{`".to_owned()),
self.last_opening_brace.map(|sp| ("because of this opening brace".to_owned(), sp)),
)
};
self.errors.push(ParseError {
description,
note,
label,
span: pos.to(pos),
secondary_label,
suggestion: Suggestion::None,
});
None
}
/// Consumes all whitespace characters until the first non-whitespace character
fn ws(&mut self) {
while let Some(&(_, c)) = self.cur.peek() {
if c.is_whitespace() {
self.cur.next();
} else {
break;
}
}
}
/// Parses all of a string which is to be considered a "raw literal" in a
/// format string. This is everything outside of the braces.
fn string(&mut self, start: usize) -> &'a str {
// we may not consume the character, peek the iterator
while let Some(&(pos, c)) = self.cur.peek() {
match c {
'{' | '}' => {
return &self.input[start..pos];
}
'\n' if self.is_source_literal => {
self.line_spans.push(self.span(self.cur_line_start, pos));
self.cur_line_start = pos + 1;
self.cur.next();
}
_ => {
if self.is_source_literal && pos == self.cur_line_start && c.is_whitespace() {
self.cur_line_start = pos + c.len_utf8();
}
self.cur.next();
}
}
}
&self.input[start..self.input.len()]
}
/// Parses an `Argument` structure, or what's contained within braces inside the format string.
fn argument(&mut self, start: InnerOffset) -> Argument<'a> {
let pos = self.position();
let end = self
.cur
.clone()
.find(|(_, ch)| !ch.is_whitespace())
.map_or(start, |(end, _)| self.to_span_index(end));
let position_span = start.to(end);
let format = match self.mode {
ParseMode::Format => self.format(),
ParseMode::InlineAsm => self.inline_asm(),
};
// Resolve position after parsing format spec.
let pos = match pos {
Some(position) => position,
None => {
let i = self.curarg;
self.curarg += 1;
ArgumentImplicitlyIs(i)
}
};
Argument { position: pos, position_span, format }
}
/// Parses a positional argument for a format. This could either be an
/// integer index of an argument, a named argument, or a blank string.
/// Returns `Some(parsed_position)` if the position is not implicitly
/// consuming a macro argument, `None` if it's the case.
fn position(&mut self) -> Option<Position<'a>> {
if let Some(i) = self.integer() {
Some(ArgumentIs(i))
} else {
match self.cur.peek() {
Some(&(lo, c)) if rustc_lexer::is_id_start(c) => {
let word = self.word();
// Recover from `r#ident` in format strings.
// FIXME: use a let chain
if word == "r" {
if let Some((pos, '#')) = self.cur.peek() {
if self.input[pos + 1..]
.chars()
.next()
.is_some_and(rustc_lexer::is_id_start)
{
self.cur.next();
let word = self.word();
let prefix_span = self.span(lo, lo + 2);
let full_span = self.span(lo, lo + 2 + word.len());
self.errors.insert(0, ParseError {
description: "raw identifiers are not supported".to_owned(),
note: Some("identifiers in format strings can be keywords and don't need to be prefixed with `r#`".to_string()),
label: "raw identifier used here".to_owned(),
span: full_span,
secondary_label: None,
suggestion: Suggestion::RemoveRawIdent(prefix_span),
});
return Some(ArgumentNamed(word));
}
}
}
Some(ArgumentNamed(word))
}
// This is an `ArgumentNext`.
// Record the fact and do the resolution after parsing the
// format spec, to make things like `{:.*}` work.
_ => None,
}
}
}
fn current_pos(&mut self) -> usize {
if let Some(&(pos, _)) = self.cur.peek() { pos } else { self.input.len() }
}
/// Parses a format specifier at the current position, returning all of the
/// relevant information in the `FormatSpec` struct.
fn format(&mut self) -> FormatSpec<'a> {
let mut spec = FormatSpec {
fill: None,
fill_span: None,
align: AlignUnknown,
sign: None,
alternate: false,
zero_pad: false,
debug_hex: None,
precision: CountImplied,
precision_span: None,
width: CountImplied,
width_span: None,
ty: &self.input[..0],
ty_span: None,
};
if !self.consume(':') {
return spec;
}
// fill character
if let Some(&(idx, c)) = self.cur.peek() {
if let Some((_, '>' | '<' | '^')) = self.cur.clone().nth(1) {
spec.fill = Some(c);
spec.fill_span = Some(self.span(idx, idx + 1));
self.cur.next();
}
}
// Alignment
if self.consume('<') {
spec.align = AlignLeft;
} else if self.consume('>') {
spec.align = AlignRight;
} else if self.consume('^') {
spec.align = AlignCenter;
}
// Sign flags
if self.consume('+') {
spec.sign = Some(Sign::Plus);
} else if self.consume('-') {
spec.sign = Some(Sign::Minus);
}
// Alternate marker
if self.consume('#') {
spec.alternate = true;
}
// Width and precision
let mut havewidth = false;
if self.consume('0') {
// small ambiguity with '0$' as a format string. In theory this is a
// '0' flag and then an ill-formatted format string with just a '$'
// and no count, but this is better if we instead interpret this as
// no '0' flag and '0$' as the width instead.
if let Some(end) = self.consume_pos('$') {
spec.width = CountIsParam(0);
spec.width_span = Some(self.span(end - 1, end + 1));
havewidth = true;
} else {
spec.zero_pad = true;
}
}
if !havewidth {
let start = self.current_pos();
spec.width = self.count(start);
if spec.width != CountImplied {
let end = self.current_pos();
spec.width_span = Some(self.span(start, end));
}
}
if let Some(start) = self.consume_pos('.') {
if self.consume('*') {
// Resolve `CountIsNextParam`.
// We can do this immediately as `position` is resolved later.
let i = self.curarg;
self.curarg += 1;
spec.precision = CountIsStar(i);
} else {
spec.precision = self.count(start + 1);
}
let end = self.current_pos();
spec.precision_span = Some(self.span(start, end));
}
let ty_span_start = self.current_pos();
// Optional radix followed by the actual format specifier
if self.consume('x') {
if self.consume('?') {
spec.debug_hex = Some(DebugHex::Lower);
spec.ty = "?";
} else {
spec.ty = "x";
}
} else if self.consume('X') {
if self.consume('?') {
spec.debug_hex = Some(DebugHex::Upper);
spec.ty = "?";
} else {
spec.ty = "X";
}
} else if self.consume('?') {
spec.ty = "?";
} else {
spec.ty = self.word();
if !spec.ty.is_empty() {
let ty_span_end = self.current_pos();
spec.ty_span = Some(self.span(ty_span_start, ty_span_end));
}
}
spec
}
/// Parses an inline assembly template modifier at the current position, returning the modifier
/// in the `ty` field of the `FormatSpec` struct.
fn inline_asm(&mut self) -> FormatSpec<'a> {
let mut spec = FormatSpec {
fill: None,
fill_span: None,
align: AlignUnknown,
sign: None,
alternate: false,
zero_pad: false,
debug_hex: None,
precision: CountImplied,
precision_span: None,
width: CountImplied,
width_span: None,
ty: &self.input[..0],
ty_span: None,
};
if !self.consume(':') {
return spec;
}
let ty_span_start = self.current_pos();
spec.ty = self.word();
if !spec.ty.is_empty() {
let ty_span_end = self.current_pos();
spec.ty_span = Some(self.span(ty_span_start, ty_span_end));
}
spec
}
/// Parses a `Count` parameter at the current position. This does not check
/// for 'CountIsNextParam' because that is only used in precision, not
/// width.
fn count(&mut self, start: usize) -> Count<'a> {
if let Some(i) = self.integer() {
if self.consume('$') { CountIsParam(i) } else { CountIs(i) }
} else {
let tmp = self.cur.clone();
let word = self.word();
if word.is_empty() {
self.cur = tmp;
CountImplied
} else if let Some(end) = self.consume_pos('$') {
let name_span = self.span(start, end);
CountIsName(word, name_span)
} else {
self.cur = tmp;
CountImplied
}
}
}
/// Parses a word starting at the current position. A word is the same as
/// Rust identifier, except that it can't start with `_` character.
fn word(&mut self) -> &'a str {
let start = match self.cur.peek() {
Some(&(pos, c)) if rustc_lexer::is_id_start(c) => {
self.cur.next();
pos
}
_ => {
return "";
}
};
let mut end = None;
while let Some(&(pos, c)) = self.cur.peek() {
if rustc_lexer::is_id_continue(c) {
self.cur.next();
} else {
end = Some(pos);
break;
}
}
let end = end.unwrap_or(self.input.len());
let word = &self.input[start..end];
if word == "_" {
self.err_with_note(
"invalid argument name `_`",
"invalid argument name",
"argument name cannot be a single underscore",
self.span(start, end),
);
}
word
}
fn integer(&mut self) -> Option<usize> {
let mut cur: usize = 0;
let mut found = false;
let mut overflow = false;
let start = self.current_pos();
while let Some(&(_, c)) = self.cur.peek() {
if let Some(i) = c.to_digit(10) {
let (tmp, mul_overflow) = cur.overflowing_mul(10);
let (tmp, add_overflow) = tmp.overflowing_add(i as usize);
if mul_overflow || add_overflow {
overflow = true;
}
cur = tmp;
found = true;
self.cur.next();
} else {
break;
}
}
if overflow {
let end = self.current_pos();
let overflowed_int = &self.input[start..end];
self.err(
format!(
"integer `{}` does not fit into the type `usize` whose range is `0..={}`",
overflowed_int,
usize::MAX
),
"integer out of range for `usize`",
self.span(start, end),
);
}
found.then_some(cur)
}
fn suggest_format_debug(&mut self) {
if let (Some(pos), Some(_)) = (self.consume_pos('?'), self.consume_pos(':')) {
let word = self.word();
let pos = self.to_span_index(pos);
self.errors.insert(0, ParseError {
description: "expected format parameter to occur after `:`".to_owned(),
note: Some(format!("`?` comes after `:`, try `{}:{}` instead", word, "?")),
label: "expected `?` to occur after `:`".to_owned(),
span: pos.to(pos),
secondary_label: None,
suggestion: Suggestion::None,
});
}
}
fn suggest_format_align(&mut self, alignment: char) {
if let Some(pos) = self.consume_pos(alignment) {
let pos = self.to_span_index(pos);
self.errors.insert(0, ParseError {
description: "expected format parameter to occur after `:`".to_owned(),
note: None,
label: format!("expected `{}` to occur after `:`", alignment),
span: pos.to(pos),
secondary_label: None,
suggestion: Suggestion::None,
});
}
}
fn suggest_positional_arg_instead_of_captured_arg(&mut self, arg: Argument<'a>) {
if let Some(end) = self.consume_pos('.') {
let byte_pos = self.to_span_index(end);
let start = InnerOffset(byte_pos.0 + 1);
let field = self.argument(start);
// We can only parse simple `foo.bar` field access or `foo.0` tuple index access, any
// deeper nesting, or another type of expression, like method calls, are not supported
if !self.consume('}') {
return;
}
if let ArgumentNamed(_) = arg.position {
match field.position {
ArgumentNamed(_) => {
self.errors.insert(0, ParseError {
description: "field access isn't supported".to_string(),
note: None,
label: "not supported".to_string(),
span: InnerSpan::new(arg.position_span.start, field.position_span.end),
secondary_label: None,
suggestion: Suggestion::UsePositional,
});
}
ArgumentIs(_) => {
self.errors.insert(0, ParseError {
description: "tuple index access isn't supported".to_string(),
note: None,
label: "not supported".to_string(),
span: InnerSpan::new(arg.position_span.start, field.position_span.end),
secondary_label: None,
suggestion: Suggestion::UsePositional,
});
}
_ => {}
};
}
}
}
}
/// Finds the indices of all characters that have been processed and differ between the actual
/// written code (code snippet) and the `InternedString` that gets processed in the `Parser`
/// in order to properly synthesise the intra-string `Span`s for error diagnostics.
fn find_width_map_from_snippet(
input: &str,
snippet: Option<string::String>,
str_style: Option<usize>,
) -> InputStringKind {
let snippet = match snippet {
Some(ref s) if s.starts_with('"') || s.starts_with("r\"") || s.starts_with("r#") => s,
_ => return InputStringKind::NotALiteral,
};
if str_style.is_some() {
return InputStringKind::Literal { width_mappings: Vec::new() };
}
// Strip quotes.
let snippet = &snippet[1..snippet.len() - 1];
// Macros like `println` add a newline at the end. That technically doesn't make them "literals" anymore, but it's fine
// since we will never need to point our spans there, so we lie about it here by ignoring it.
// Since there might actually be newlines in the source code, we need to normalize away all trailing newlines.
// If we only trimmed it off the input, `format!("\n")` would cause a mismatch as here we they actually match up.
// Alternatively, we could just count the trailing newlines and only trim one from the input if they don't match up.
let input_no_nl = input.trim_end_matches('\n');
let Some(unescaped) = unescape_string(snippet) else {
return InputStringKind::NotALiteral;
};
let unescaped_no_nl = unescaped.trim_end_matches('\n');
if unescaped_no_nl != input_no_nl {
// The source string that we're pointing at isn't our input, so spans pointing at it will be incorrect.
// This can for example happen with proc macros that respan generated literals.
return InputStringKind::NotALiteral;
}
let mut s = snippet.char_indices();
let mut width_mappings = vec![];
while let Some((pos, c)) = s.next() {
match (c, s.clone().next()) {
// skip whitespace and empty lines ending in '\\'
('\\', Some((_, '\n'))) => {
let _ = s.next();
let mut width = 2;
while let Some((_, c)) = s.clone().next() {
if matches!(c, ' ' | '\n' | '\t') {
width += 1;
let _ = s.next();
} else {
break;
}
}
width_mappings.push(InnerWidthMapping::new(pos, width, 0));
}
('\\', Some((_, 'n' | 't' | 'r' | '0' | '\\' | '\'' | '\"'))) => {
width_mappings.push(InnerWidthMapping::new(pos, 2, 1));
let _ = s.next();
}
('\\', Some((_, 'x'))) => {
// consume `\xAB` literal
s.nth(2);
width_mappings.push(InnerWidthMapping::new(pos, 4, 1));
}
('\\', Some((_, 'u'))) => {
let mut width = 2;
let _ = s.next();
if let Some((_, next_c)) = s.next() {
if next_c == '{' {
// consume up to 6 hexanumeric chars
let digits_len =
s.clone().take(6).take_while(|(_, c)| c.is_ascii_hexdigit()).count();
let len_utf8 = s
.as_str()
.get(..digits_len)
.and_then(|digits| u32::from_str_radix(digits, 16).ok())
.and_then(char::from_u32)
.map_or(1, char::len_utf8);
// Skip the digits, for chars that encode to more than 1 utf-8 byte
// exclude as many digits as it is greater than 1 byte
//
// So for a 3 byte character, exclude 2 digits
let required_skips = digits_len.saturating_sub(len_utf8.saturating_sub(1));
// skip '{' and '}' also
width += required_skips + 2;
s.nth(digits_len);
} else if next_c.is_ascii_hexdigit() {
width += 1;
// We suggest adding `{` and `}` when appropriate, accept it here as if
// it were correct
let mut i = 0; // consume up to 6 hexanumeric chars
while let (Some((_, c)), _) = (s.next(), i < 6) {
if c.is_ascii_hexdigit() {
width += 1;
} else {
break;
}
i += 1;
}
}
}
width_mappings.push(InnerWidthMapping::new(pos, width, 1));
}
_ => {}
}
}
InputStringKind::Literal { width_mappings }
}
fn unescape_string(string: &str) -> Option<string::String> {
let mut buf = string::String::new();
let mut ok = true;
unescape::unescape_unicode(string, unescape::Mode::Str, &mut |_, unescaped_char| {
match unescaped_char {
Ok(c) => buf.push(c),
Err(_) => ok = false,
}
});
ok.then_some(buf)
}
// Assert a reasonable size for `Piece`
#[cfg(target_pointer_width = "64")]
rustc_index::static_assert_size!(Piece<'_>, 16);
#[cfg(test)]
mod tests;