1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
use super::dep_cache::RegistryQueryer;
use super::errors::ActivateResult;
use super::types::{ConflictMap, ConflictReason, FeaturesSet, ResolveOpts};
use super::RequestedFeatures;
use crate::core::{Dependency, PackageId, SourceId, Summary};
use crate::util::interning::InternedString;
use crate::util::Graph;
use anyhow::format_err;
use std::collections::HashMap;
use std::num::NonZeroU64;
use tracing::debug;
// A `Context` is basically a bunch of local resolution information which is
// kept around for all `BacktrackFrame` instances. As a result, this runs the
// risk of being cloned *a lot* so we want to make this as cheap to clone as
// possible.
#[derive(Clone)]
pub struct ResolverContext {
pub age: ContextAge,
pub activations: Activations,
/// list the features that are activated for each package
pub resolve_features: im_rc::HashMap<PackageId, FeaturesSet>,
/// get the package that will be linking to a native library by its links attribute
pub links: im_rc::HashMap<InternedString, PackageId>,
/// a way to look up for a package in activations what packages required it
/// and all of the exact deps that it fulfilled.
pub parents: Graph<PackageId, im_rc::HashSet<Dependency>>,
}
/// When backtracking it can be useful to know how far back to go.
/// The `ContextAge` of a `Context` is a monotonically increasing counter of the number
/// of decisions made to get to this state.
/// Several structures store the `ContextAge` when it was added,
/// to be used in `find_candidate` for backtracking.
pub type ContextAge = usize;
/// Find the activated version of a crate based on the name, source, and semver compatibility.
/// By storing this in a hash map we ensure that there is only one
/// semver compatible version of each crate.
/// This all so stores the `ContextAge`.
pub type ActivationsKey = (InternedString, SourceId, SemverCompatibility);
pub type Activations = im_rc::HashMap<ActivationsKey, (Summary, ContextAge)>;
/// A type that represents when cargo treats two Versions as compatible.
/// Versions `a` and `b` are compatible if their left-most nonzero digit is the
/// same.
#[derive(Clone, Copy, Eq, PartialEq, Hash, Debug, PartialOrd, Ord)]
pub enum SemverCompatibility {
Major(NonZeroU64),
Minor(NonZeroU64),
Patch(u64),
}
impl From<&semver::Version> for SemverCompatibility {
fn from(ver: &semver::Version) -> Self {
if let Some(m) = NonZeroU64::new(ver.major) {
return SemverCompatibility::Major(m);
}
if let Some(m) = NonZeroU64::new(ver.minor) {
return SemverCompatibility::Minor(m);
}
SemverCompatibility::Patch(ver.patch)
}
}
impl PackageId {
pub fn as_activations_key(self) -> ActivationsKey {
(self.name(), self.source_id(), self.version().into())
}
}
impl ResolverContext {
pub fn new() -> ResolverContext {
ResolverContext {
age: 0,
resolve_features: im_rc::HashMap::new(),
links: im_rc::HashMap::new(),
parents: Graph::new(),
activations: im_rc::HashMap::new(),
}
}
/// Activate this summary by inserting it into our list of known activations.
///
/// The `parent` passed in here is the parent summary/dependency edge which
/// cased `summary` to get activated. This may not be present for the root
/// crate, for example.
///
/// Returns `true` if this summary with the given features is already activated.
pub fn flag_activated(
&mut self,
summary: &Summary,
opts: &ResolveOpts,
parent: Option<(&Summary, &Dependency)>,
) -> ActivateResult<bool> {
let id = summary.package_id();
let age: ContextAge = self.age;
match self.activations.entry(id.as_activations_key()) {
im_rc::hashmap::Entry::Occupied(o) => {
debug_assert_eq!(
&o.get().0,
summary,
"cargo does not allow two semver compatible versions"
);
}
im_rc::hashmap::Entry::Vacant(v) => {
if let Some(link) = summary.links() {
if self.links.insert(link, id).is_some() {
return Err(format_err!(
"Attempting to resolve a dependency with more than \
one crate with links={}.\nThis will not build as \
is. Consider rebuilding the .lock file.",
&*link
)
.into());
}
}
v.insert((summary.clone(), age));
// If we've got a parent dependency which activated us, *and*
// the dependency has a different source id listed than the
// `summary` itself, then things get interesting. This basically
// means that a `[patch]` was used to augment `dep.source_id()`
// with `summary`.
//
// In this scenario we want to consider the activation key, as
// viewed from the perspective of `dep.source_id()`, as being
// fulfilled. This means that we need to add a second entry in
// the activations map for the source that was patched, in
// addition to the source of the actual `summary` itself.
//
// Without this it would be possible to have both 1.0.0 and
// 1.1.0 "from crates.io" in a dependency graph if one of those
// versions came from a `[patch]` source.
if let Some((_, dep)) = parent {
if dep.source_id() != id.source_id() {
let key = (id.name(), dep.source_id(), id.version().into());
let prev = self.activations.insert(key, (summary.clone(), age));
if let Some((previous_summary, _)) = prev {
return Err(
(previous_summary.package_id(), ConflictReason::Semver).into()
);
}
}
}
return Ok(false);
}
}
debug!("checking if {} is already activated", summary.package_id());
match &opts.features {
// This returns `false` for CliFeatures just for simplicity. It
// would take a bit of work to compare since they are not in the
// same format as DepFeatures (and that may be expensive
// performance-wise). Also, it should only occur once for a root
// package. The only drawback is that it may re-activate a root
// package again, which should only affect performance, but that
// should be rare. Cycles should still be detected since those
// will have `DepFeatures` edges.
RequestedFeatures::CliFeatures(_) => Ok(false),
RequestedFeatures::DepFeatures {
features,
uses_default_features,
} => {
let has_default_feature = summary.features().contains_key("default");
Ok(match self.resolve_features.get(&id) {
Some(prev) => {
features.is_subset(prev)
&& (!uses_default_features
|| prev.contains("default")
|| !has_default_feature)
}
None => features.is_empty() && (!uses_default_features || !has_default_feature),
})
}
}
}
/// If the package is active returns the `ContextAge` when it was added
pub fn is_active(&self, id: PackageId) -> Option<ContextAge> {
self.activations
.get(&id.as_activations_key())
.and_then(|(s, l)| if s.package_id() == id { Some(*l) } else { None })
}
/// Checks whether all of `parent` and the keys of `conflicting activations`
/// are still active.
/// If so returns the `ContextAge` when the newest one was added.
pub fn is_conflicting(
&self,
parent: Option<PackageId>,
conflicting_activations: &ConflictMap,
) -> Option<usize> {
let mut max = 0;
if let Some(parent) = parent {
max = std::cmp::max(max, self.is_active(parent)?);
}
for id in conflicting_activations.keys() {
max = std::cmp::max(max, self.is_active(*id)?);
}
Some(max)
}
pub fn resolve_replacements(
&self,
registry: &RegistryQueryer<'_>,
) -> HashMap<PackageId, PackageId> {
self.activations
.values()
.filter_map(|(s, _)| registry.used_replacement_for(s.package_id()))
.collect()
}
pub fn graph(&self) -> Graph<PackageId, std::collections::HashSet<Dependency>> {
let mut graph: Graph<PackageId, std::collections::HashSet<Dependency>> = Graph::new();
self.activations
.values()
.for_each(|(r, _)| graph.add(r.package_id()));
for i in self.parents.iter() {
graph.add(*i);
for (o, e) in self.parents.edges(i) {
let old_link = graph.link(*o, *i);
assert!(old_link.is_empty());
*old_link = e.iter().cloned().collect();
}
}
graph
}
}