1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable, HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{TypeFoldable_Generic, TypeVisitable_Generic};
use std::fmt;

use crate::{self as ty, Interner};

/// A clause is something that can appear in where bounds or be inferred
/// by implied bounds.
#[derive(derivative::Derivative)]
#[derivative(Clone(bound = ""), Copy(bound = ""), Hash(bound = ""), Eq(bound = ""))]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum ClauseKind<I: Interner> {
    /// Corresponds to `where Foo: Bar<A, B, C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
    /// would be the type parameters.
    Trait(ty::TraitPredicate<I>),

    /// `where 'a: 'r`
    RegionOutlives(ty::OutlivesPredicate<I, I::Region>),

    /// `where T: 'r`
    TypeOutlives(ty::OutlivesPredicate<I, I::Ty>),

    /// `where <T as TraitRef>::Name == X`, approximately.
    /// See the `ProjectionPredicate` struct for details.
    Projection(ty::ProjectionPredicate<I>),

    /// Ensures that a const generic argument to a parameter `const N: u8`
    /// is of type `u8`.
    ConstArgHasType(I::Const, I::Ty),

    /// No syntax: `T` well-formed.
    WellFormed(I::GenericArg),

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(I::Const),
}

impl<I: Interner> PartialEq for ClauseKind<I> {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (Self::Trait(l0), Self::Trait(r0)) => l0 == r0,
            (Self::RegionOutlives(l0), Self::RegionOutlives(r0)) => l0 == r0,
            (Self::TypeOutlives(l0), Self::TypeOutlives(r0)) => l0 == r0,
            (Self::Projection(l0), Self::Projection(r0)) => l0 == r0,
            (Self::ConstArgHasType(l0, l1), Self::ConstArgHasType(r0, r1)) => l0 == r0 && l1 == r1,
            (Self::WellFormed(l0), Self::WellFormed(r0)) => l0 == r0,
            (Self::ConstEvaluatable(l0), Self::ConstEvaluatable(r0)) => l0 == r0,
            _ => false,
        }
    }
}

#[derive(derivative::Derivative)]
#[derivative(
    Clone(bound = ""),
    Copy(bound = ""),
    Hash(bound = ""),
    PartialEq(bound = ""),
    Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum PredicateKind<I: Interner> {
    /// Prove a clause
    Clause(ClauseKind<I>),

    /// Trait must be object-safe.
    ObjectSafe(I::DefId),

    /// `T1 <: T2`
    ///
    /// This obligation is created most often when we have two
    /// unresolved type variables and hence don't have enough
    /// information to process the subtyping obligation yet.
    Subtype(ty::SubtypePredicate<I>),

    /// `T1` coerced to `T2`
    ///
    /// Like a subtyping obligation, this is created most often
    /// when we have two unresolved type variables and hence
    /// don't have enough information to process the coercion
    /// obligation yet. At the moment, we actually process coercions
    /// very much like subtyping and don't handle the full coercion
    /// logic.
    Coerce(ty::CoercePredicate<I>),

    /// Constants must be equal. The first component is the const that is expected.
    ConstEquate(I::Const, I::Const),

    /// A marker predicate that is always ambiguous.
    /// Used for coherence to mark opaque types as possibly equal to each other but ambiguous.
    Ambiguous,

    /// This should only be used inside of the new solver for `AliasRelate` and expects
    /// the `term` to be an unconstrained inference variable.
    ///
    /// The alias normalizes to `term`. Unlike `Projection`, this always fails if the
    /// alias cannot be normalized in the current context. For the rigid alias
    /// `T as Trait>::Assoc`, `Projection(<T as Trait>::Assoc, ?x)` constrains `?x`
    /// to `<T as Trait>::Assoc` while `NormalizesTo(<T as Trait>::Assoc, ?x)`
    /// results in `NoSolution`.
    NormalizesTo(ty::NormalizesTo<I>),

    /// Separate from `ClauseKind::Projection` which is used for normalization in new solver.
    /// This predicate requires two terms to be equal to eachother.
    ///
    /// Only used for new solver.
    AliasRelate(I::Term, I::Term, AliasRelationDirection),
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Copy)]
#[cfg_attr(feature = "nightly", derive(HashStable_NoContext, Encodable, Decodable))]
pub enum AliasRelationDirection {
    Equate,
    Subtype,
}

impl std::fmt::Display for AliasRelationDirection {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            AliasRelationDirection::Equate => write!(f, "=="),
            AliasRelationDirection::Subtype => write!(f, "<:"),
        }
    }
}

impl<I: Interner> fmt::Debug for ClauseKind<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ClauseKind::ConstArgHasType(ct, ty) => write!(f, "ConstArgHasType({ct:?}, {ty:?})"),
            ClauseKind::Trait(a) => a.fmt(f),
            ClauseKind::RegionOutlives(pair) => pair.fmt(f),
            ClauseKind::TypeOutlives(pair) => pair.fmt(f),
            ClauseKind::Projection(pair) => pair.fmt(f),
            ClauseKind::WellFormed(data) => write!(f, "WellFormed({data:?})"),
            ClauseKind::ConstEvaluatable(ct) => {
                write!(f, "ConstEvaluatable({ct:?})")
            }
        }
    }
}

impl<I: Interner> fmt::Debug for PredicateKind<I> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            PredicateKind::Clause(a) => a.fmt(f),
            PredicateKind::Subtype(pair) => pair.fmt(f),
            PredicateKind::Coerce(pair) => pair.fmt(f),
            PredicateKind::ObjectSafe(trait_def_id) => {
                write!(f, "ObjectSafe({trait_def_id:?})")
            }
            PredicateKind::ConstEquate(c1, c2) => write!(f, "ConstEquate({c1:?}, {c2:?})"),
            PredicateKind::Ambiguous => write!(f, "Ambiguous"),
            PredicateKind::NormalizesTo(p) => p.fmt(f),
            PredicateKind::AliasRelate(t1, t2, dir) => {
                write!(f, "AliasRelate({t1:?}, {dir:?}, {t2:?})")
            }
        }
    }
}