1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use rustc_middle::bug;
use rustc_middle::mir::coverage::CoverageKind;
use rustc_middle::mir::{
    self, FakeReadCause, Statement, StatementKind, Terminator, TerminatorKind,
};
use rustc_span::{Span, Symbol};

use crate::coverage::graph::{
    BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB,
};
use crate::coverage::spans::Covspan;
use crate::coverage::unexpand::unexpand_into_body_span_with_visible_macro;
use crate::coverage::ExtractedHirInfo;

pub(crate) struct ExtractedCovspans {
    pub(crate) covspans: Vec<SpanFromMir>,
}

/// Traverses the MIR body to produce an initial collection of coverage-relevant
/// spans, each associated with a node in the coverage graph (BCB) and possibly
/// other metadata.
pub(crate) fn extract_covspans_from_mir(
    mir_body: &mir::Body<'_>,
    hir_info: &ExtractedHirInfo,
    basic_coverage_blocks: &CoverageGraph,
) -> ExtractedCovspans {
    let &ExtractedHirInfo { body_span, .. } = hir_info;

    let mut covspans = vec![];

    for (bcb, bcb_data) in basic_coverage_blocks.iter_enumerated() {
        bcb_to_initial_coverage_spans(mir_body, body_span, bcb, bcb_data, &mut covspans);
    }

    // Only add the signature span if we found at least one span in the body.
    if !covspans.is_empty() {
        // If there is no usable signature span, add a fake one (before refinement)
        // to avoid an ugly gap between the body start and the first real span.
        // FIXME: Find a more principled way to solve this problem.
        let fn_sig_span = hir_info.fn_sig_span_extended.unwrap_or_else(|| body_span.shrink_to_lo());
        covspans.push(SpanFromMir::for_fn_sig(fn_sig_span));
    }

    ExtractedCovspans { covspans }
}

// Generate a set of coverage spans from the filtered set of `Statement`s and `Terminator`s of
// the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One coverage span is generated
// for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
// merge some coverage spans, at which point a coverage span may represent multiple
// `Statement`s and/or `Terminator`s.)
fn bcb_to_initial_coverage_spans<'a, 'tcx>(
    mir_body: &'a mir::Body<'tcx>,
    body_span: Span,
    bcb: BasicCoverageBlock,
    bcb_data: &'a BasicCoverageBlockData,
    initial_covspans: &mut Vec<SpanFromMir>,
) {
    for &bb in &bcb_data.basic_blocks {
        let data = &mir_body[bb];

        let unexpand = move |expn_span| {
            unexpand_into_body_span_with_visible_macro(expn_span, body_span)
                // Discard any spans that fill the entire body, because they tend
                // to represent compiler-inserted code, e.g. implicitly returning `()`.
                .filter(|(span, _)| !span.source_equal(body_span))
        };

        let mut extract_statement_span = |statement| {
            let expn_span = filtered_statement_span(statement)?;
            let (span, visible_macro) = unexpand(expn_span)?;

            initial_covspans.push(SpanFromMir::new(span, visible_macro, bcb));
            Some(())
        };
        for statement in data.statements.iter() {
            extract_statement_span(statement);
        }

        let mut extract_terminator_span = |terminator| {
            let expn_span = filtered_terminator_span(terminator)?;
            let (span, visible_macro) = unexpand(expn_span)?;

            initial_covspans.push(SpanFromMir::new(span, visible_macro, bcb));
            Some(())
        };
        extract_terminator_span(data.terminator());
    }
}

/// If the MIR `Statement` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
    match statement.kind {
        // These statements have spans that are often outside the scope of the executed source code
        // for their parent `BasicBlock`.
        StatementKind::StorageLive(_)
        | StatementKind::StorageDead(_)
        | StatementKind::ConstEvalCounter
        | StatementKind::Nop => None,

        // FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
        // statements be more consistent?
        //
        // FakeReadCause::ForGuardBinding, in this example:
        //     match somenum {
        //         x if x < 1 => { ... }
        //     }...
        // The BasicBlock within the match arm code included one of these statements, but the span
        // for it covered the `1` in this source. The actual statements have nothing to do with that
        // source span:
        //     FakeRead(ForGuardBinding, _4);
        // where `_4` is:
        //     _4 = &_1; (at the span for the first `x`)
        // and `_1` is the `Place` for `somenum`.
        //
        // If and when the Issue is resolved, remove this special case match pattern:
        StatementKind::FakeRead(box (FakeReadCause::ForGuardBinding, _)) => None,

        // Retain spans from most other statements.
        StatementKind::FakeRead(_)
        | StatementKind::Intrinsic(..)
        | StatementKind::Coverage(
            // The purpose of `SpanMarker` is to be matched and accepted here.
            CoverageKind::SpanMarker,
        )
        | StatementKind::Assign(_)
        | StatementKind::SetDiscriminant { .. }
        | StatementKind::Deinit(..)
        | StatementKind::Retag(_, _)
        | StatementKind::PlaceMention(..)
        | StatementKind::AscribeUserType(_, _) => Some(statement.source_info.span),

        // Block markers are used for branch coverage, so ignore them here.
        StatementKind::Coverage(CoverageKind::BlockMarker { .. }) => None,

        // These coverage statements should not exist prior to coverage instrumentation.
        StatementKind::Coverage(
            CoverageKind::CounterIncrement { .. }
            | CoverageKind::ExpressionUsed { .. }
            | CoverageKind::CondBitmapUpdate { .. }
            | CoverageKind::TestVectorBitmapUpdate { .. },
        ) => bug!(
            "Unexpected coverage statement found during coverage instrumentation: {statement:?}"
        ),
    }
}

/// If the MIR `Terminator` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
    match terminator.kind {
        // These terminators have spans that don't positively contribute to computing a reasonable
        // span of actually executed source code. (For example, SwitchInt terminators extracted from
        // an `if condition { block }` has a span that includes the executed block, if true,
        // but for coverage, the code region executed, up to *and* through the SwitchInt,
        // actually stops before the if's block.)
        TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
        | TerminatorKind::Assert { .. }
        | TerminatorKind::Drop { .. }
        | TerminatorKind::SwitchInt { .. }
        // For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
        | TerminatorKind::FalseEdge { .. }
        | TerminatorKind::Goto { .. } => None,

        // Call `func` operand can have a more specific span when part of a chain of calls
        TerminatorKind::Call { ref func, .. }
        | TerminatorKind::TailCall { ref func, .. } => {
            let mut span = terminator.source_info.span;
            if let mir::Operand::Constant(box constant) = func {
                if constant.span.lo() > span.lo() {
                    span = span.with_lo(constant.span.lo());
                }
            }
            Some(span)
        }

        // Retain spans from all other terminators
        TerminatorKind::UnwindResume
        | TerminatorKind::UnwindTerminate(_)
        | TerminatorKind::Return
        | TerminatorKind::Yield { .. }
        | TerminatorKind::CoroutineDrop
        | TerminatorKind::FalseUnwind { .. }
        | TerminatorKind::InlineAsm { .. } => {
            Some(terminator.source_info.span)
        }
    }
}

#[derive(Debug)]
pub(crate) struct Hole {
    pub(crate) span: Span,
}

impl Hole {
    pub(crate) fn merge_if_overlapping_or_adjacent(&mut self, other: &mut Self) -> bool {
        if !self.span.overlaps_or_adjacent(other.span) {
            return false;
        }

        self.span = self.span.to(other.span);
        true
    }
}

#[derive(Debug)]
pub(crate) struct SpanFromMir {
    /// A span that has been extracted from MIR and then "un-expanded" back to
    /// within the current function's `body_span`. After various intermediate
    /// processing steps, this span is emitted as part of the final coverage
    /// mappings.
    ///
    /// With the exception of `fn_sig_span`, this should always be contained
    /// within `body_span`.
    pub(crate) span: Span,
    pub(crate) visible_macro: Option<Symbol>,
    pub(crate) bcb: BasicCoverageBlock,
}

impl SpanFromMir {
    fn for_fn_sig(fn_sig_span: Span) -> Self {
        Self::new(fn_sig_span, None, START_BCB)
    }

    pub(crate) fn new(span: Span, visible_macro: Option<Symbol>, bcb: BasicCoverageBlock) -> Self {
        Self { span, visible_macro, bcb }
    }

    pub(crate) fn into_covspan(self) -> Covspan {
        let Self { span, visible_macro: _, bcb } = self;
        Covspan { span, bcb }
    }
}