1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
use std::mem;

use rustc_data_structures::sso::SsoHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::infer::unify_key::ConstVariableValue;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::visit::MaxUniverse;
use rustc_middle::ty::{
    self, AliasRelationDirection, InferConst, Term, Ty, TyCtxt, TypeVisitable, TypeVisitableExt,
};
use rustc_span::Span;
use tracing::{debug, instrument, warn};

use super::{
    PredicateEmittingRelation, Relate, RelateResult, StructurallyRelateAliases, TypeRelation,
};
use crate::infer::type_variable::TypeVariableValue;
use crate::infer::{relate, InferCtxt, RegionVariableOrigin};

impl<'tcx> InferCtxt<'tcx> {
    /// The idea is that we should ensure that the type variable `target_vid`
    /// is equal to, a subtype of, or a supertype of `source_ty`.
    ///
    /// For this, we will instantiate `target_vid` with a *generalized* version
    /// of `source_ty`. Generalization introduces other inference variables wherever
    /// subtyping could occur. This also does the occurs checks, detecting whether
    /// instantiating `target_vid` would result in a cyclic type. We eagerly error
    /// in this case.
    ///
    /// This is *not* expected to be used anywhere except for an implementation of
    /// `TypeRelation`. Do not use this, and instead please use `At::eq`, for all
    /// other usecases (i.e. setting the value of a type var).
    #[instrument(level = "debug", skip(self, relation))]
    pub fn instantiate_ty_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
        &self,
        relation: &mut R,
        target_is_expected: bool,
        target_vid: ty::TyVid,
        instantiation_variance: ty::Variance,
        source_ty: Ty<'tcx>,
    ) -> RelateResult<'tcx, ()> {
        debug_assert!(self.inner.borrow_mut().type_variables().probe(target_vid).is_unknown());

        // Generalize `source_ty` depending on the current variance. As an example, assume
        // `?target <: &'x ?1`, where `'x` is some free region and `?1` is an inference
        // variable.
        //
        // Then the `generalized_ty` would be `&'?2 ?3`, where `'?2` and `?3` are fresh
        // region/type inference variables.
        //
        // We then relate `generalized_ty <: source_ty`,adding constraints like `'x: '?2` and `?1 <: ?3`.
        let Generalization { value_may_be_infer: generalized_ty, has_unconstrained_ty_var } = self
            .generalize(
                relation.span(),
                relation.structurally_relate_aliases(),
                target_vid,
                instantiation_variance,
                source_ty,
            )?;

        // Constrain `b_vid` to the generalized type `generalized_ty`.
        if let &ty::Infer(ty::TyVar(generalized_vid)) = generalized_ty.kind() {
            self.inner.borrow_mut().type_variables().equate(target_vid, generalized_vid);
        } else {
            self.inner.borrow_mut().type_variables().instantiate(target_vid, generalized_ty);
        }

        // See the comment on `Generalization::has_unconstrained_ty_var`.
        if has_unconstrained_ty_var {
            relation.register_predicates([ty::ClauseKind::WellFormed(generalized_ty.into())]);
        }

        // Finally, relate `generalized_ty` to `source_ty`, as described in previous comment.
        //
        // FIXME(#16847): This code is non-ideal because all these subtype
        // relations wind up attributed to the same spans. We need
        // to associate causes/spans with each of the relations in
        // the stack to get this right.
        if generalized_ty.is_ty_var() {
            // This happens for cases like `<?0 as Trait>::Assoc == ?0`.
            // We can't instantiate `?0` here as that would result in a
            // cyclic type. We instead delay the unification in case
            // the alias can be normalized to something which does not
            // mention `?0`.
            if self.next_trait_solver() {
                let (lhs, rhs, direction) = match instantiation_variance {
                    ty::Invariant => {
                        (generalized_ty.into(), source_ty.into(), AliasRelationDirection::Equate)
                    }
                    ty::Covariant => {
                        (generalized_ty.into(), source_ty.into(), AliasRelationDirection::Subtype)
                    }
                    ty::Contravariant => {
                        (source_ty.into(), generalized_ty.into(), AliasRelationDirection::Subtype)
                    }
                    ty::Bivariant => unreachable!("bivariant generalization"),
                };

                relation.register_predicates([ty::PredicateKind::AliasRelate(lhs, rhs, direction)]);
            } else {
                match source_ty.kind() {
                    &ty::Alias(ty::Projection, data) => {
                        // FIXME: This does not handle subtyping correctly, we could
                        // instead create a new inference variable `?normalized_source`, emitting
                        // `Projection(normalized_source, ?ty_normalized)` and `?normalized_source <: generalized_ty`.
                        relation.register_predicates([ty::ProjectionPredicate {
                            projection_term: data.into(),
                            term: generalized_ty.into(),
                        }]);
                    }
                    // The old solver only accepts projection predicates for associated types.
                    ty::Alias(ty::Inherent | ty::Weak | ty::Opaque, _) => {
                        return Err(TypeError::CyclicTy(source_ty));
                    }
                    _ => bug!("generalized `{source_ty:?} to infer, not an alias"),
                }
            }
        } else {
            // NOTE: The `instantiation_variance` is not the same variance as
            // used by the relation. When instantiating `b`, `target_is_expected`
            // is flipped and the `instantion_variance` is also flipped. To
            // constrain the `generalized_ty` while using the original relation,
            // we therefore only have to flip the arguments.
            //
            // ```ignore (not code)
            // ?a rel B
            // instantiate_ty_var(?a, B) # expected and variance not flipped
            // B' rel B
            // ```
            // or
            // ```ignore (not code)
            // A rel ?b
            // instantiate_ty_var(?b, A) # expected and variance flipped
            // A rel A'
            // ```
            if target_is_expected {
                relation.relate(generalized_ty, source_ty)?;
            } else {
                debug!("flip relation");
                relation.relate(source_ty, generalized_ty)?;
            }
        }

        Ok(())
    }

    /// Instantiates the const variable `target_vid` with the given constant.
    ///
    /// This also tests if the given const `ct` contains an inference variable which was previously
    /// unioned with `target_vid`. If this is the case, inferring `target_vid` to `ct`
    /// would result in an infinite type as we continuously replace an inference variable
    /// in `ct` with `ct` itself.
    ///
    /// This is especially important as unevaluated consts use their parents generics.
    /// They therefore often contain unused args, making these errors far more likely.
    ///
    /// A good example of this is the following:
    ///
    /// ```compile_fail,E0308
    /// #![feature(generic_const_exprs)]
    ///
    /// fn bind<const N: usize>(value: [u8; N]) -> [u8; 3 + 4] {
    ///     todo!()
    /// }
    ///
    /// fn main() {
    ///     let mut arr = Default::default();
    ///     arr = bind(arr);
    /// }
    /// ```
    ///
    /// Here `3 + 4` ends up as `ConstKind::Unevaluated` which uses the generics
    /// of `fn bind` (meaning that its args contain `N`).
    ///
    /// `bind(arr)` now infers that the type of `arr` must be `[u8; N]`.
    /// The assignment `arr = bind(arr)` now tries to equate `N` with `3 + 4`.
    ///
    /// As `3 + 4` contains `N` in its args, this must not succeed.
    ///
    /// See `tests/ui/const-generics/occurs-check/` for more examples where this is relevant.
    #[instrument(level = "debug", skip(self, relation))]
    pub(super) fn instantiate_const_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
        &self,
        relation: &mut R,
        target_is_expected: bool,
        target_vid: ty::ConstVid,
        source_ct: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ()> {
        // FIXME(generic_const_exprs): Occurs check failures for unevaluated
        // constants and generic expressions are not yet handled correctly.
        let Generalization { value_may_be_infer: generalized_ct, has_unconstrained_ty_var } = self
            .generalize(
                relation.span(),
                relation.structurally_relate_aliases(),
                target_vid,
                ty::Invariant,
                source_ct,
            )?;

        debug_assert!(!generalized_ct.is_ct_infer());
        if has_unconstrained_ty_var {
            bug!("unconstrained ty var when generalizing `{source_ct:?}`");
        }

        self.inner
            .borrow_mut()
            .const_unification_table()
            .union_value(target_vid, ConstVariableValue::Known { value: generalized_ct });

        // Make sure that the order is correct when relating the
        // generalized const and the source.
        if target_is_expected {
            relation.relate_with_variance(
                ty::Invariant,
                ty::VarianceDiagInfo::default(),
                generalized_ct,
                source_ct,
            )?;
        } else {
            relation.relate_with_variance(
                ty::Invariant,
                ty::VarianceDiagInfo::default(),
                source_ct,
                generalized_ct,
            )?;
        }

        Ok(())
    }

    /// Attempts to generalize `source_term` for the type variable `target_vid`.
    /// This checks for cycles -- that is, whether `source_term` references `target_vid`.
    fn generalize<T: Into<Term<'tcx>> + Relate<TyCtxt<'tcx>>>(
        &self,
        span: Span,
        structurally_relate_aliases: StructurallyRelateAliases,
        target_vid: impl Into<ty::TermVid>,
        ambient_variance: ty::Variance,
        source_term: T,
    ) -> RelateResult<'tcx, Generalization<T>> {
        assert!(!source_term.has_escaping_bound_vars());
        let (for_universe, root_vid) = match target_vid.into() {
            ty::TermVid::Ty(ty_vid) => {
                (self.probe_ty_var(ty_vid).unwrap_err(), ty::TermVid::Ty(self.root_var(ty_vid)))
            }
            ty::TermVid::Const(ct_vid) => (
                self.probe_const_var(ct_vid).unwrap_err(),
                ty::TermVid::Const(
                    self.inner.borrow_mut().const_unification_table().find(ct_vid).vid,
                ),
            ),
        };

        let mut generalizer = Generalizer {
            infcx: self,
            span,
            structurally_relate_aliases,
            root_vid,
            for_universe,
            ambient_variance,
            root_term: source_term.into(),
            in_alias: false,
            has_unconstrained_ty_var: false,
            cache: Default::default(),
        };

        let value_may_be_infer = generalizer.relate(source_term, source_term)?;
        let has_unconstrained_ty_var = generalizer.has_unconstrained_ty_var;
        Ok(Generalization { value_may_be_infer, has_unconstrained_ty_var })
    }
}

/// The "generalizer" is used when handling inference variables.
///
/// The basic strategy for handling a constraint like `?A <: B` is to
/// apply a "generalization strategy" to the term `B` -- this replaces
/// all the lifetimes in the term `B` with fresh inference variables.
/// (You can read more about the strategy in this [blog post].)
///
/// As an example, if we had `?A <: &'x u32`, we would generalize `&'x
/// u32` to `&'0 u32` where `'0` is a fresh variable. This becomes the
/// value of `A`. Finally, we relate `&'0 u32 <: &'x u32`, which
/// establishes `'0: 'x` as a constraint.
///
/// [blog post]: https://is.gd/0hKvIr
struct Generalizer<'me, 'tcx> {
    infcx: &'me InferCtxt<'tcx>,

    span: Span,

    /// Whether aliases should be related structurally. If not, we have to
    /// be careful when generalizing aliases.
    structurally_relate_aliases: StructurallyRelateAliases,

    /// The vid of the type variable that is in the process of being
    /// instantiated. If we find this within the value we are folding,
    /// that means we would have created a cyclic value.
    root_vid: ty::TermVid,

    /// The universe of the type variable that is in the process of being
    /// instantiated. If we find anything that this universe cannot name,
    /// we reject the relation.
    for_universe: ty::UniverseIndex,

    /// After we generalize this type, we are going to relate it to
    /// some other type. What will be the variance at this point?
    ambient_variance: ty::Variance,

    /// The root term (const or type) we're generalizing. Used for cycle errors.
    root_term: Term<'tcx>,

    cache: SsoHashMap<Ty<'tcx>, Ty<'tcx>>,

    /// This is set once we're generalizing the arguments of an alias.
    ///
    /// This is necessary to correctly handle
    /// `<T as Bar<<?0 as Foo>::Assoc>::Assoc == ?0`. This equality can
    /// hold by either normalizing the outer or the inner associated type.
    in_alias: bool,

    /// See the field `has_unconstrained_ty_var` in `Generalization`.
    has_unconstrained_ty_var: bool,
}

impl<'tcx> Generalizer<'_, 'tcx> {
    /// Create an error that corresponds to the term kind in `root_term`
    fn cyclic_term_error(&self) -> TypeError<'tcx> {
        match self.root_term.unpack() {
            ty::TermKind::Ty(ty) => TypeError::CyclicTy(ty),
            ty::TermKind::Const(ct) => TypeError::CyclicConst(ct),
        }
    }

    /// Create a new type variable in the universe of the target when
    /// generalizing an alias. This has to set `has_unconstrained_ty_var`
    /// if we're currently in a bivariant context.
    fn next_ty_var_for_alias(&mut self) -> Ty<'tcx> {
        self.has_unconstrained_ty_var |= self.ambient_variance == ty::Bivariant;
        self.infcx.next_ty_var_in_universe(self.span, self.for_universe)
    }

    /// An occurs check failure inside of an alias does not mean
    /// that the types definitely don't unify. We may be able
    /// to normalize the alias after all.
    ///
    /// We handle this by lazily equating the alias and generalizing
    /// it to an inference variable. In the new solver, we always
    /// generalize to an infer var unless the alias contains escaping
    /// bound variables.
    ///
    /// Correctly handling aliases with escaping bound variables is
    /// difficult and currently incomplete in two opposite ways:
    /// - if we get an occurs check failure in the alias, replace it with a new infer var.
    ///   This causes us to later emit an alias-relate goal and is incomplete in case the
    ///   alias normalizes to type containing one of the bound variables.
    /// - if the alias contains an inference variable not nameable by `for_universe`, we
    ///   continue generalizing the alias. This ends up pulling down the universe of the
    ///   inference variable and is incomplete in case the alias would normalize to a type
    ///   which does not mention that inference variable.
    fn generalize_alias_ty(
        &mut self,
        alias: ty::AliasTy<'tcx>,
    ) -> Result<Ty<'tcx>, TypeError<'tcx>> {
        // We do not eagerly replace aliases with inference variables if they have
        // escaping bound vars, see the method comment for details. However, when we
        // are inside of an alias with escaping bound vars replacing nested aliases
        // with inference variables can cause incorrect ambiguity.
        //
        // cc trait-system-refactor-initiative#110
        if self.infcx.next_trait_solver() && !alias.has_escaping_bound_vars() && !self.in_alias {
            return Ok(self.next_ty_var_for_alias());
        }

        let is_nested_alias = mem::replace(&mut self.in_alias, true);
        let result = match self.relate(alias, alias) {
            Ok(alias) => Ok(alias.to_ty(self.cx())),
            Err(e) => {
                if is_nested_alias {
                    return Err(e);
                } else {
                    let mut visitor = MaxUniverse::new();
                    alias.visit_with(&mut visitor);
                    let infer_replacement_is_complete =
                        self.for_universe.can_name(visitor.max_universe())
                            && !alias.has_escaping_bound_vars();
                    if !infer_replacement_is_complete {
                        warn!("may incompletely handle alias type: {alias:?}");
                    }

                    debug!("generalization failure in alias");
                    Ok(self.next_ty_var_for_alias())
                }
            }
        };
        self.in_alias = is_nested_alias;
        result
    }
}

impl<'tcx> TypeRelation<TyCtxt<'tcx>> for Generalizer<'_, 'tcx> {
    fn cx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn relate_item_args(
        &mut self,
        item_def_id: DefId,
        a_arg: ty::GenericArgsRef<'tcx>,
        b_arg: ty::GenericArgsRef<'tcx>,
    ) -> RelateResult<'tcx, ty::GenericArgsRef<'tcx>> {
        if self.ambient_variance == ty::Invariant {
            // Avoid fetching the variance if we are in an invariant
            // context; no need, and it can induce dependency cycles
            // (e.g., #41849).
            relate::relate_args_invariantly(self, a_arg, b_arg)
        } else {
            let tcx = self.cx();
            let opt_variances = tcx.variances_of(item_def_id);
            relate::relate_args_with_variances(
                self,
                item_def_id,
                opt_variances,
                a_arg,
                b_arg,
                false,
            )
        }
    }

    #[instrument(level = "debug", skip(self, variance, b), ret)]
    fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
        &mut self,
        variance: ty::Variance,
        _info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        let old_ambient_variance = self.ambient_variance;
        self.ambient_variance = self.ambient_variance.xform(variance);
        debug!(?self.ambient_variance, "new ambient variance");
        // Recursive calls to `relate` can overflow the stack. For example a deeper version of
        // `ui/associated-consts/issue-93775.rs`.
        let r = ensure_sufficient_stack(|| self.relate(a, b));
        self.ambient_variance = old_ambient_variance;
        r
    }

    #[instrument(level = "debug", skip(self, t2), ret)]
    fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        assert_eq!(t, t2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==

        if let Some(&result) = self.cache.get(&t) {
            return Ok(result);
        }

        // Check to see whether the type we are generalizing references
        // any other type variable related to `vid` via
        // subtyping. This is basically our "occurs check", preventing
        // us from creating infinitely sized types.
        let g = match *t.kind() {
            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("unexpected infer type: {t}")
            }

            ty::Infer(ty::TyVar(vid)) => {
                let mut inner = self.infcx.inner.borrow_mut();
                let vid = inner.type_variables().root_var(vid);
                if ty::TermVid::Ty(vid) == self.root_vid {
                    // If sub-roots are equal, then `root_vid` and
                    // `vid` are related via subtyping.
                    Err(self.cyclic_term_error())
                } else {
                    let probe = inner.type_variables().probe(vid);
                    match probe {
                        TypeVariableValue::Known { value: u } => {
                            drop(inner);
                            self.relate(u, u)
                        }
                        TypeVariableValue::Unknown { universe } => {
                            match self.ambient_variance {
                                // Invariant: no need to make a fresh type variable
                                // if we can name the universe.
                                ty::Invariant => {
                                    if self.for_universe.can_name(universe) {
                                        return Ok(t);
                                    }
                                }

                                // Bivariant: make a fresh var, but remember that
                                // it is unconstrained. See the comment in
                                // `Generalization`.
                                ty::Bivariant => self.has_unconstrained_ty_var = true,

                                // Co/contravariant: this will be
                                // sufficiently constrained later on.
                                ty::Covariant | ty::Contravariant => (),
                            }

                            let origin = inner.type_variables().var_origin(vid);
                            let new_var_id =
                                inner.type_variables().new_var(self.for_universe, origin);
                            // If we're in the new solver and create a new inference
                            // variable inside of an alias we eagerly constrain that
                            // inference variable to prevent unexpected ambiguity errors.
                            //
                            // This is incomplete as it pulls down the universe of the
                            // original inference variable, even though the alias could
                            // normalize to a type which does not refer to that type at
                            // all. I don't expect this to cause unexpected errors in
                            // practice.
                            //
                            // We only need to do so for type and const variables, as
                            // region variables do not impact normalization, and will get
                            // correctly constrained by `AliasRelate` later on.
                            //
                            // cc trait-system-refactor-initiative#108
                            if self.infcx.next_trait_solver()
                                && !self.infcx.intercrate
                                && self.in_alias
                            {
                                inner.type_variables().equate(vid, new_var_id);
                            }

                            debug!("replacing original vid={:?} with new={:?}", vid, new_var_id);
                            Ok(Ty::new_var(self.cx(), new_var_id))
                        }
                    }
                }
            }

            ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) => {
                // No matter what mode we are in,
                // integer/floating-point types must be equal to be
                // relatable.
                Ok(t)
            }

            ty::Placeholder(placeholder) => {
                if self.for_universe.can_name(placeholder.universe) {
                    Ok(t)
                } else {
                    debug!(
                        "root universe {:?} cannot name placeholder in universe {:?}",
                        self.for_universe, placeholder.universe
                    );
                    Err(TypeError::Mismatch)
                }
            }

            ty::Alias(_, data) => match self.structurally_relate_aliases {
                StructurallyRelateAliases::No => self.generalize_alias_ty(data),
                StructurallyRelateAliases::Yes => relate::structurally_relate_tys(self, t, t),
            },

            _ => relate::structurally_relate_tys(self, t, t),
        }?;

        self.cache.insert(t, g);
        Ok(g)
    }

    #[instrument(level = "debug", skip(self, r2), ret)]
    fn regions(
        &mut self,
        r: ty::Region<'tcx>,
        r2: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        assert_eq!(r, r2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==

        match *r {
            // Never make variables for regions bound within the type itself,
            // nor for erased regions.
            ty::ReBound(..) | ty::ReErased => {
                return Ok(r);
            }

            // It doesn't really matter for correctness if we generalize ReError,
            // since we're already on a doomed compilation path.
            ty::ReError(_) => {
                return Ok(r);
            }

            ty::RePlaceholder(..)
            | ty::ReVar(..)
            | ty::ReStatic
            | ty::ReEarlyParam(..)
            | ty::ReLateParam(..) => {
                // see common code below
            }
        }

        // If we are in an invariant context, we can re-use the region
        // as is, unless it happens to be in some universe that we
        // can't name.
        if let ty::Invariant = self.ambient_variance {
            let r_universe = self.infcx.universe_of_region(r);
            if self.for_universe.can_name(r_universe) {
                return Ok(r);
            }
        }

        Ok(self.infcx.next_region_var_in_universe(
            RegionVariableOrigin::MiscVariable(self.span),
            self.for_universe,
        ))
    }

    #[instrument(level = "debug", skip(self, c2), ret)]
    fn consts(
        &mut self,
        c: ty::Const<'tcx>,
        c2: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        assert_eq!(c, c2); // we are misusing TypeRelation here; both LHS and RHS ought to be ==

        match c.kind() {
            ty::ConstKind::Infer(InferConst::Var(vid)) => {
                // If root const vids are equal, then `root_vid` and
                // `vid` are related and we'd be inferring an infinitely
                // deep const.
                if ty::TermVid::Const(
                    self.infcx.inner.borrow_mut().const_unification_table().find(vid).vid,
                ) == self.root_vid
                {
                    return Err(self.cyclic_term_error());
                }

                let mut inner = self.infcx.inner.borrow_mut();
                let variable_table = &mut inner.const_unification_table();
                match variable_table.probe_value(vid) {
                    ConstVariableValue::Known { value: u } => {
                        drop(inner);
                        self.relate(u, u)
                    }
                    ConstVariableValue::Unknown { origin, universe } => {
                        if self.for_universe.can_name(universe) {
                            Ok(c)
                        } else {
                            let new_var_id = variable_table
                                .new_key(ConstVariableValue::Unknown {
                                    origin,
                                    universe: self.for_universe,
                                })
                                .vid;

                            // See the comment for type inference variables
                            // for more details.
                            if self.infcx.next_trait_solver()
                                && !self.infcx.intercrate
                                && self.in_alias
                            {
                                variable_table.union(vid, new_var_id);
                            }
                            Ok(ty::Const::new_var(self.cx(), new_var_id))
                        }
                    }
                }
            }
            ty::ConstKind::Infer(InferConst::EffectVar(_)) => Ok(c),
            // FIXME: Unevaluated constants are also not rigid, so the current
            // approach of always relating them structurally is incomplete.
            //
            // FIXME: remove this branch once `structurally_relate_consts` is fully
            // structural.
            ty::ConstKind::Unevaluated(ty::UnevaluatedConst { def, args }) => {
                let args = self.relate_with_variance(
                    ty::Invariant,
                    ty::VarianceDiagInfo::default(),
                    args,
                    args,
                )?;
                Ok(ty::Const::new_unevaluated(self.cx(), ty::UnevaluatedConst { def, args }))
            }
            ty::ConstKind::Placeholder(placeholder) => {
                if self.for_universe.can_name(placeholder.universe) {
                    Ok(c)
                } else {
                    debug!(
                        "root universe {:?} cannot name placeholder in universe {:?}",
                        self.for_universe, placeholder.universe
                    );
                    Err(TypeError::Mismatch)
                }
            }
            _ => relate::structurally_relate_consts(self, c, c),
        }
    }

    #[instrument(level = "debug", skip(self), ret)]
    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        _: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<TyCtxt<'tcx>>,
    {
        let result = self.relate(a.skip_binder(), a.skip_binder())?;
        Ok(a.rebind(result))
    }
}

/// Result from a generalization operation. This includes
/// not only the generalized type, but also a bool flag
/// indicating whether further WF checks are needed.
#[derive(Debug)]
struct Generalization<T> {
    /// When generalizing `<?0 as Trait>::Assoc` or
    /// `<T as Bar<<?0 as Foo>::Assoc>>::Assoc`
    /// for `?0` generalization returns an inference
    /// variable.
    ///
    /// This has to be handled wotj care as it can
    /// otherwise very easily result in infinite
    /// recursion.
    pub value_may_be_infer: T,

    /// In general, we do not check whether all types which occur during
    /// type checking are well-formed. We only check wf of user-provided types
    /// and when actually using a type, e.g. for method calls.
    ///
    /// This means that when subtyping, we may end up with unconstrained
    /// inference variables if a generalized type has bivariant parameters.
    /// A parameter may only be bivariant if it is constrained by a projection
    /// bound in a where-clause. As an example, imagine a type:
    ///
    ///     struct Foo<A, B> where A: Iterator<Item = B> {
    ///         data: A
    ///     }
    ///
    /// here, `A` will be covariant, but `B` is unconstrained.
    ///
    /// However, whatever it is, for `Foo` to be WF, it must be equal to `A::Item`.
    /// If we have an input `Foo<?A, ?B>`, then after generalization we will wind
    /// up with a type like `Foo<?C, ?D>`. When we enforce `Foo<?A, ?B> <: Foo<?C, ?D>`,
    /// we will wind up with the requirement that `?A <: ?C`, but no particular
    /// relationship between `?B` and `?D` (after all, these types may be completely
    /// different). If we do nothing else, this may mean that `?D` goes unconstrained
    /// (as in #41677). To avoid this we emit a `WellFormed` obligation in these cases.
    pub has_unconstrained_ty_var: bool,
}