1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use std::borrow::{Borrow, BorrowMut};
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut, RangeBounds};
use std::{fmt, slice, vec};

#[cfg(feature = "nightly")]
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};

use crate::{Idx, IndexSlice};

/// An owned contiguous collection of `T`s, indexed by `I` rather than by `usize`.
///
/// ## Why use this instead of a `Vec`?
///
/// An `IndexVec` allows element access only via a specific associated index type, meaning that
/// trying to use the wrong index type (possibly accessing an invalid element) will fail at
/// compile time.
///
/// It also documents what the index is indexing: in a `HashMap<usize, Something>` it's not
/// immediately clear what the `usize` means, while a `HashMap<FieldIdx, Something>` makes it obvious.
///
/// ```compile_fail
/// use rustc_index::{Idx, IndexVec};
///
/// fn f<I1: Idx, I2: Idx>(vec1: IndexVec<I1, u8>, idx1: I1, idx2: I2) {
///   &vec1[idx1]; // Ok
///   &vec1[idx2]; // Compile error!
/// }
/// ```
///
/// While it's possible to use `u32` or `usize` directly for `I`,
/// you almost certainly want to use a [`newtype_index!`]-generated type instead.
///
/// This allows to index the IndexVec with the new index type.
///
/// [`newtype_index!`]: ../macro.newtype_index.html
#[derive(Clone, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct IndexVec<I: Idx, T> {
    pub raw: Vec<T>,
    _marker: PhantomData<fn(&I)>,
}

impl<I: Idx, T> IndexVec<I, T> {
    /// Constructs a new, empty `IndexVec<I, T>`.
    #[inline]
    pub const fn new() -> Self {
        IndexVec::from_raw(Vec::new())
    }

    /// Constructs a new `IndexVec<I, T>` from a `Vec<T>`.
    #[inline]
    pub const fn from_raw(raw: Vec<T>) -> Self {
        IndexVec { raw, _marker: PhantomData }
    }

    #[inline]
    pub fn with_capacity(capacity: usize) -> Self {
        IndexVec::from_raw(Vec::with_capacity(capacity))
    }

    /// Creates a new vector with a copy of `elem` for each index in `universe`.
    ///
    /// Thus `IndexVec::from_elem(elem, &universe)` is equivalent to
    /// `IndexVec::<I, _>::from_elem_n(elem, universe.len())`. That can help
    /// type inference as it ensures that the resulting vector uses the same
    /// index type as `universe`, rather than something potentially surprising.
    ///
    /// For example, if you want to store data for each local in a MIR body,
    /// using `let mut uses = IndexVec::from_elem(vec![], &body.local_decls);`
    /// ensures that `uses` is an `IndexVec<Local, _>`, and thus can give
    /// better error messages later if one accidentally mismatches indices.
    #[inline]
    pub fn from_elem<S>(elem: T, universe: &IndexSlice<I, S>) -> Self
    where
        T: Clone,
    {
        IndexVec::from_raw(vec![elem; universe.len()])
    }

    /// Creates a new IndexVec with n copies of the `elem`.
    #[inline]
    pub fn from_elem_n(elem: T, n: usize) -> Self
    where
        T: Clone,
    {
        IndexVec::from_raw(vec![elem; n])
    }

    /// Create an `IndexVec` with `n` elements, where the value of each
    /// element is the result of `func(i)`. (The underlying vector will
    /// be allocated only once, with a capacity of at least `n`.)
    #[inline]
    pub fn from_fn_n(func: impl FnMut(I) -> T, n: usize) -> Self {
        IndexVec::from_raw((0..n).map(I::new).map(func).collect())
    }

    #[inline]
    pub fn as_slice(&self) -> &IndexSlice<I, T> {
        IndexSlice::from_raw(&self.raw)
    }

    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut IndexSlice<I, T> {
        IndexSlice::from_raw_mut(&mut self.raw)
    }

    /// Pushes an element to the array returning the index where it was pushed to.
    #[inline]
    pub fn push(&mut self, d: T) -> I {
        let idx = self.next_index();
        self.raw.push(d);
        idx
    }

    #[inline]
    pub fn pop(&mut self) -> Option<T> {
        self.raw.pop()
    }

    #[inline]
    pub fn into_iter(self) -> vec::IntoIter<T> {
        self.raw.into_iter()
    }

    #[inline]
    pub fn into_iter_enumerated(
        self,
    ) -> impl DoubleEndedIterator<Item = (I, T)> + ExactSizeIterator {
        self.raw.into_iter().enumerate().map(|(n, t)| (I::new(n), t))
    }

    #[inline]
    pub fn drain<R: RangeBounds<usize>>(&mut self, range: R) -> impl Iterator<Item = T> + '_ {
        self.raw.drain(range)
    }

    #[inline]
    pub fn drain_enumerated<R: RangeBounds<usize>>(
        &mut self,
        range: R,
    ) -> impl Iterator<Item = (I, T)> + '_ {
        let begin = match range.start_bound() {
            std::ops::Bound::Included(i) => *i,
            std::ops::Bound::Excluded(i) => i.checked_add(1).unwrap(),
            std::ops::Bound::Unbounded => 0,
        };
        self.raw.drain(range).enumerate().map(move |(n, t)| (I::new(begin + n), t))
    }

    #[inline]
    pub fn shrink_to_fit(&mut self) {
        self.raw.shrink_to_fit()
    }

    #[inline]
    pub fn truncate(&mut self, a: usize) {
        self.raw.truncate(a)
    }

    /// Grows the index vector so that it contains an entry for
    /// `elem`; if that is already true, then has no
    /// effect. Otherwise, inserts new values as needed by invoking
    /// `fill_value`.
    ///
    /// Returns a reference to the `elem` entry.
    #[inline]
    pub fn ensure_contains_elem(&mut self, elem: I, fill_value: impl FnMut() -> T) -> &mut T {
        let min_new_len = elem.index() + 1;
        if self.len() < min_new_len {
            self.raw.resize_with(min_new_len, fill_value);
        }

        &mut self[elem]
    }

    #[inline]
    pub fn resize(&mut self, new_len: usize, value: T)
    where
        T: Clone,
    {
        self.raw.resize(new_len, value)
    }

    #[inline]
    pub fn resize_to_elem(&mut self, elem: I, fill_value: impl FnMut() -> T) {
        let min_new_len = elem.index() + 1;
        self.raw.resize_with(min_new_len, fill_value);
    }

    #[inline]
    pub fn append(&mut self, other: &mut Self) {
        self.raw.append(&mut other.raw);
    }
}

/// `IndexVec` is often used as a map, so it provides some map-like APIs.
impl<I: Idx, T> IndexVec<I, Option<T>> {
    #[inline]
    pub fn insert(&mut self, index: I, value: T) -> Option<T> {
        self.ensure_contains_elem(index, || None).replace(value)
    }

    #[inline]
    pub fn get_or_insert_with(&mut self, index: I, value: impl FnOnce() -> T) -> &mut T {
        self.ensure_contains_elem(index, || None).get_or_insert_with(value)
    }

    #[inline]
    pub fn remove(&mut self, index: I) -> Option<T> {
        self.get_mut(index)?.take()
    }

    #[inline]
    pub fn contains(&self, index: I) -> bool {
        self.get(index).and_then(Option::as_ref).is_some()
    }
}

impl<I: Idx, T: fmt::Debug> fmt::Debug for IndexVec<I, T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&self.raw, fmt)
    }
}

impl<I: Idx, T> Deref for IndexVec<I, T> {
    type Target = IndexSlice<I, T>;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

impl<I: Idx, T> DerefMut for IndexVec<I, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}

impl<I: Idx, T> Borrow<IndexSlice<I, T>> for IndexVec<I, T> {
    fn borrow(&self) -> &IndexSlice<I, T> {
        self
    }
}

impl<I: Idx, T> BorrowMut<IndexSlice<I, T>> for IndexVec<I, T> {
    fn borrow_mut(&mut self) -> &mut IndexSlice<I, T> {
        self
    }
}

impl<I: Idx, T> Extend<T> for IndexVec<I, T> {
    #[inline]
    fn extend<J: IntoIterator<Item = T>>(&mut self, iter: J) {
        self.raw.extend(iter);
    }

    #[inline]
    #[cfg(feature = "nightly")]
    fn extend_one(&mut self, item: T) {
        self.raw.push(item);
    }

    #[inline]
    #[cfg(feature = "nightly")]
    fn extend_reserve(&mut self, additional: usize) {
        self.raw.reserve(additional);
    }
}

impl<I: Idx, T> FromIterator<T> for IndexVec<I, T> {
    #[inline]
    fn from_iter<J>(iter: J) -> Self
    where
        J: IntoIterator<Item = T>,
    {
        IndexVec::from_raw(Vec::from_iter(iter))
    }
}

impl<I: Idx, T> IntoIterator for IndexVec<I, T> {
    type Item = T;
    type IntoIter = vec::IntoIter<T>;

    #[inline]
    fn into_iter(self) -> vec::IntoIter<T> {
        self.raw.into_iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a IndexVec<I, T> {
    type Item = &'a T;
    type IntoIter = slice::Iter<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::Iter<'a, T> {
        self.iter()
    }
}

impl<'a, I: Idx, T> IntoIterator for &'a mut IndexVec<I, T> {
    type Item = &'a mut T;
    type IntoIter = slice::IterMut<'a, T>;

    #[inline]
    fn into_iter(self) -> slice::IterMut<'a, T> {
        self.iter_mut()
    }
}

impl<I: Idx, T> Default for IndexVec<I, T> {
    #[inline]
    fn default() -> Self {
        IndexVec::new()
    }
}

impl<I: Idx, T, const N: usize> From<[T; N]> for IndexVec<I, T> {
    #[inline]
    fn from(array: [T; N]) -> Self {
        IndexVec::from_raw(array.into())
    }
}

#[cfg(feature = "nightly")]
impl<S: Encoder, I: Idx, T: Encodable<S>> Encodable<S> for IndexVec<I, T> {
    fn encode(&self, s: &mut S) {
        Encodable::encode(&self.raw, s);
    }
}

#[cfg(feature = "nightly")]
impl<D: Decoder, I: Idx, T: Decodable<D>> Decodable<D> for IndexVec<I, T> {
    fn decode(d: &mut D) -> Self {
        IndexVec::from_raw(Vec::<T>::decode(d))
    }
}

// Whether `IndexVec` is `Send` depends only on the data,
// not the phantom data.
unsafe impl<I: Idx, T> Send for IndexVec<I, T> where T: Send {}

#[cfg(test)]
mod tests;