1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
use rustc_data_structures::fx::FxHashMap;
use rustc_span::def_id::DefId;
use rustc_span::Span;
use tracing::{debug, instrument, trace};
use crate::error::ConstNotUsedTraitAlias;
use crate::ty::fold::{TypeFolder, TypeSuperFoldable};
use crate::ty::{self, GenericArg, GenericArgKind, Ty, TyCtxt, TypeFoldable};
pub type OpaqueTypeKey<'tcx> = rustc_type_ir::OpaqueTypeKey<TyCtxt<'tcx>>;
/// Converts generic params of a TypeFoldable from one
/// item's generics to another. Usually from a function's generics
/// list to the opaque type's own generics.
pub(super) struct ReverseMapper<'tcx> {
tcx: TyCtxt<'tcx>,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
/// see call sites to fold_kind_no_missing_regions_error
/// for an explanation of this field.
do_not_error: bool,
/// We do not want to emit any errors in typeck because
/// the spans in typeck are subpar at the moment.
/// Borrowck will do the same work again (this time with
/// lifetime information) and thus report better errors.
ignore_errors: bool,
/// Span of function being checked.
span: Span,
}
impl<'tcx> ReverseMapper<'tcx> {
pub(super) fn new(
tcx: TyCtxt<'tcx>,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
span: Span,
ignore_errors: bool,
) -> Self {
Self { tcx, map, do_not_error: false, ignore_errors, span }
}
fn fold_kind_no_missing_regions_error(&mut self, kind: GenericArg<'tcx>) -> GenericArg<'tcx> {
assert!(!self.do_not_error);
self.do_not_error = true;
let kind = kind.fold_with(self);
self.do_not_error = false;
kind
}
fn fold_kind_normally(&mut self, kind: GenericArg<'tcx>) -> GenericArg<'tcx> {
assert!(!self.do_not_error);
kind.fold_with(self)
}
fn fold_closure_args(
&mut self,
def_id: DefId,
args: ty::GenericArgsRef<'tcx>,
) -> ty::GenericArgsRef<'tcx> {
// I am a horrible monster and I pray for death. When
// we encounter a closure here, it is always a closure
// from within the function that we are currently
// type-checking -- one that is now being encapsulated
// in an opaque type. Ideally, we would
// go through the types/lifetimes that it references
// and treat them just like we would any other type,
// which means we would error out if we find any
// reference to a type/region that is not in the
// "reverse map".
//
// **However,** in the case of closures, there is a
// somewhat subtle (read: hacky) consideration. The
// problem is that our closure types currently include
// all the lifetime parameters declared on the
// enclosing function, even if they are unused by the
// closure itself. We can't readily filter them out,
// so here we replace those values with `'empty`. This
// can't really make a difference to the rest of the
// compiler; those regions are ignored for the
// outlives relation, and hence don't affect trait
// selection or auto traits, and they are erased
// during codegen.
let generics = self.tcx.generics_of(def_id);
self.tcx.mk_args_from_iter(args.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_no_missing_regions_error(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}))
}
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReverseMapper<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
#[instrument(skip(self), level = "debug")]
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
// Ignore bound regions and `'static` regions that appear in the
// type, we only need to remap regions that reference lifetimes
// from the function declaration.
//
// E.g. We ignore `'r` in a type like `for<'r> fn(&'r u32)`.
ty::ReBound(..) | ty::ReStatic => return r,
// If regions have been erased (by writeback), don't try to unerase
// them.
ty::ReErased => return r,
ty::ReError(_) => return r,
// The regions that we expect from borrow checking.
ty::ReEarlyParam(_) | ty::ReLateParam(_) => {}
ty::RePlaceholder(_) | ty::ReVar(_) => {
// All of the regions in the type should either have been
// erased by writeback, or mapped back to named regions by
// borrow checking.
bug!("unexpected region kind in opaque type: {:?}", r);
}
}
match self.map.get(&r.into()).map(|k| k.unpack()) {
Some(GenericArgKind::Lifetime(r1)) => r1,
Some(u) => panic!("region mapped to unexpected kind: {u:?}"),
None if self.do_not_error => self.tcx.lifetimes.re_static,
None => {
let e = self
.tcx
.dcx()
.struct_span_err(self.span, "non-defining opaque type use in defining scope")
.with_span_label(
self.span,
format!(
"lifetime `{r}` is part of concrete type but not used in \
parameter list of the `impl Trait` type alias"
),
)
.emit();
ty::Region::new_error(self.cx(), e)
}
}
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match *ty.kind() {
ty::Closure(def_id, args) => {
let args = self.fold_closure_args(def_id, args);
Ty::new_closure(self.tcx, def_id, args)
}
ty::Coroutine(def_id, args) => {
let args = self.fold_closure_args(def_id, args);
Ty::new_coroutine(self.tcx, def_id, args)
}
ty::CoroutineWitness(def_id, args) => {
let args = self.fold_closure_args(def_id, args);
Ty::new_coroutine_witness(self.tcx, def_id, args)
}
ty::Param(param) => {
// Look it up in the generic parameters list.
match self.map.get(&ty.into()).map(|k| k.unpack()) {
// Found it in the generic parameters list; replace with the parameter from the
// opaque type.
Some(GenericArgKind::Type(t1)) => t1,
Some(u) => panic!("type mapped to unexpected kind: {u:?}"),
None => {
debug!(?param, ?self.map);
if !self.ignore_errors {
self.tcx
.dcx()
.struct_span_err(
self.span,
format!(
"type parameter `{ty}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias"
),
)
.emit();
}
Ty::new_misc_error(self.tcx)
}
}
}
_ => ty.super_fold_with(self),
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
trace!("checking const {:?}", ct);
// Find a const parameter
match ct.kind() {
ty::ConstKind::Param(..) => {
// Look it up in the generic parameters list.
match self.map.get(&ct.into()).map(|k| k.unpack()) {
// Found it in the generic parameters list, replace with the parameter from the
// opaque type.
Some(GenericArgKind::Const(c1)) => c1,
Some(u) => panic!("const mapped to unexpected kind: {u:?}"),
None => {
let guar = self
.tcx
.dcx()
.create_err(ConstNotUsedTraitAlias {
ct: ct.to_string(),
span: self.span,
})
.emit_unless(self.ignore_errors);
ty::Const::new_error(self.tcx, guar)
}
}
}
_ => ct,
}
}
}