1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
//! Inlining pass for MIR functions.

use std::iter;
use std::ops::{Range, RangeFrom};

use rustc_attr::InlineAttr;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_index::bit_set::BitSet;
use rustc_index::Idx;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::{
    self, Instance, InstanceKind, ParamEnv, Ty, TyCtxt, TypeFlags, TypeVisitableExt,
};
use rustc_session::config::{DebugInfo, OptLevel};
use rustc_span::source_map::Spanned;
use rustc_span::sym;
use rustc_target::abi::FieldIdx;
use rustc_target::spec::abi::Abi;
use tracing::{debug, instrument, trace, trace_span};

use crate::cost_checker::CostChecker;
use crate::deref_separator::deref_finder;
use crate::simplify::simplify_cfg;
use crate::util;
use crate::validate::validate_types;

pub(crate) mod cycle;

const TOP_DOWN_DEPTH_LIMIT: usize = 5;

pub struct Inline;

#[derive(Copy, Clone, Debug)]
struct CallSite<'tcx> {
    callee: Instance<'tcx>,
    fn_sig: ty::PolyFnSig<'tcx>,
    block: BasicBlock,
    source_info: SourceInfo,
}

impl<'tcx> MirPass<'tcx> for Inline {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        // FIXME(#127234): Coverage instrumentation currently doesn't handle inlined
        // MIR correctly when Modified Condition/Decision Coverage is enabled.
        if sess.instrument_coverage_mcdc() {
            return false;
        }

        if let Some(enabled) = sess.opts.unstable_opts.inline_mir {
            return enabled;
        }

        match sess.mir_opt_level() {
            0 | 1 => false,
            2 => {
                (sess.opts.optimize == OptLevel::Default
                    || sess.opts.optimize == OptLevel::Aggressive)
                    && sess.opts.incremental == None
            }
            _ => true,
        }
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        let span = trace_span!("inline", body = %tcx.def_path_str(body.source.def_id()));
        let _guard = span.enter();
        if inline(tcx, body) {
            debug!("running simplify cfg on {:?}", body.source);
            simplify_cfg(body);
            deref_finder(tcx, body);
        }
    }
}

fn inline<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) -> bool {
    let def_id = body.source.def_id().expect_local();

    // Only do inlining into fn bodies.
    if !tcx.hir().body_owner_kind(def_id).is_fn_or_closure() {
        return false;
    }
    if body.source.promoted.is_some() {
        return false;
    }
    // Avoid inlining into coroutines, since their `optimized_mir` is used for layout computation,
    // which can create a cycle, even when no attempt is made to inline the function in the other
    // direction.
    if body.coroutine.is_some() {
        return false;
    }

    let param_env = tcx.param_env_reveal_all_normalized(def_id);
    let codegen_fn_attrs = tcx.codegen_fn_attrs(def_id);

    let mut this = Inliner {
        tcx,
        param_env,
        codegen_fn_attrs,
        history: Vec::new(),
        changed: false,
        caller_is_inline_forwarder: matches!(
            codegen_fn_attrs.inline,
            InlineAttr::Hint | InlineAttr::Always
        ) && body_is_forwarder(body),
    };
    let blocks = START_BLOCK..body.basic_blocks.next_index();
    this.process_blocks(body, blocks);
    this.changed
}

struct Inliner<'tcx> {
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    /// Caller codegen attributes.
    codegen_fn_attrs: &'tcx CodegenFnAttrs,
    /// Stack of inlined instances.
    /// We only check the `DefId` and not the args because we want to
    /// avoid inlining cases of polymorphic recursion.
    /// The number of `DefId`s is finite, so checking history is enough
    /// to ensure that we do not loop endlessly while inlining.
    history: Vec<DefId>,
    /// Indicates that the caller body has been modified.
    changed: bool,
    /// Indicates that the caller is #[inline] and just calls another function,
    /// and thus we can inline less into it as it'll be inlined itself.
    caller_is_inline_forwarder: bool,
}

impl<'tcx> Inliner<'tcx> {
    fn process_blocks(&mut self, caller_body: &mut Body<'tcx>, blocks: Range<BasicBlock>) {
        // How many callsites in this body are we allowed to inline? We need to limit this in order
        // to prevent super-linear growth in MIR size
        let inline_limit = match self.history.len() {
            0 => usize::MAX,
            1..=TOP_DOWN_DEPTH_LIMIT => 1,
            _ => return,
        };
        let mut inlined_count = 0;
        for bb in blocks {
            let bb_data = &caller_body[bb];
            if bb_data.is_cleanup {
                continue;
            }

            let Some(callsite) = self.resolve_callsite(caller_body, bb, bb_data) else {
                continue;
            };

            let span = trace_span!("process_blocks", %callsite.callee, ?bb);
            let _guard = span.enter();

            match self.try_inlining(caller_body, &callsite) {
                Err(reason) => {
                    debug!("not-inlined {} [{}]", callsite.callee, reason);
                    continue;
                }
                Ok(new_blocks) => {
                    debug!("inlined {}", callsite.callee);
                    self.changed = true;

                    self.history.push(callsite.callee.def_id());
                    self.process_blocks(caller_body, new_blocks);
                    self.history.pop();

                    inlined_count += 1;
                    if inlined_count == inline_limit {
                        debug!("inline count reached");
                        return;
                    }
                }
            }
        }
    }

    /// Attempts to inline a callsite into the caller body. When successful returns basic blocks
    /// containing the inlined body. Otherwise returns an error describing why inlining didn't take
    /// place.
    fn try_inlining(
        &self,
        caller_body: &mut Body<'tcx>,
        callsite: &CallSite<'tcx>,
    ) -> Result<std::ops::Range<BasicBlock>, &'static str> {
        self.check_mir_is_available(caller_body, callsite.callee)?;

        let callee_attrs = self.tcx.codegen_fn_attrs(callsite.callee.def_id());
        let cross_crate_inlinable = self.tcx.cross_crate_inlinable(callsite.callee.def_id());
        self.check_codegen_attributes(callsite, callee_attrs, cross_crate_inlinable)?;

        // Intrinsic fallback bodies are automatically made cross-crate inlineable,
        // but at this stage we don't know whether codegen knows the intrinsic,
        // so just conservatively don't inline it.
        if self.tcx.has_attr(callsite.callee.def_id(), sym::rustc_intrinsic) {
            return Err("Callee is an intrinsic, do not inline fallback bodies");
        }

        let terminator = caller_body[callsite.block].terminator.as_ref().unwrap();
        let TerminatorKind::Call { args, destination, .. } = &terminator.kind else { bug!() };
        let destination_ty = destination.ty(&caller_body.local_decls, self.tcx).ty;
        for arg in args {
            if !arg.node.ty(&caller_body.local_decls, self.tcx).is_sized(self.tcx, self.param_env) {
                // We do not allow inlining functions with unsized params. Inlining these functions
                // could create unsized locals, which are unsound and being phased out.
                return Err("Call has unsized argument");
            }
        }

        let callee_body = try_instance_mir(self.tcx, callsite.callee.def)?;
        self.check_mir_body(callsite, callee_body, callee_attrs, cross_crate_inlinable)?;

        if !self.tcx.consider_optimizing(|| {
            format!("Inline {:?} into {:?}", callsite.callee, caller_body.source)
        }) {
            return Err("optimization fuel exhausted");
        }

        let Ok(callee_body) = callsite.callee.try_instantiate_mir_and_normalize_erasing_regions(
            self.tcx,
            self.param_env,
            ty::EarlyBinder::bind(callee_body.clone()),
        ) else {
            return Err("failed to normalize callee body");
        };

        // Normally, this shouldn't be required, but trait normalization failure can create a
        // validation ICE.
        if !validate_types(
            self.tcx,
            MirPhase::Runtime(RuntimePhase::Optimized),
            self.param_env,
            &callee_body,
            &caller_body,
        )
        .is_empty()
        {
            return Err("failed to validate callee body");
        }

        // Check call signature compatibility.
        // Normally, this shouldn't be required, but trait normalization failure can create a
        // validation ICE.
        let output_type = callee_body.return_ty();
        if !util::relate_types(self.tcx, self.param_env, ty::Covariant, output_type, destination_ty)
        {
            trace!(?output_type, ?destination_ty);
            return Err("failed to normalize return type");
        }
        if callsite.fn_sig.abi() == Abi::RustCall {
            // FIXME: Don't inline user-written `extern "rust-call"` functions,
            // since this is generally perf-negative on rustc, and we hope that
            // LLVM will inline these functions instead.
            if callee_body.spread_arg.is_some() {
                return Err("do not inline user-written rust-call functions");
            }

            let (self_arg, arg_tuple) = match &args[..] {
                [arg_tuple] => (None, arg_tuple),
                [self_arg, arg_tuple] => (Some(self_arg), arg_tuple),
                _ => bug!("Expected `rust-call` to have 1 or 2 args"),
            };

            let self_arg_ty =
                self_arg.map(|self_arg| self_arg.node.ty(&caller_body.local_decls, self.tcx));

            let arg_tuple_ty = arg_tuple.node.ty(&caller_body.local_decls, self.tcx);
            let ty::Tuple(arg_tuple_tys) = *arg_tuple_ty.kind() else {
                bug!("Closure arguments are not passed as a tuple");
            };

            for (arg_ty, input) in
                self_arg_ty.into_iter().chain(arg_tuple_tys).zip(callee_body.args_iter())
            {
                let input_type = callee_body.local_decls[input].ty;
                if !util::relate_types(self.tcx, self.param_env, ty::Covariant, input_type, arg_ty)
                {
                    trace!(?arg_ty, ?input_type);
                    return Err("failed to normalize tuple argument type");
                }
            }
        } else {
            for (arg, input) in args.iter().zip(callee_body.args_iter()) {
                let input_type = callee_body.local_decls[input].ty;
                let arg_ty = arg.node.ty(&caller_body.local_decls, self.tcx);
                if !util::relate_types(self.tcx, self.param_env, ty::Covariant, input_type, arg_ty)
                {
                    trace!(?arg_ty, ?input_type);
                    return Err("failed to normalize argument type");
                }
            }
        }

        let old_blocks = caller_body.basic_blocks.next_index();
        self.inline_call(caller_body, callsite, callee_body);
        let new_blocks = old_blocks..caller_body.basic_blocks.next_index();

        Ok(new_blocks)
    }

    fn check_mir_is_available(
        &self,
        caller_body: &Body<'tcx>,
        callee: Instance<'tcx>,
    ) -> Result<(), &'static str> {
        let caller_def_id = caller_body.source.def_id();
        let callee_def_id = callee.def_id();
        if callee_def_id == caller_def_id {
            return Err("self-recursion");
        }

        match callee.def {
            InstanceKind::Item(_) => {
                // If there is no MIR available (either because it was not in metadata or
                // because it has no MIR because it's an extern function), then the inliner
                // won't cause cycles on this.
                if !self.tcx.is_mir_available(callee_def_id) {
                    return Err("item MIR unavailable");
                }
            }
            // These have no own callable MIR.
            InstanceKind::Intrinsic(_) | InstanceKind::Virtual(..) => {
                return Err("instance without MIR (intrinsic / virtual)");
            }

            // FIXME(#127030): `ConstParamHasTy` has bad interactions with
            // the drop shim builder, which does not evaluate predicates in
            // the correct param-env for types being dropped. Stall resolving
            // the MIR for this instance until all of its const params are
            // substituted.
            InstanceKind::DropGlue(_, Some(ty)) if ty.has_type_flags(TypeFlags::HAS_CT_PARAM) => {
                return Err("still needs substitution");
            }

            // This cannot result in an immediate cycle since the callee MIR is a shim, which does
            // not get any optimizations run on it. Any subsequent inlining may cause cycles, but we
            // do not need to catch this here, we can wait until the inliner decides to continue
            // inlining a second time.
            InstanceKind::VTableShim(_)
            | InstanceKind::ReifyShim(..)
            | InstanceKind::FnPtrShim(..)
            | InstanceKind::ClosureOnceShim { .. }
            | InstanceKind::ConstructCoroutineInClosureShim { .. }
            | InstanceKind::DropGlue(..)
            | InstanceKind::CloneShim(..)
            | InstanceKind::ThreadLocalShim(..)
            | InstanceKind::FnPtrAddrShim(..)
            | InstanceKind::AsyncDropGlueCtorShim(..) => return Ok(()),
        }

        if self.tcx.is_constructor(callee_def_id) {
            trace!("constructors always have MIR");
            // Constructor functions cannot cause a query cycle.
            return Ok(());
        }

        if callee_def_id.is_local() {
            // Avoid a cycle here by only using `instance_mir` only if we have
            // a lower `DefPathHash` than the callee. This ensures that the callee will
            // not inline us. This trick even works with incremental compilation,
            // since `DefPathHash` is stable.
            if self.tcx.def_path_hash(caller_def_id).local_hash()
                < self.tcx.def_path_hash(callee_def_id).local_hash()
            {
                return Ok(());
            }

            // If we know for sure that the function we're calling will itself try to
            // call us, then we avoid inlining that function.
            if self.tcx.mir_callgraph_reachable((callee, caller_def_id.expect_local())) {
                return Err("caller might be reachable from callee (query cycle avoidance)");
            }

            Ok(())
        } else {
            // This cannot result in an immediate cycle since the callee MIR is from another crate
            // and is already optimized. Any subsequent inlining may cause cycles, but we do
            // not need to catch this here, we can wait until the inliner decides to continue
            // inlining a second time.
            trace!("functions from other crates always have MIR");
            Ok(())
        }
    }

    fn resolve_callsite(
        &self,
        caller_body: &Body<'tcx>,
        bb: BasicBlock,
        bb_data: &BasicBlockData<'tcx>,
    ) -> Option<CallSite<'tcx>> {
        // Only consider direct calls to functions
        let terminator = bb_data.terminator();

        // FIXME(explicit_tail_calls): figure out if we can inline tail calls
        if let TerminatorKind::Call { ref func, fn_span, .. } = terminator.kind {
            let func_ty = func.ty(caller_body, self.tcx);
            if let ty::FnDef(def_id, args) = *func_ty.kind() {
                // To resolve an instance its args have to be fully normalized.
                let args = self.tcx.try_normalize_erasing_regions(self.param_env, args).ok()?;
                let callee =
                    Instance::try_resolve(self.tcx, self.param_env, def_id, args).ok().flatten()?;

                if let InstanceKind::Virtual(..) | InstanceKind::Intrinsic(_) = callee.def {
                    return None;
                }

                if self.history.contains(&callee.def_id()) {
                    return None;
                }

                let fn_sig = self.tcx.fn_sig(def_id).instantiate(self.tcx, args);

                // Additionally, check that the body that we're inlining actually agrees
                // with the ABI of the trait that the item comes from.
                if let InstanceKind::Item(instance_def_id) = callee.def
                    && self.tcx.def_kind(instance_def_id) == DefKind::AssocFn
                    && let instance_fn_sig = self.tcx.fn_sig(instance_def_id).skip_binder()
                    && instance_fn_sig.abi() != fn_sig.abi()
                {
                    return None;
                }

                let source_info = SourceInfo { span: fn_span, ..terminator.source_info };

                return Some(CallSite { callee, fn_sig, block: bb, source_info });
            }
        }

        None
    }

    /// Returns an error if inlining is not possible based on codegen attributes alone. A success
    /// indicates that inlining decision should be based on other criteria.
    fn check_codegen_attributes(
        &self,
        callsite: &CallSite<'tcx>,
        callee_attrs: &CodegenFnAttrs,
        cross_crate_inlinable: bool,
    ) -> Result<(), &'static str> {
        if self.tcx.has_attr(callsite.callee.def_id(), sym::rustc_no_mir_inline) {
            return Err("#[rustc_no_mir_inline]");
        }

        if let InlineAttr::Never = callee_attrs.inline {
            return Err("never inline hint");
        }

        // Reachability pass defines which functions are eligible for inlining. Generally inlining
        // other functions is incorrect because they could reference symbols that aren't exported.
        let is_generic = callsite
            .callee
            .args
            .non_erasable_generics(self.tcx, callsite.callee.def_id())
            .next()
            .is_some();
        if !is_generic && !cross_crate_inlinable {
            return Err("not exported");
        }

        if callsite.fn_sig.c_variadic() {
            return Err("C variadic");
        }

        if callee_attrs.flags.contains(CodegenFnAttrFlags::COLD) {
            return Err("cold");
        }

        if callee_attrs.no_sanitize != self.codegen_fn_attrs.no_sanitize {
            return Err("incompatible sanitizer set");
        }

        // Two functions are compatible if the callee has no attribute (meaning
        // that it's codegen agnostic), or sets an attribute that is identical
        // to this function's attribute.
        if callee_attrs.instruction_set.is_some()
            && callee_attrs.instruction_set != self.codegen_fn_attrs.instruction_set
        {
            return Err("incompatible instruction set");
        }

        let callee_feature_names = callee_attrs.target_features.iter().map(|f| f.name);
        let this_feature_names = self.codegen_fn_attrs.target_features.iter().map(|f| f.name);
        if callee_feature_names.ne(this_feature_names) {
            // In general it is not correct to inline a callee with target features that are a
            // subset of the caller. This is because the callee might contain calls, and the ABI of
            // those calls depends on the target features of the surrounding function. By moving a
            // `Call` terminator from one MIR body to another with more target features, we might
            // change the ABI of that call!
            return Err("incompatible target features");
        }

        Ok(())
    }

    /// Returns inlining decision that is based on the examination of callee MIR body.
    /// Assumes that codegen attributes have been checked for compatibility already.
    #[instrument(level = "debug", skip(self, callee_body))]
    fn check_mir_body(
        &self,
        callsite: &CallSite<'tcx>,
        callee_body: &Body<'tcx>,
        callee_attrs: &CodegenFnAttrs,
        cross_crate_inlinable: bool,
    ) -> Result<(), &'static str> {
        let tcx = self.tcx;

        if let Some(_) = callee_body.tainted_by_errors {
            return Err("Body is tainted");
        }

        let mut threshold = if self.caller_is_inline_forwarder {
            self.tcx.sess.opts.unstable_opts.inline_mir_forwarder_threshold.unwrap_or(30)
        } else if cross_crate_inlinable {
            self.tcx.sess.opts.unstable_opts.inline_mir_hint_threshold.unwrap_or(100)
        } else {
            self.tcx.sess.opts.unstable_opts.inline_mir_threshold.unwrap_or(50)
        };

        // Give a bonus functions with a small number of blocks,
        // We normally have two or three blocks for even
        // very small functions.
        if callee_body.basic_blocks.len() <= 3 {
            threshold += threshold / 4;
        }
        debug!("    final inline threshold = {}", threshold);

        // FIXME: Give a bonus to functions with only a single caller

        let mut checker =
            CostChecker::new(self.tcx, self.param_env, Some(callsite.callee), callee_body);

        checker.add_function_level_costs();

        // Traverse the MIR manually so we can account for the effects of inlining on the CFG.
        let mut work_list = vec![START_BLOCK];
        let mut visited = BitSet::new_empty(callee_body.basic_blocks.len());
        while let Some(bb) = work_list.pop() {
            if !visited.insert(bb.index()) {
                continue;
            }

            let blk = &callee_body.basic_blocks[bb];
            checker.visit_basic_block_data(bb, blk);

            let term = blk.terminator();
            if let TerminatorKind::Drop { ref place, target, unwind, replace: _ } = term.kind {
                work_list.push(target);

                // If the place doesn't actually need dropping, treat it like a regular goto.
                let ty = callsite.callee.instantiate_mir(
                    self.tcx,
                    ty::EarlyBinder::bind(&place.ty(callee_body, tcx).ty),
                );
                if ty.needs_drop(tcx, self.param_env)
                    && let UnwindAction::Cleanup(unwind) = unwind
                {
                    work_list.push(unwind);
                }
            } else if callee_attrs.instruction_set != self.codegen_fn_attrs.instruction_set
                && matches!(term.kind, TerminatorKind::InlineAsm { .. })
            {
                // During the attribute checking stage we allow a callee with no
                // instruction_set assigned to count as compatible with a function that does
                // assign one. However, during this stage we require an exact match when any
                // inline-asm is detected. LLVM will still possibly do an inline later on
                // if the no-attribute function ends up with the same instruction set anyway.
                return Err("Cannot move inline-asm across instruction sets");
            } else if let TerminatorKind::TailCall { .. } = term.kind {
                // FIXME(explicit_tail_calls): figure out how exactly functions containing tail calls can be inlined (and if they even should)
                return Err("can't inline functions with tail calls");
            } else {
                work_list.extend(term.successors())
            }
        }

        // N.B. We still apply our cost threshold to #[inline(always)] functions.
        // That attribute is often applied to very large functions that exceed LLVM's (very
        // generous) inlining threshold. Such functions are very poor MIR inlining candidates.
        // Always inlining #[inline(always)] functions in MIR, on net, slows down the compiler.
        let cost = checker.cost();
        if cost <= threshold {
            debug!("INLINING {:?} [cost={} <= threshold={}]", callsite, cost, threshold);
            Ok(())
        } else {
            debug!("NOT inlining {:?} [cost={} > threshold={}]", callsite, cost, threshold);
            Err("cost above threshold")
        }
    }

    fn inline_call(
        &self,
        caller_body: &mut Body<'tcx>,
        callsite: &CallSite<'tcx>,
        mut callee_body: Body<'tcx>,
    ) {
        let terminator = caller_body[callsite.block].terminator.take().unwrap();
        let TerminatorKind::Call { func, args, destination, unwind, target, .. } = terminator.kind
        else {
            bug!("unexpected terminator kind {:?}", terminator.kind);
        };

        let return_block = if let Some(block) = target {
            // Prepare a new block for code that should execute when call returns. We don't use
            // target block directly since it might have other predecessors.
            let mut data = BasicBlockData::new(Some(Terminator {
                source_info: terminator.source_info,
                kind: TerminatorKind::Goto { target: block },
            }));
            data.is_cleanup = caller_body[block].is_cleanup;
            Some(caller_body.basic_blocks_mut().push(data))
        } else {
            None
        };

        // If the call is something like `a[*i] = f(i)`, where
        // `i : &mut usize`, then just duplicating the `a[*i]`
        // Place could result in two different locations if `f`
        // writes to `i`. To prevent this we need to create a temporary
        // borrow of the place and pass the destination as `*temp` instead.
        fn dest_needs_borrow(place: Place<'_>) -> bool {
            for elem in place.projection.iter() {
                match elem {
                    ProjectionElem::Deref | ProjectionElem::Index(_) => return true,
                    _ => {}
                }
            }

            false
        }

        let dest = if dest_needs_borrow(destination) {
            trace!("creating temp for return destination");
            let dest = Rvalue::Ref(
                self.tcx.lifetimes.re_erased,
                BorrowKind::Mut { kind: MutBorrowKind::Default },
                destination,
            );
            let dest_ty = dest.ty(caller_body, self.tcx);
            let temp =
                Place::from(self.new_call_temp(caller_body, &callsite, dest_ty, return_block));
            caller_body[callsite.block].statements.push(Statement {
                source_info: callsite.source_info,
                kind: StatementKind::Assign(Box::new((temp, dest))),
            });
            self.tcx.mk_place_deref(temp)
        } else {
            destination
        };

        // Always create a local to hold the destination, as `RETURN_PLACE` may appear
        // where a full `Place` is not allowed.
        let (remap_destination, destination_local) = if let Some(d) = dest.as_local() {
            (false, d)
        } else {
            (
                true,
                self.new_call_temp(
                    caller_body,
                    &callsite,
                    destination.ty(caller_body, self.tcx).ty,
                    return_block,
                ),
            )
        };

        // Copy the arguments if needed.
        let args = self.make_call_args(args, &callsite, caller_body, &callee_body, return_block);

        let mut integrator = Integrator {
            args: &args,
            new_locals: Local::new(caller_body.local_decls.len())..,
            new_scopes: SourceScope::new(caller_body.source_scopes.len())..,
            new_blocks: BasicBlock::new(caller_body.basic_blocks.len())..,
            destination: destination_local,
            callsite_scope: caller_body.source_scopes[callsite.source_info.scope].clone(),
            callsite,
            cleanup_block: unwind,
            in_cleanup_block: false,
            return_block,
            tcx: self.tcx,
            always_live_locals: BitSet::new_filled(callee_body.local_decls.len()),
        };

        // Map all `Local`s, `SourceScope`s and `BasicBlock`s to new ones
        // (or existing ones, in a few special cases) in the caller.
        integrator.visit_body(&mut callee_body);

        // If there are any locals without storage markers, give them storage only for the
        // duration of the call.
        for local in callee_body.vars_and_temps_iter() {
            if integrator.always_live_locals.contains(local) {
                let new_local = integrator.map_local(local);
                caller_body[callsite.block].statements.push(Statement {
                    source_info: callsite.source_info,
                    kind: StatementKind::StorageLive(new_local),
                });
            }
        }
        if let Some(block) = return_block {
            // To avoid repeated O(n) insert, push any new statements to the end and rotate
            // the slice once.
            let mut n = 0;
            if remap_destination {
                caller_body[block].statements.push(Statement {
                    source_info: callsite.source_info,
                    kind: StatementKind::Assign(Box::new((
                        dest,
                        Rvalue::Use(Operand::Move(destination_local.into())),
                    ))),
                });
                n += 1;
            }
            for local in callee_body.vars_and_temps_iter().rev() {
                if integrator.always_live_locals.contains(local) {
                    let new_local = integrator.map_local(local);
                    caller_body[block].statements.push(Statement {
                        source_info: callsite.source_info,
                        kind: StatementKind::StorageDead(new_local),
                    });
                    n += 1;
                }
            }
            caller_body[block].statements.rotate_right(n);
        }

        // Insert all of the (mapped) parts of the callee body into the caller.
        caller_body.local_decls.extend(callee_body.drain_vars_and_temps());
        caller_body.source_scopes.append(&mut callee_body.source_scopes);
        if self
            .tcx
            .sess
            .opts
            .unstable_opts
            .inline_mir_preserve_debug
            .unwrap_or(self.tcx.sess.opts.debuginfo != DebugInfo::None)
        {
            // Note that we need to preserve these in the standard library so that
            // people working on rust can build with or without debuginfo while
            // still getting consistent results from the mir-opt tests.
            caller_body.var_debug_info.append(&mut callee_body.var_debug_info);
        }
        caller_body.basic_blocks_mut().append(callee_body.basic_blocks_mut());

        caller_body[callsite.block].terminator = Some(Terminator {
            source_info: callsite.source_info,
            kind: TerminatorKind::Goto { target: integrator.map_block(START_BLOCK) },
        });

        // Copy required constants from the callee_body into the caller_body. Although we are only
        // pushing unevaluated consts to `required_consts`, here they may have been evaluated
        // because we are calling `instantiate_and_normalize_erasing_regions` -- so we filter again.
        caller_body.required_consts.as_mut().unwrap().extend(
            callee_body.required_consts().into_iter().filter(|ct| ct.const_.is_required_const()),
        );
        // Now that we incorporated the callee's `required_consts`, we can remove the callee from
        // `mentioned_items` -- but we have to take their `mentioned_items` in return. This does
        // some extra work here to save the monomorphization collector work later. It helps a lot,
        // since monomorphization can avoid a lot of work when the "mentioned items" are similar to
        // the actually used items. By doing this we can entirely avoid visiting the callee!
        // We need to reconstruct the `required_item` for the callee so that we can find and
        // remove it.
        let callee_item = MentionedItem::Fn(func.ty(caller_body, self.tcx));
        let caller_mentioned_items = caller_body.mentioned_items.as_mut().unwrap();
        if let Some(idx) = caller_mentioned_items.iter().position(|item| item.node == callee_item) {
            // We found the callee, so remove it and add its items instead.
            caller_mentioned_items.remove(idx);
            caller_mentioned_items.extend(callee_body.mentioned_items());
        } else {
            // If we can't find the callee, there's no point in adding its items. Probably it
            // already got removed by being inlined elsewhere in the same function, so we already
            // took its items.
        }
    }

    fn make_call_args(
        &self,
        args: Box<[Spanned<Operand<'tcx>>]>,
        callsite: &CallSite<'tcx>,
        caller_body: &mut Body<'tcx>,
        callee_body: &Body<'tcx>,
        return_block: Option<BasicBlock>,
    ) -> Box<[Local]> {
        let tcx = self.tcx;

        // There is a bit of a mismatch between the *caller* of a closure and the *callee*.
        // The caller provides the arguments wrapped up in a tuple:
        //
        //     tuple_tmp = (a, b, c)
        //     Fn::call(closure_ref, tuple_tmp)
        //
        // meanwhile the closure body expects the arguments (here, `a`, `b`, and `c`)
        // as distinct arguments. (This is the "rust-call" ABI hack.) Normally, codegen has
        // the job of unpacking this tuple. But here, we are codegen. =) So we want to create
        // a vector like
        //
        //     [closure_ref, tuple_tmp.0, tuple_tmp.1, tuple_tmp.2]
        //
        // Except for one tiny wrinkle: we don't actually want `tuple_tmp.0`. It's more convenient
        // if we "spill" that into *another* temporary, so that we can map the argument
        // variable in the callee MIR directly to an argument variable on our side.
        // So we introduce temporaries like:
        //
        //     tmp0 = tuple_tmp.0
        //     tmp1 = tuple_tmp.1
        //     tmp2 = tuple_tmp.2
        //
        // and the vector is `[closure_ref, tmp0, tmp1, tmp2]`.
        if callsite.fn_sig.abi() == Abi::RustCall && callee_body.spread_arg.is_none() {
            // FIXME(edition_2024): switch back to a normal method call.
            let mut args = <_>::into_iter(args);
            let self_ = self.create_temp_if_necessary(
                args.next().unwrap().node,
                callsite,
                caller_body,
                return_block,
            );
            let tuple = self.create_temp_if_necessary(
                args.next().unwrap().node,
                callsite,
                caller_body,
                return_block,
            );
            assert!(args.next().is_none());

            let tuple = Place::from(tuple);
            let ty::Tuple(tuple_tys) = tuple.ty(caller_body, tcx).ty.kind() else {
                bug!("Closure arguments are not passed as a tuple");
            };

            // The `closure_ref` in our example above.
            let closure_ref_arg = iter::once(self_);

            // The `tmp0`, `tmp1`, and `tmp2` in our example above.
            let tuple_tmp_args = tuple_tys.iter().enumerate().map(|(i, ty)| {
                // This is e.g., `tuple_tmp.0` in our example above.
                let tuple_field = Operand::Move(tcx.mk_place_field(tuple, FieldIdx::new(i), ty));

                // Spill to a local to make e.g., `tmp0`.
                self.create_temp_if_necessary(tuple_field, callsite, caller_body, return_block)
            });

            closure_ref_arg.chain(tuple_tmp_args).collect()
        } else {
            // FIXME(edition_2024): switch back to a normal method call.
            <_>::into_iter(args)
                .map(|a| self.create_temp_if_necessary(a.node, callsite, caller_body, return_block))
                .collect()
        }
    }

    /// If `arg` is already a temporary, returns it. Otherwise, introduces a fresh
    /// temporary `T` and an instruction `T = arg`, and returns `T`.
    fn create_temp_if_necessary(
        &self,
        arg: Operand<'tcx>,
        callsite: &CallSite<'tcx>,
        caller_body: &mut Body<'tcx>,
        return_block: Option<BasicBlock>,
    ) -> Local {
        // Reuse the operand if it is a moved temporary.
        if let Operand::Move(place) = &arg
            && let Some(local) = place.as_local()
            && caller_body.local_kind(local) == LocalKind::Temp
        {
            return local;
        }

        // Otherwise, create a temporary for the argument.
        trace!("creating temp for argument {:?}", arg);
        let arg_ty = arg.ty(caller_body, self.tcx);
        let local = self.new_call_temp(caller_body, callsite, arg_ty, return_block);
        caller_body[callsite.block].statements.push(Statement {
            source_info: callsite.source_info,
            kind: StatementKind::Assign(Box::new((Place::from(local), Rvalue::Use(arg)))),
        });
        local
    }

    /// Introduces a new temporary into the caller body that is live for the duration of the call.
    fn new_call_temp(
        &self,
        caller_body: &mut Body<'tcx>,
        callsite: &CallSite<'tcx>,
        ty: Ty<'tcx>,
        return_block: Option<BasicBlock>,
    ) -> Local {
        let local = caller_body.local_decls.push(LocalDecl::new(ty, callsite.source_info.span));

        caller_body[callsite.block].statements.push(Statement {
            source_info: callsite.source_info,
            kind: StatementKind::StorageLive(local),
        });

        if let Some(block) = return_block {
            caller_body[block].statements.insert(
                0,
                Statement {
                    source_info: callsite.source_info,
                    kind: StatementKind::StorageDead(local),
                },
            );
        }

        local
    }
}

/**
 * Integrator.
 *
 * Integrates blocks from the callee function into the calling function.
 * Updates block indices, references to locals and other control flow
 * stuff.
*/
struct Integrator<'a, 'tcx> {
    args: &'a [Local],
    new_locals: RangeFrom<Local>,
    new_scopes: RangeFrom<SourceScope>,
    new_blocks: RangeFrom<BasicBlock>,
    destination: Local,
    callsite_scope: SourceScopeData<'tcx>,
    callsite: &'a CallSite<'tcx>,
    cleanup_block: UnwindAction,
    in_cleanup_block: bool,
    return_block: Option<BasicBlock>,
    tcx: TyCtxt<'tcx>,
    always_live_locals: BitSet<Local>,
}

impl Integrator<'_, '_> {
    fn map_local(&self, local: Local) -> Local {
        let new = if local == RETURN_PLACE {
            self.destination
        } else {
            let idx = local.index() - 1;
            if idx < self.args.len() {
                self.args[idx]
            } else {
                Local::new(self.new_locals.start.index() + (idx - self.args.len()))
            }
        };
        trace!("mapping local `{:?}` to `{:?}`", local, new);
        new
    }

    fn map_scope(&self, scope: SourceScope) -> SourceScope {
        let new = SourceScope::new(self.new_scopes.start.index() + scope.index());
        trace!("mapping scope `{:?}` to `{:?}`", scope, new);
        new
    }

    fn map_block(&self, block: BasicBlock) -> BasicBlock {
        let new = BasicBlock::new(self.new_blocks.start.index() + block.index());
        trace!("mapping block `{:?}` to `{:?}`", block, new);
        new
    }

    fn map_unwind(&self, unwind: UnwindAction) -> UnwindAction {
        if self.in_cleanup_block {
            match unwind {
                UnwindAction::Cleanup(_) | UnwindAction::Continue => {
                    bug!("cleanup on cleanup block");
                }
                UnwindAction::Unreachable | UnwindAction::Terminate(_) => return unwind,
            }
        }

        match unwind {
            UnwindAction::Unreachable | UnwindAction::Terminate(_) => unwind,
            UnwindAction::Cleanup(target) => UnwindAction::Cleanup(self.map_block(target)),
            // Add an unwind edge to the original call's cleanup block
            UnwindAction::Continue => self.cleanup_block,
        }
    }
}

impl<'tcx> MutVisitor<'tcx> for Integrator<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_local(&mut self, local: &mut Local, _ctxt: PlaceContext, _location: Location) {
        *local = self.map_local(*local);
    }

    fn visit_source_scope_data(&mut self, scope_data: &mut SourceScopeData<'tcx>) {
        self.super_source_scope_data(scope_data);
        if scope_data.parent_scope.is_none() {
            // Attach the outermost callee scope as a child of the callsite
            // scope, via the `parent_scope` and `inlined_parent_scope` chains.
            scope_data.parent_scope = Some(self.callsite.source_info.scope);
            assert_eq!(scope_data.inlined_parent_scope, None);
            scope_data.inlined_parent_scope = if self.callsite_scope.inlined.is_some() {
                Some(self.callsite.source_info.scope)
            } else {
                self.callsite_scope.inlined_parent_scope
            };

            // Mark the outermost callee scope as an inlined one.
            assert_eq!(scope_data.inlined, None);
            scope_data.inlined = Some((self.callsite.callee, self.callsite.source_info.span));
        } else if scope_data.inlined_parent_scope.is_none() {
            // Make it easy to find the scope with `inlined` set above.
            scope_data.inlined_parent_scope = Some(self.map_scope(OUTERMOST_SOURCE_SCOPE));
        }
    }

    fn visit_source_scope(&mut self, scope: &mut SourceScope) {
        *scope = self.map_scope(*scope);
    }

    fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
        self.in_cleanup_block = data.is_cleanup;
        self.super_basic_block_data(block, data);
        self.in_cleanup_block = false;
    }

    fn visit_retag(&mut self, kind: &mut RetagKind, place: &mut Place<'tcx>, loc: Location) {
        self.super_retag(kind, place, loc);

        // We have to patch all inlined retags to be aware that they are no longer
        // happening on function entry.
        if *kind == RetagKind::FnEntry {
            *kind = RetagKind::Default;
        }
    }

    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
        if let StatementKind::StorageLive(local) | StatementKind::StorageDead(local) =
            statement.kind
        {
            self.always_live_locals.remove(local);
        }
        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, loc: Location) {
        // Don't try to modify the implicit `_0` access on return (`return` terminators are
        // replaced down below anyways).
        if !matches!(terminator.kind, TerminatorKind::Return) {
            self.super_terminator(terminator, loc);
        }

        match terminator.kind {
            TerminatorKind::CoroutineDrop | TerminatorKind::Yield { .. } => bug!(),
            TerminatorKind::Goto { ref mut target } => {
                *target = self.map_block(*target);
            }
            TerminatorKind::SwitchInt { ref mut targets, .. } => {
                for tgt in targets.all_targets_mut() {
                    *tgt = self.map_block(*tgt);
                }
            }
            TerminatorKind::Drop { ref mut target, ref mut unwind, .. } => {
                *target = self.map_block(*target);
                *unwind = self.map_unwind(*unwind);
            }
            TerminatorKind::TailCall { .. } => {
                // check_mir_body forbids tail calls
                unreachable!()
            }
            TerminatorKind::Call { ref mut target, ref mut unwind, .. } => {
                if let Some(ref mut tgt) = *target {
                    *tgt = self.map_block(*tgt);
                }
                *unwind = self.map_unwind(*unwind);
            }
            TerminatorKind::Assert { ref mut target, ref mut unwind, .. } => {
                *target = self.map_block(*target);
                *unwind = self.map_unwind(*unwind);
            }
            TerminatorKind::Return => {
                terminator.kind = if let Some(tgt) = self.return_block {
                    TerminatorKind::Goto { target: tgt }
                } else {
                    TerminatorKind::Unreachable
                }
            }
            TerminatorKind::UnwindResume => {
                terminator.kind = match self.cleanup_block {
                    UnwindAction::Cleanup(tgt) => TerminatorKind::Goto { target: tgt },
                    UnwindAction::Continue => TerminatorKind::UnwindResume,
                    UnwindAction::Unreachable => TerminatorKind::Unreachable,
                    UnwindAction::Terminate(reason) => TerminatorKind::UnwindTerminate(reason),
                };
            }
            TerminatorKind::UnwindTerminate(_) => {}
            TerminatorKind::Unreachable => {}
            TerminatorKind::FalseEdge { ref mut real_target, ref mut imaginary_target } => {
                *real_target = self.map_block(*real_target);
                *imaginary_target = self.map_block(*imaginary_target);
            }
            TerminatorKind::FalseUnwind { real_target: _, unwind: _ } =>
            // see the ordering of passes in the optimized_mir query.
            {
                bug!("False unwinds should have been removed before inlining")
            }
            TerminatorKind::InlineAsm { ref mut targets, ref mut unwind, .. } => {
                for tgt in targets.iter_mut() {
                    *tgt = self.map_block(*tgt);
                }
                *unwind = self.map_unwind(*unwind);
            }
        }
    }
}

#[instrument(skip(tcx), level = "debug")]
fn try_instance_mir<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance: InstanceKind<'tcx>,
) -> Result<&'tcx Body<'tcx>, &'static str> {
    if let ty::InstanceKind::DropGlue(_, Some(ty))
    | ty::InstanceKind::AsyncDropGlueCtorShim(_, Some(ty)) = instance
        && let ty::Adt(def, args) = ty.kind()
    {
        let fields = def.all_fields();
        for field in fields {
            let field_ty = field.ty(tcx, args);
            if field_ty.has_param() && field_ty.has_aliases() {
                return Err("cannot build drop shim for polymorphic type");
            }
        }
    }
    Ok(tcx.instance_mir(instance))
}

fn body_is_forwarder(body: &Body<'_>) -> bool {
    let TerminatorKind::Call { target, .. } = body.basic_blocks[START_BLOCK].terminator().kind
    else {
        return false;
    };
    if let Some(target) = target {
        let TerminatorKind::Return = body.basic_blocks[target].terminator().kind else {
            return false;
        };
    }

    let max_blocks = if !body.is_polymorphic {
        2
    } else if target.is_none() {
        3
    } else {
        4
    };
    if body.basic_blocks.len() > max_blocks {
        return false;
    }

    body.basic_blocks.iter_enumerated().all(|(bb, bb_data)| {
        bb == START_BLOCK
            || matches!(
                bb_data.terminator().kind,
                TerminatorKind::Return
                    | TerminatorKind::Drop { .. }
                    | TerminatorKind::UnwindResume
                    | TerminatorKind::UnwindTerminate(_)
            )
    })
}