miri/shims/x86/sse.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
use rustc_apfloat::ieee::Single;
use rustc_span::Symbol;
use rustc_target::spec::abi::Abi;
use super::{
FloatBinOp, FloatUnaryOp, bin_op_simd_float_all, bin_op_simd_float_first, unary_op_ps,
unary_op_ss,
};
use crate::*;
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn emulate_x86_sse_intrinsic(
&mut self,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, EmulateItemResult> {
let this = self.eval_context_mut();
this.expect_target_feature_for_intrinsic(link_name, "sse")?;
// Prefix should have already been checked.
let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sse.").unwrap();
// All these intrinsics operate on 128-bit (f32x4) SIMD vectors unless stated otherwise.
// Many intrinsic names are sufixed with "ps" (packed single) or "ss" (scalar single),
// where single means single precision floating point (f32). "ps" means thet the operation
// is performed on each element of the vector, while "ss" means that the operation is
// performed only on the first element, copying the remaining elements from the input
// vector (for binary operations, from the left-hand side).
match unprefixed_name {
// Used to implement _mm_{min,max}_ss functions.
// Performs the operations on the first component of `left` and
// `right` and copies the remaining components from `left`.
"min.ss" | "max.ss" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which = match unprefixed_name {
"min.ss" => FloatBinOp::Min,
"max.ss" => FloatBinOp::Max,
_ => unreachable!(),
};
bin_op_simd_float_first::<Single>(this, which, left, right, dest)?;
}
// Used to implement _mm_min_ps and _mm_max_ps functions.
// Note that the semantics are a bit different from Rust simd_min
// and simd_max intrinsics regarding handling of NaN and -0.0: Rust
// matches the IEEE min/max operations, while x86 has different
// semantics.
"min.ps" | "max.ps" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which = match unprefixed_name {
"min.ps" => FloatBinOp::Min,
"max.ps" => FloatBinOp::Max,
_ => unreachable!(),
};
bin_op_simd_float_all::<Single>(this, which, left, right, dest)?;
}
// Used to implement _mm_{rcp,rsqrt}_ss functions.
// Performs the operations on the first component of `op` and
// copies the remaining components from `op`.
"rcp.ss" | "rsqrt.ss" => {
let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which = match unprefixed_name {
"rcp.ss" => FloatUnaryOp::Rcp,
"rsqrt.ss" => FloatUnaryOp::Rsqrt,
_ => unreachable!(),
};
unary_op_ss(this, which, op, dest)?;
}
// Used to implement _mm_{sqrt,rcp,rsqrt}_ps functions.
// Performs the operations on all components of `op`.
"rcp.ps" | "rsqrt.ps" => {
let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which = match unprefixed_name {
"rcp.ps" => FloatUnaryOp::Rcp,
"rsqrt.ps" => FloatUnaryOp::Rsqrt,
_ => unreachable!(),
};
unary_op_ps(this, which, op, dest)?;
}
// Used to implement the _mm_cmp*_ss functions.
// Performs a comparison operation on the first component of `left`
// and `right`, returning 0 if false or `u32::MAX` if true. The remaining
// components are copied from `left`.
// _mm_cmp_ss is actually an AVX function where the operation is specified
// by a const parameter.
// _mm_cmp{eq,lt,le,gt,ge,neq,nlt,nle,ngt,nge,ord,unord}_ss are SSE functions
// with hard-coded operations.
"cmp.ss" => {
let [left, right, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which =
FloatBinOp::cmp_from_imm(this, this.read_scalar(imm)?.to_i8()?, link_name)?;
bin_op_simd_float_first::<Single>(this, which, left, right, dest)?;
}
// Used to implement the _mm_cmp*_ps functions.
// Performs a comparison operation on each component of `left`
// and `right`. For each component, returns 0 if false or u32::MAX
// if true.
// _mm_cmp_ps is actually an AVX function where the operation is specified
// by a const parameter.
// _mm_cmp{eq,lt,le,gt,ge,neq,nlt,nle,ngt,nge,ord,unord}_ps are SSE functions
// with hard-coded operations.
"cmp.ps" => {
let [left, right, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let which =
FloatBinOp::cmp_from_imm(this, this.read_scalar(imm)?.to_i8()?, link_name)?;
bin_op_simd_float_all::<Single>(this, which, left, right, dest)?;
}
// Used to implement _mm_{,u}comi{eq,lt,le,gt,ge,neq}_ss functions.
// Compares the first component of `left` and `right` and returns
// a scalar value (0 or 1).
"comieq.ss" | "comilt.ss" | "comile.ss" | "comigt.ss" | "comige.ss" | "comineq.ss"
| "ucomieq.ss" | "ucomilt.ss" | "ucomile.ss" | "ucomigt.ss" | "ucomige.ss"
| "ucomineq.ss" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (right, right_len) = this.project_to_simd(right)?;
assert_eq!(left_len, right_len);
let left = this.read_scalar(&this.project_index(&left, 0)?)?.to_f32()?;
let right = this.read_scalar(&this.project_index(&right, 0)?)?.to_f32()?;
// The difference between the com* and ucom* variants is signaling
// of exceptions when either argument is a quiet NaN. We do not
// support accessing the SSE status register from miri (or from Rust,
// for that matter), so we treat both variants equally.
let res = match unprefixed_name {
"comieq.ss" | "ucomieq.ss" => left == right,
"comilt.ss" | "ucomilt.ss" => left < right,
"comile.ss" | "ucomile.ss" => left <= right,
"comigt.ss" | "ucomigt.ss" => left > right,
"comige.ss" | "ucomige.ss" => left >= right,
"comineq.ss" | "ucomineq.ss" => left != right,
_ => unreachable!(),
};
this.write_scalar(Scalar::from_i32(i32::from(res)), dest)?;
}
// Use to implement the _mm_cvtss_si32, _mm_cvttss_si32,
// _mm_cvtss_si64 and _mm_cvttss_si64 functions.
// Converts the first component of `op` from f32 to i32/i64.
"cvtss2si" | "cvttss2si" | "cvtss2si64" | "cvttss2si64" => {
let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (op, _) = this.project_to_simd(op)?;
let op = this.read_immediate(&this.project_index(&op, 0)?)?;
let rnd = match unprefixed_name {
// "current SSE rounding mode", assume nearest
// https://www.felixcloutier.com/x86/cvtss2si
"cvtss2si" | "cvtss2si64" => rustc_apfloat::Round::NearestTiesToEven,
// always truncate
// https://www.felixcloutier.com/x86/cvttss2si
"cvttss2si" | "cvttss2si64" => rustc_apfloat::Round::TowardZero,
_ => unreachable!(),
};
let res = this.float_to_int_checked(&op, dest.layout, rnd)?.unwrap_or_else(|| {
// Fallback to minimum according to SSE semantics.
ImmTy::from_int(dest.layout.size.signed_int_min(), dest.layout)
});
this.write_immediate(*res, dest)?;
}
// Used to implement the _mm_cvtsi32_ss and _mm_cvtsi64_ss functions.
// Converts `right` from i32/i64 to f32. Returns a SIMD vector with
// the result in the first component and the remaining components
// are copied from `left`.
// https://www.felixcloutier.com/x86/cvtsi2ss
"cvtsi2ss" | "cvtsi642ss" => {
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (left, left_len) = this.project_to_simd(left)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(dest_len, left_len);
let right = this.read_immediate(right)?;
let dest0 = this.project_index(&dest, 0)?;
let res0 = this.int_to_int_or_float(&right, dest0.layout)?;
this.write_immediate(*res0, &dest0)?;
for i in 1..dest_len {
this.copy_op(&this.project_index(&left, i)?, &this.project_index(&dest, i)?)?;
}
}
_ => return interp_ok(EmulateItemResult::NotSupported),
}
interp_ok(EmulateItemResult::NeedsReturn)
}
}