1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
//! This module contains logic for determining whether a type is inhabited or
//! uninhabited. The [`InhabitedPredicate`] type captures the minimum
//! information needed to determine whether a type is inhabited given a
//! `ParamEnv` and module ID.
//!
//! # Example
//! ```rust
//! #![feature(never_type)]
//! mod a {
//! pub mod b {
//! pub struct SecretlyUninhabited {
//! _priv: !,
//! }
//! }
//! }
//!
//! mod c {
//! enum Void {}
//! pub struct AlsoSecretlyUninhabited {
//! _priv: Void,
//! }
//! mod d {
//! }
//! }
//!
//! struct Foo {
//! x: a::b::SecretlyUninhabited,
//! y: c::AlsoSecretlyUninhabited,
//! }
//! ```
//! In this code, the type `Foo` will only be visibly uninhabited inside the
//! modules `b`, `c` and `d`. Calling `inhabited_predicate` on `Foo` will
//! return `NotInModule(b) AND NotInModule(c)`.
//!
//! We need this information for pattern-matching on `Foo` or types that contain
//! `Foo`.
//!
//! # Example
//! ```ignore(illustrative)
//! let foo_result: Result<T, Foo> = ... ;
//! let Ok(t) = foo_result;
//! ```
//! This code should only compile in modules where the uninhabitedness of `Foo`
//! is visible.
use rustc_type_ir::TyKind::*;
use tracing::instrument;
use crate::query::Providers;
use crate::ty::context::TyCtxt;
use crate::ty::{self, DefId, Ty, TypeVisitableExt, VariantDef, Visibility};
pub mod inhabited_predicate;
pub use inhabited_predicate::InhabitedPredicate;
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { inhabited_predicate_adt, inhabited_predicate_type, ..*providers };
}
/// Returns an `InhabitedPredicate` that is generic over type parameters and
/// requires calling [`InhabitedPredicate::instantiate`]
fn inhabited_predicate_adt(tcx: TyCtxt<'_>, def_id: DefId) -> InhabitedPredicate<'_> {
if let Some(def_id) = def_id.as_local() {
if matches!(tcx.representability(def_id), ty::Representability::Infinite(_)) {
return InhabitedPredicate::True;
}
}
let adt = tcx.adt_def(def_id);
InhabitedPredicate::any(
tcx,
adt.variants().iter().map(|variant| variant.inhabited_predicate(tcx, adt)),
)
}
impl<'tcx> VariantDef {
/// Calculates the forest of `DefId`s from which this variant is visibly uninhabited.
pub fn inhabited_predicate(
&self,
tcx: TyCtxt<'tcx>,
adt: ty::AdtDef<'_>,
) -> InhabitedPredicate<'tcx> {
debug_assert!(!adt.is_union());
if self.is_field_list_non_exhaustive() && !self.def_id.is_local() {
// Non-exhaustive variants from other crates are always considered inhabited.
return InhabitedPredicate::True;
}
InhabitedPredicate::all(
tcx,
self.fields.iter().map(|field| {
let pred = tcx.type_of(field.did).instantiate_identity().inhabited_predicate(tcx);
if adt.is_enum() {
return pred;
}
match field.vis {
Visibility::Public => pred,
Visibility::Restricted(from) => {
pred.or(tcx, InhabitedPredicate::NotInModule(from))
}
}
}),
)
}
}
impl<'tcx> Ty<'tcx> {
#[instrument(level = "debug", skip(tcx), ret)]
pub fn inhabited_predicate(self, tcx: TyCtxt<'tcx>) -> InhabitedPredicate<'tcx> {
debug_assert!(!self.has_infer());
match self.kind() {
// For now, unions are always considered inhabited
Adt(adt, _) if adt.is_union() => InhabitedPredicate::True,
// Non-exhaustive ADTs from other crates are always considered inhabited
Adt(adt, _) if adt.is_variant_list_non_exhaustive() && !adt.did().is_local() => {
InhabitedPredicate::True
}
Never => InhabitedPredicate::False,
Param(_) | Alias(ty::Projection | ty::Weak, _) => InhabitedPredicate::GenericType(self),
Alias(ty::Opaque, alias_ty) => {
match alias_ty.def_id.as_local() {
// Foreign opaque is considered inhabited.
None => InhabitedPredicate::True,
// Local opaque type may possibly be revealed.
Some(local_def_id) => {
let key = ty::OpaqueTypeKey { def_id: local_def_id, args: alias_ty.args };
InhabitedPredicate::OpaqueType(key)
}
}
}
// FIXME(inherent_associated_types): Most likely we can just map to `GenericType` like above.
// However it's unclear if the args passed to `InhabitedPredicate::instantiate` are of the correct
// format, i.e. don't contain parent args. If you hit this case, please verify this beforehand.
Alias(ty::Inherent, _) => {
bug!("unimplemented: inhabitedness checking for inherent projections")
}
Tuple(tys) if tys.is_empty() => InhabitedPredicate::True,
// use a query for more complex cases
Adt(..) | Array(..) | Tuple(_) => tcx.inhabited_predicate_type(self),
// references and other types are inhabited
_ => InhabitedPredicate::True,
}
}
/// Checks whether a type is visibly uninhabited from a particular module.
///
/// # Example
/// ```
/// #![feature(never_type)]
/// # fn main() {}
/// enum Void {}
/// mod a {
/// pub mod b {
/// pub struct SecretlyUninhabited {
/// _priv: !,
/// }
/// }
/// }
///
/// mod c {
/// use super::Void;
/// pub struct AlsoSecretlyUninhabited {
/// _priv: Void,
/// }
/// mod d {
/// }
/// }
///
/// struct Foo {
/// x: a::b::SecretlyUninhabited,
/// y: c::AlsoSecretlyUninhabited,
/// }
/// ```
/// In this code, the type `Foo` will only be visibly uninhabited inside the
/// modules b, c and d. This effects pattern-matching on `Foo` or types that
/// contain `Foo`.
///
/// # Example
/// ```ignore (illustrative)
/// let foo_result: Result<T, Foo> = ... ;
/// let Ok(t) = foo_result;
/// ```
/// This code should only compile in modules where the uninhabitedness of Foo is
/// visible.
pub fn is_inhabited_from(
self,
tcx: TyCtxt<'tcx>,
module: DefId,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
self.inhabited_predicate(tcx).apply(tcx, param_env, module)
}
/// Returns true if the type is uninhabited without regard to visibility
pub fn is_privately_uninhabited(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
!self.inhabited_predicate(tcx).apply_ignore_module(tcx, param_env)
}
}
/// N.B. this query should only be called through `Ty::inhabited_predicate`
fn inhabited_predicate_type<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> InhabitedPredicate<'tcx> {
match *ty.kind() {
Adt(adt, args) => tcx.inhabited_predicate_adt(adt.did()).instantiate(tcx, args),
Tuple(tys) => {
InhabitedPredicate::all(tcx, tys.iter().map(|ty| ty.inhabited_predicate(tcx)))
}
// If we can evaluate the array length before having a `ParamEnv`, then
// we can simplify the predicate. This is an optimization.
Array(ty, len) => match len.try_to_target_usize(tcx) {
Some(0) => InhabitedPredicate::True,
Some(1..) => ty.inhabited_predicate(tcx),
None => ty.inhabited_predicate(tcx).or(tcx, InhabitedPredicate::ConstIsZero(len)),
},
_ => bug!("unexpected TyKind, use `Ty::inhabited_predicate`"),
}
}