1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
//! Code for the 'normalization' query. This consists of a wrapper
//! which folds deeply, invoking the underlying
//! `normalize_canonicalized_projection_ty` query when it encounters projections.
use rustc_data_structures::sso::SsoHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_macros::extension;
pub use rustc_middle::traits::query::NormalizationResult;
use rustc_middle::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable};
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitor};
use rustc_span::DUMMY_SP;
use tracing::{debug, info, instrument};
use super::NoSolution;
use crate::error_reporting::traits::OverflowCause;
use crate::error_reporting::InferCtxtErrorExt;
use crate::infer::at::At;
use crate::infer::canonical::OriginalQueryValues;
use crate::infer::{InferCtxt, InferOk};
use crate::traits::normalize::needs_normalization;
use crate::traits::{
BoundVarReplacer, Normalized, ObligationCause, PlaceholderReplacer, PredicateObligation,
Reveal, ScrubbedTraitError,
};
#[extension(pub trait QueryNormalizeExt<'tcx>)]
impl<'cx, 'tcx> At<'cx, 'tcx> {
/// Normalize `value` in the context of the inference context,
/// yielding a resulting type, or an error if `value` cannot be
/// normalized. If you don't care about regions, you should prefer
/// `normalize_erasing_regions`, which is more efficient.
///
/// If the normalization succeeds and is unambiguous, returns back
/// the normalized value along with various outlives relations (in
/// the form of obligations that must be discharged).
///
/// N.B., this will *eventually* be the main means of
/// normalizing, but for now should be used only when we actually
/// know that normalization will succeed, since error reporting
/// and other details are still "under development".
///
/// This normalization should *only* be used when the projection does not
/// have possible ambiguity or may not be well-formed.
///
/// After codegen, when lifetimes do not matter, it is preferable to instead
/// use [`TyCtxt::normalize_erasing_regions`], which wraps this procedure.
fn query_normalize<T>(self, value: T) -> Result<Normalized<'tcx, T>, NoSolution>
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
debug!(
"normalize::<{}>(value={:?}, param_env={:?}, cause={:?})",
std::any::type_name::<T>(),
value,
self.param_env,
self.cause,
);
// This is actually a consequence by the way `normalize_erasing_regions` works currently.
// Because it needs to call the `normalize_generic_arg_after_erasing_regions`, it folds
// through tys and consts in a `TypeFoldable`. Importantly, it skips binders, leaving us
// with trying to normalize with escaping bound vars.
//
// Here, we just add the universes that we *would* have created had we passed through the binders.
//
// We *could* replace escaping bound vars eagerly here, but it doesn't seem really necessary.
// The rest of the code is already set up to be lazy about replacing bound vars,
// and only when we actually have to normalize.
let universes = if value.has_escaping_bound_vars() {
let mut max_visitor =
MaxEscapingBoundVarVisitor { outer_index: ty::INNERMOST, escaping: 0 };
value.visit_with(&mut max_visitor);
vec![None; max_visitor.escaping]
} else {
vec![]
};
if self.infcx.next_trait_solver() {
match crate::solve::deeply_normalize_with_skipped_universes::<_, ScrubbedTraitError<'tcx>>(
self, value, universes,
) {
Ok(value) => return Ok(Normalized { value, obligations: vec![] }),
Err(_errors) => {
return Err(NoSolution);
}
}
}
if !needs_normalization(&value, self.param_env.reveal()) {
return Ok(Normalized { value, obligations: vec![] });
}
let mut normalizer = QueryNormalizer {
infcx: self.infcx,
cause: self.cause,
param_env: self.param_env,
obligations: vec![],
cache: SsoHashMap::new(),
anon_depth: 0,
universes,
};
let result = value.try_fold_with(&mut normalizer);
info!(
"normalize::<{}>: result={:?} with {} obligations",
std::any::type_name::<T>(),
result,
normalizer.obligations.len(),
);
debug!(
"normalize::<{}>: obligations={:?}",
std::any::type_name::<T>(),
normalizer.obligations,
);
result.map(|value| Normalized { value, obligations: normalizer.obligations })
}
}
// Visitor to find the maximum escaping bound var
struct MaxEscapingBoundVarVisitor {
// The index which would count as escaping
outer_index: ty::DebruijnIndex,
escaping: usize,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for MaxEscapingBoundVarVisitor {
fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(&mut self, t: &ty::Binder<'tcx, T>) {
self.outer_index.shift_in(1);
t.super_visit_with(self);
self.outer_index.shift_out(1);
}
#[inline]
fn visit_ty(&mut self, t: Ty<'tcx>) {
if t.outer_exclusive_binder() > self.outer_index {
self.escaping = self
.escaping
.max(t.outer_exclusive_binder().as_usize() - self.outer_index.as_usize());
}
}
#[inline]
fn visit_region(&mut self, r: ty::Region<'tcx>) {
match *r {
ty::ReBound(debruijn, _) if debruijn > self.outer_index => {
self.escaping =
self.escaping.max(debruijn.as_usize() - self.outer_index.as_usize());
}
_ => {}
}
}
fn visit_const(&mut self, ct: ty::Const<'tcx>) {
if ct.outer_exclusive_binder() > self.outer_index {
self.escaping = self
.escaping
.max(ct.outer_exclusive_binder().as_usize() - self.outer_index.as_usize());
}
}
}
struct QueryNormalizer<'cx, 'tcx> {
infcx: &'cx InferCtxt<'tcx>,
cause: &'cx ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
cache: SsoHashMap<Ty<'tcx>, Ty<'tcx>>,
anon_depth: usize,
universes: Vec<Option<ty::UniverseIndex>>,
}
impl<'cx, 'tcx> FallibleTypeFolder<TyCtxt<'tcx>> for QueryNormalizer<'cx, 'tcx> {
type Error = NoSolution;
fn cx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn try_fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
&mut self,
t: ty::Binder<'tcx, T>,
) -> Result<ty::Binder<'tcx, T>, Self::Error> {
self.universes.push(None);
let t = t.try_super_fold_with(self);
self.universes.pop();
t
}
#[instrument(level = "debug", skip(self))]
fn try_fold_ty(&mut self, ty: Ty<'tcx>) -> Result<Ty<'tcx>, Self::Error> {
if !needs_normalization(&ty, self.param_env.reveal()) {
return Ok(ty);
}
if let Some(ty) = self.cache.get(&ty) {
return Ok(*ty);
}
let (kind, data) = match *ty.kind() {
ty::Alias(kind, data) => (kind, data),
_ => {
let res = ty.try_super_fold_with(self)?;
self.cache.insert(ty, res);
return Ok(res);
}
};
// See note in `rustc_trait_selection::traits::project` about why we
// wait to fold the args.
// Wrap this in a closure so we don't accidentally return from the outer function
let res = match kind {
ty::Opaque => {
// Only normalize `impl Trait` outside of type inference, usually in codegen.
match self.param_env.reveal() {
Reveal::UserFacing => ty.try_super_fold_with(self)?,
Reveal::All => {
let args = data.args.try_fold_with(self)?;
let recursion_limit = self.cx().recursion_limit();
if !recursion_limit.value_within_limit(self.anon_depth) {
let guar = self
.infcx
.err_ctxt()
.build_overflow_error(
OverflowCause::DeeplyNormalize(data.into()),
self.cause.span,
true,
)
.delay_as_bug();
return Ok(Ty::new_error(self.cx(), guar));
}
let generic_ty = self.cx().type_of(data.def_id);
let mut concrete_ty = generic_ty.instantiate(self.cx(), args);
self.anon_depth += 1;
if concrete_ty == ty {
concrete_ty = Ty::new_error_with_message(
self.cx(),
DUMMY_SP,
"recursive opaque type",
);
}
let folded_ty = ensure_sufficient_stack(|| self.try_fold_ty(concrete_ty));
self.anon_depth -= 1;
folded_ty?
}
}
}
ty::Projection | ty::Inherent | ty::Weak => {
// See note in `rustc_trait_selection::traits::project`
let infcx = self.infcx;
let tcx = infcx.tcx;
// Just an optimization: When we don't have escaping bound vars,
// we don't need to replace them with placeholders.
let (data, maps) = if data.has_escaping_bound_vars() {
let (data, mapped_regions, mapped_types, mapped_consts) =
BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, data);
(data, Some((mapped_regions, mapped_types, mapped_consts)))
} else {
(data, None)
};
let data = data.try_fold_with(self)?;
let mut orig_values = OriginalQueryValues::default();
let c_data = infcx.canonicalize_query(self.param_env.and(data), &mut orig_values);
debug!("QueryNormalizer: c_data = {:#?}", c_data);
debug!("QueryNormalizer: orig_values = {:#?}", orig_values);
let result = match kind {
ty::Projection => tcx.normalize_canonicalized_projection_ty(c_data),
ty::Weak => tcx.normalize_canonicalized_weak_ty(c_data),
ty::Inherent => tcx.normalize_canonicalized_inherent_projection_ty(c_data),
kind => unreachable!("did not expect {kind:?} due to match arm above"),
}?;
// We don't expect ambiguity.
if !result.value.is_proven() {
// Rustdoc normalizes possibly not well-formed types, so only
// treat this as a bug if we're not in rustdoc.
if !tcx.sess.opts.actually_rustdoc {
tcx.dcx()
.delayed_bug(format!("unexpected ambiguity: {c_data:?} {result:?}"));
}
return Err(NoSolution);
}
let InferOk { value: result, obligations } = infcx
.instantiate_query_response_and_region_obligations(
self.cause,
self.param_env,
&orig_values,
result,
)?;
debug!("QueryNormalizer: result = {:#?}", result);
debug!("QueryNormalizer: obligations = {:#?}", obligations);
self.obligations.extend(obligations);
let res = if let Some((mapped_regions, mapped_types, mapped_consts)) = maps {
PlaceholderReplacer::replace_placeholders(
infcx,
mapped_regions,
mapped_types,
mapped_consts,
&self.universes,
result.normalized_ty,
)
} else {
result.normalized_ty
};
// `tcx.normalize_canonicalized_projection_ty` may normalize to a type that
// still has unevaluated consts, so keep normalizing here if that's the case.
// Similarly, `tcx.normalize_canonicalized_weak_ty` will only unwrap one layer
// of type and we need to continue folding it to reveal the TAIT behind it.
if res != ty
&& (res.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION) || kind == ty::Weak)
{
res.try_fold_with(self)?
} else {
res
}
}
};
self.cache.insert(ty, res);
Ok(res)
}
fn try_fold_const(
&mut self,
constant: ty::Const<'tcx>,
) -> Result<ty::Const<'tcx>, Self::Error> {
if !needs_normalization(&constant, self.param_env.reveal()) {
return Ok(constant);
}
let constant = crate::traits::with_replaced_escaping_bound_vars(
self.infcx,
&mut self.universes,
constant,
|constant| constant.normalize(self.infcx.tcx, self.param_env),
);
debug!(?constant, ?self.param_env);
constant.try_super_fold_with(self)
}
#[inline]
fn try_fold_predicate(
&mut self,
p: ty::Predicate<'tcx>,
) -> Result<ty::Predicate<'tcx>, Self::Error> {
if p.allow_normalization() && needs_normalization(&p, self.param_env.reveal()) {
p.try_super_fold_with(self)
} else {
Ok(p)
}
}
}