1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
use std::ops::ControlFlow;
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use crate::fold::{shift_region, TypeFoldable, TypeFolder, TypeSuperFoldable};
use crate::inherent::*;
use crate::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use crate::{self as ty, Interner};
/// A closure can be modeled as a struct that looks like:
/// ```ignore (illustrative)
/// struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
/// ```
/// where:
///
/// - 'l0...'li and T0...Tj are the generic parameters
/// in scope on the function that defined the closure,
/// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
/// is rather hackily encoded via a scalar type. See
/// `Ty::to_opt_closure_kind` for details.
/// - CS represents the *closure signature*, representing as a `fn()`
/// type. For example, `fn(u32, u32) -> u32` would mean that the closure
/// implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
/// specified above.
/// - U is a type parameter representing the types of its upvars, tupled up
/// (borrowed, if appropriate; that is, if a U field represents a by-ref upvar,
/// and the up-var has the type `Foo`, then that field of U will be `&Foo`).
///
/// So, for example, given this function:
/// ```ignore (illustrative)
/// fn foo<'a, T>(data: &'a mut T) {
/// do(|| data.count += 1)
/// }
/// ```
/// the type of the closure would be something like:
/// ```ignore (illustrative)
/// struct Closure<'a, T, U>(...U);
/// ```
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
/// ```ignore (illustrative)
/// impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
/// ...
/// }
/// ```
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// in an extra type parameter? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the scope of the closure itself; this is some
/// subset of `foo`, probably just the scope of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that codegen may need them
/// when monomorphizing, and they may not appear in the upvars. A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
///
/// ## Coroutines
///
/// Coroutines are handled similarly in `CoroutineArgs`. The set of
/// type parameters is similar, but `CK` and `CS` are replaced by the
/// following type parameters:
///
/// * `GS`: The coroutine's "resume type", which is the type of the
/// argument passed to `resume`, and the type of `yield` expressions
/// inside the coroutine.
/// * `GY`: The "yield type", which is the type of values passed to
/// `yield` inside the coroutine.
/// * `GR`: The "return type", which is the type of value returned upon
/// completion of the coroutine.
/// * `GW`: The "coroutine witness".
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = ""),
Debug(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct ClosureArgs<I: Interner> {
/// Lifetime and type parameters from the enclosing function,
/// concatenated with a tuple containing the types of the upvars.
///
/// These are separated out because codegen wants to pass them around
/// when monomorphizing.
pub args: I::GenericArgs,
}
/// Struct returned by `split()`.
pub struct ClosureArgsParts<I: Interner> {
/// This is the args of the typeck root.
pub parent_args: I::GenericArgsSlice,
/// Represents the maximum calling capability of the closure.
pub closure_kind_ty: I::Ty,
/// Captures the closure's signature. This closure signature is "tupled", and
/// thus has a peculiar signature of `extern "rust-call" fn((Args, ...)) -> Ty`.
pub closure_sig_as_fn_ptr_ty: I::Ty,
/// The upvars captured by the closure. Remains an inference variable
/// until the upvar analysis, which happens late in HIR typeck.
pub tupled_upvars_ty: I::Ty,
}
impl<I: Interner> ClosureArgs<I> {
/// Construct `ClosureArgs` from `ClosureArgsParts`, containing `Args`
/// for the closure parent, alongside additional closure-specific components.
pub fn new(cx: I, parts: ClosureArgsParts<I>) -> ClosureArgs<I> {
ClosureArgs {
args: cx.mk_args_from_iter(parts.parent_args.iter().chain([
parts.closure_kind_ty.into(),
parts.closure_sig_as_fn_ptr_ty.into(),
parts.tupled_upvars_ty.into(),
])),
}
}
/// Divides the closure args into their respective components.
/// The ordering assumed here must match that used by `ClosureArgs::new` above.
fn split(self) -> ClosureArgsParts<I> {
self.args.split_closure_args()
}
/// Returns the generic parameters of the closure's parent.
pub fn parent_args(self) -> I::GenericArgsSlice {
self.split().parent_args
}
/// Returns an iterator over the list of types of captured paths by the closure.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> I::Tys {
match self.tupled_upvars_ty().kind() {
ty::Error(_) => Default::default(),
ty::Tuple(tys) => tys,
ty::Infer(_) => panic!("upvar_tys called before capture types are inferred"),
ty => panic!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
/// Returns the tuple type representing the upvars for this closure.
#[inline]
pub fn tupled_upvars_ty(self) -> I::Ty {
self.split().tupled_upvars_ty
}
/// Returns the closure kind for this closure; may return a type
/// variable during inference. To get the closure kind during
/// inference, use `infcx.closure_kind(args)`.
pub fn kind_ty(self) -> I::Ty {
self.split().closure_kind_ty
}
/// Returns the `fn` pointer type representing the closure signature for this
/// closure.
// FIXME(eddyb) this should be unnecessary, as the shallowly resolved
// type is known at the time of the creation of `ClosureArgs`,
// see `rustc_hir_analysis::check::closure`.
pub fn sig_as_fn_ptr_ty(self) -> I::Ty {
self.split().closure_sig_as_fn_ptr_ty
}
/// Returns the closure kind for this closure; only usable outside
/// of an inference context, because in that context we know that
/// there are no type variables.
///
/// If you have an inference context, use `infcx.closure_kind()`.
pub fn kind(self) -> ty::ClosureKind {
self.kind_ty().to_opt_closure_kind().unwrap()
}
/// Extracts the signature from the closure.
pub fn sig(self) -> ty::Binder<I, ty::FnSig<I>> {
match self.sig_as_fn_ptr_ty().kind() {
ty::FnPtr(sig) => sig,
ty => panic!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {ty:?}"),
}
}
}
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = ""),
Debug(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct CoroutineClosureArgs<I: Interner> {
pub args: I::GenericArgs,
}
/// See docs for explanation of how each argument is used.
///
/// See [`CoroutineClosureSignature`] for how these arguments are put together
/// to make a callable [`ty::FnSig`] suitable for typeck and borrowck.
pub struct CoroutineClosureArgsParts<I: Interner> {
/// This is the args of the typeck root.
pub parent_args: I::GenericArgsSlice,
/// Represents the maximum calling capability of the closure.
pub closure_kind_ty: I::Ty,
/// Represents all of the relevant parts of the coroutine returned by this
/// coroutine-closure. This signature parts type will have the general
/// shape of `fn(tupled_inputs, resume_ty) -> (return_ty, yield_ty)`, where
/// `resume_ty`, `return_ty`, and `yield_ty` are the respective types for the
/// coroutine returned by the coroutine-closure.
///
/// Use `coroutine_closure_sig` to break up this type rather than using it
/// yourself.
pub signature_parts_ty: I::Ty,
/// The upvars captured by the closure. Remains an inference variable
/// until the upvar analysis, which happens late in HIR typeck.
pub tupled_upvars_ty: I::Ty,
/// a function pointer that has the shape `for<'env> fn() -> (&'env T, ...)`.
/// This allows us to represent the binder of the self-captures of the closure.
///
/// For example, if the coroutine returned by the closure borrows `String`
/// from the closure's upvars, this will be `for<'env> fn() -> (&'env String,)`,
/// while the `tupled_upvars_ty`, representing the by-move version of the same
/// captures, will be `(String,)`.
pub coroutine_captures_by_ref_ty: I::Ty,
/// Witness type returned by the generator produced by this coroutine-closure.
pub coroutine_witness_ty: I::Ty,
}
impl<I: Interner> CoroutineClosureArgs<I> {
pub fn new(cx: I, parts: CoroutineClosureArgsParts<I>) -> CoroutineClosureArgs<I> {
CoroutineClosureArgs {
args: cx.mk_args_from_iter(parts.parent_args.iter().chain([
parts.closure_kind_ty.into(),
parts.signature_parts_ty.into(),
parts.tupled_upvars_ty.into(),
parts.coroutine_captures_by_ref_ty.into(),
parts.coroutine_witness_ty.into(),
])),
}
}
fn split(self) -> CoroutineClosureArgsParts<I> {
self.args.split_coroutine_closure_args()
}
pub fn parent_args(self) -> I::GenericArgsSlice {
self.split().parent_args
}
#[inline]
pub fn upvar_tys(self) -> I::Tys {
match self.tupled_upvars_ty().kind() {
ty::Error(_) => Default::default(),
ty::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
ty::Infer(_) => panic!("upvar_tys called before capture types are inferred"),
ty => panic!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
#[inline]
pub fn tupled_upvars_ty(self) -> I::Ty {
self.split().tupled_upvars_ty
}
pub fn kind_ty(self) -> I::Ty {
self.split().closure_kind_ty
}
pub fn kind(self) -> ty::ClosureKind {
self.kind_ty().to_opt_closure_kind().unwrap()
}
pub fn signature_parts_ty(self) -> I::Ty {
self.split().signature_parts_ty
}
pub fn coroutine_closure_sig(self) -> ty::Binder<I, CoroutineClosureSignature<I>> {
let interior = self.coroutine_witness_ty();
let ty::FnPtr(sig) = self.signature_parts_ty().kind() else { panic!() };
sig.map_bound(|sig| {
let [resume_ty, tupled_inputs_ty] = *sig.inputs().as_slice() else {
panic!();
};
let [yield_ty, return_ty] = *sig.output().tuple_fields().as_slice() else { panic!() };
CoroutineClosureSignature {
interior,
tupled_inputs_ty,
resume_ty,
yield_ty,
return_ty,
c_variadic: sig.c_variadic,
safety: sig.safety,
abi: sig.abi,
}
})
}
pub fn coroutine_captures_by_ref_ty(self) -> I::Ty {
self.split().coroutine_captures_by_ref_ty
}
pub fn coroutine_witness_ty(self) -> I::Ty {
self.split().coroutine_witness_ty
}
pub fn has_self_borrows(&self) -> bool {
match self.coroutine_captures_by_ref_ty().kind() {
ty::FnPtr(sig) => sig
.skip_binder()
.visit_with(&mut HasRegionsBoundAt { binder: ty::INNERMOST })
.is_break(),
ty::Error(_) => true,
_ => panic!(),
}
}
}
/// Unlike `has_escaping_bound_vars` or `outermost_exclusive_binder`, this will
/// detect only regions bound *at* the debruijn index.
struct HasRegionsBoundAt {
binder: ty::DebruijnIndex,
}
// FIXME: Could be optimized to not walk into components with no escaping bound vars.
impl<I: Interner> TypeVisitor<I> for HasRegionsBoundAt {
type Result = ControlFlow<()>;
fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
self.binder.shift_in(1);
t.super_visit_with(self)?;
self.binder.shift_out(1);
ControlFlow::Continue(())
}
fn visit_region(&mut self, r: I::Region) -> Self::Result {
if matches!(r.kind(), ty::ReBound(binder, _) if self.binder == binder) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
}
}
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = ""),
Debug(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
pub struct CoroutineClosureSignature<I: Interner> {
pub interior: I::Ty,
pub tupled_inputs_ty: I::Ty,
pub resume_ty: I::Ty,
pub yield_ty: I::Ty,
pub return_ty: I::Ty,
// Like the `fn_sig_as_fn_ptr_ty` of a regular closure, these types
// never actually differ. But we save them rather than recreating them
// from scratch just for good measure.
/// Always false
pub c_variadic: bool,
/// Always `Normal` (safe)
pub safety: I::Safety,
/// Always `RustCall`
pub abi: I::Abi,
}
impl<I: Interner> CoroutineClosureSignature<I> {
/// Construct a coroutine from the closure signature. Since a coroutine signature
/// is agnostic to the type of generator that is returned (by-ref/by-move),
/// the caller must specify what "flavor" of generator that they'd like to
/// create. Additionally, they must manually compute the upvars of the closure.
///
/// This helper is not really meant to be used directly except for early on
/// during typeck, when we want to put inference vars into the kind and upvars tys.
/// When the kind and upvars are known, use the other helper functions.
pub fn to_coroutine(
self,
cx: I,
parent_args: I::GenericArgsSlice,
coroutine_kind_ty: I::Ty,
coroutine_def_id: I::DefId,
tupled_upvars_ty: I::Ty,
) -> I::Ty {
let coroutine_args = ty::CoroutineArgs::new(
cx,
ty::CoroutineArgsParts {
parent_args,
kind_ty: coroutine_kind_ty,
resume_ty: self.resume_ty,
yield_ty: self.yield_ty,
return_ty: self.return_ty,
witness: self.interior,
tupled_upvars_ty,
},
);
Ty::new_coroutine(cx, coroutine_def_id, coroutine_args.args)
}
/// Given known upvars and a [`ClosureKind`](ty::ClosureKind), compute the coroutine
/// returned by that corresponding async fn trait.
///
/// This function expects the upvars to have been computed already, and doesn't check
/// that the `ClosureKind` is actually supported by the coroutine-closure.
pub fn to_coroutine_given_kind_and_upvars(
self,
cx: I,
parent_args: I::GenericArgsSlice,
coroutine_def_id: I::DefId,
goal_kind: ty::ClosureKind,
env_region: I::Region,
closure_tupled_upvars_ty: I::Ty,
coroutine_captures_by_ref_ty: I::Ty,
) -> I::Ty {
let tupled_upvars_ty = Self::tupled_upvars_by_closure_kind(
cx,
goal_kind,
self.tupled_inputs_ty,
closure_tupled_upvars_ty,
coroutine_captures_by_ref_ty,
env_region,
);
self.to_coroutine(
cx,
parent_args,
Ty::from_coroutine_closure_kind(cx, goal_kind),
coroutine_def_id,
tupled_upvars_ty,
)
}
/// Compute the tupled upvars that a coroutine-closure's output coroutine
/// would return for the given `ClosureKind`.
///
/// When `ClosureKind` is `FnMut`/`Fn`, then this will use the "captures by ref"
/// to return a set of upvars which are borrowed with the given `env_region`.
///
/// This ensures that the `AsyncFn::call` will return a coroutine whose upvars'
/// lifetimes are related to the lifetime of the borrow on the closure made for
/// the call. This allows borrowck to enforce the self-borrows correctly.
pub fn tupled_upvars_by_closure_kind(
cx: I,
kind: ty::ClosureKind,
tupled_inputs_ty: I::Ty,
closure_tupled_upvars_ty: I::Ty,
coroutine_captures_by_ref_ty: I::Ty,
env_region: I::Region,
) -> I::Ty {
match kind {
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
let ty::FnPtr(sig) = coroutine_captures_by_ref_ty.kind() else {
panic!();
};
let coroutine_captures_by_ref_ty =
sig.output().skip_binder().fold_with(&mut FoldEscapingRegions {
interner: cx,
region: env_region,
debruijn: ty::INNERMOST,
});
Ty::new_tup_from_iter(
cx,
tupled_inputs_ty
.tuple_fields()
.iter()
.chain(coroutine_captures_by_ref_ty.tuple_fields().iter()),
)
}
ty::ClosureKind::FnOnce => Ty::new_tup_from_iter(
cx,
tupled_inputs_ty
.tuple_fields()
.iter()
.chain(closure_tupled_upvars_ty.tuple_fields().iter()),
),
}
}
}
/// Instantiates a `for<'env> ...` binder with a specific region.
// FIXME(async_closures): Get rid of this in favor of `BoundVarReplacerDelegate`
// when that is uplifted.
struct FoldEscapingRegions<I: Interner> {
interner: I,
debruijn: ty::DebruijnIndex,
region: I::Region,
}
impl<I: Interner> TypeFolder<I> for FoldEscapingRegions<I> {
fn cx(&self) -> I {
self.interner
}
fn fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T>
where
T: TypeFoldable<I>,
{
self.debruijn.shift_in(1);
let result = t.super_fold_with(self);
self.debruijn.shift_out(1);
result
}
fn fold_region(&mut self, r: <I as Interner>::Region) -> <I as Interner>::Region {
if let ty::ReBound(debruijn, _) = r.kind() {
assert!(
debruijn <= self.debruijn,
"cannot instantiate binder with escaping bound vars"
);
if self.debruijn == debruijn {
shift_region(self.interner, self.region, self.debruijn.as_u32())
} else {
r
}
} else {
r
}
}
}
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = ""),
Debug(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic)]
pub struct GenSig<I: Interner> {
pub resume_ty: I::Ty,
pub yield_ty: I::Ty,
pub return_ty: I::Ty,
}
/// Similar to `ClosureArgs`; see the above documentation for more.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = ""),
Debug(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
pub struct CoroutineArgs<I: Interner> {
pub args: I::GenericArgs,
}
pub struct CoroutineArgsParts<I: Interner> {
/// This is the args of the typeck root.
pub parent_args: I::GenericArgsSlice,
/// The coroutines returned by a coroutine-closure's `AsyncFnOnce`/`AsyncFnMut`
/// implementations must be distinguished since the former takes the closure's
/// upvars by move, and the latter takes the closure's upvars by ref.
///
/// This field distinguishes these fields so that codegen can select the right
/// body for the coroutine. This has the same type representation as the closure
/// kind: `i8`/`i16`/`i32`.
///
/// For regular coroutines, this field will always just be `()`.
pub kind_ty: I::Ty,
pub resume_ty: I::Ty,
pub yield_ty: I::Ty,
pub return_ty: I::Ty,
/// The interior type of the coroutine.
/// Represents all types that are stored in locals
/// in the coroutine's body.
pub witness: I::Ty,
/// The upvars captured by the closure. Remains an inference variable
/// until the upvar analysis, which happens late in HIR typeck.
pub tupled_upvars_ty: I::Ty,
}
impl<I: Interner> CoroutineArgs<I> {
/// Construct `CoroutineArgs` from `CoroutineArgsParts`, containing `Args`
/// for the coroutine parent, alongside additional coroutine-specific components.
pub fn new(cx: I, parts: CoroutineArgsParts<I>) -> CoroutineArgs<I> {
CoroutineArgs {
args: cx.mk_args_from_iter(parts.parent_args.iter().chain([
parts.kind_ty.into(),
parts.resume_ty.into(),
parts.yield_ty.into(),
parts.return_ty.into(),
parts.witness.into(),
parts.tupled_upvars_ty.into(),
])),
}
}
/// Divides the coroutine args into their respective components.
/// The ordering assumed here must match that used by `CoroutineArgs::new` above.
fn split(self) -> CoroutineArgsParts<I> {
self.args.split_coroutine_args()
}
/// Returns the generic parameters of the coroutine's parent.
pub fn parent_args(self) -> I::GenericArgsSlice {
self.split().parent_args
}
// Returns the kind of the coroutine. See docs on the `kind_ty` field.
pub fn kind_ty(self) -> I::Ty {
self.split().kind_ty
}
/// This describes the types that can be contained in a coroutine.
/// It will be a type variable initially and unified in the last stages of typeck of a body.
/// It contains a tuple of all the types that could end up on a coroutine frame.
/// The state transformation MIR pass may only produce layouts which mention types
/// in this tuple. Upvars are not counted here.
pub fn witness(self) -> I::Ty {
self.split().witness
}
/// Returns an iterator over the list of types of captured paths by the coroutine.
/// In case there was a type error in figuring out the types of the captured path, an
/// empty iterator is returned.
#[inline]
pub fn upvar_tys(self) -> I::Tys {
match self.tupled_upvars_ty().kind() {
ty::Error(_) => Default::default(),
ty::Tuple(tys) => tys,
ty::Infer(_) => panic!("upvar_tys called before capture types are inferred"),
ty => panic!("Unexpected representation of upvar types tuple {:?}", ty),
}
}
/// Returns the tuple type representing the upvars for this coroutine.
#[inline]
pub fn tupled_upvars_ty(self) -> I::Ty {
self.split().tupled_upvars_ty
}
/// Returns the type representing the resume type of the coroutine.
pub fn resume_ty(self) -> I::Ty {
self.split().resume_ty
}
/// Returns the type representing the yield type of the coroutine.
pub fn yield_ty(self) -> I::Ty {
self.split().yield_ty
}
/// Returns the type representing the return type of the coroutine.
pub fn return_ty(self) -> I::Ty {
self.split().return_ty
}
/// Returns the "coroutine signature", which consists of its resume, yield
/// and return types.
pub fn sig(self) -> GenSig<I> {
let parts = self.split();
GenSig { resume_ty: parts.resume_ty, yield_ty: parts.yield_ty, return_ty: parts.return_ty }
}
}