miri/shims/x86/aesni.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::LayoutOf as _;
use rustc_span::Symbol;
use rustc_target::spec::abi::Abi;
use crate::*;
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn emulate_x86_aesni_intrinsic(
&mut self,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, EmulateItemResult> {
let this = self.eval_context_mut();
this.expect_target_feature_for_intrinsic(link_name, "aes")?;
// Prefix should have already been checked.
let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.aesni.").unwrap();
match unprefixed_name {
// Used to implement the _mm_aesdec_si128, _mm256_aesdec_epi128
// and _mm512_aesdec_epi128 functions.
// Performs one round of an AES decryption on each 128-bit word of
// `state` with the corresponding 128-bit key of `key`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
"aesdec" | "aesdec.256" | "aesdec.512" => {
let [state, key] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
aes_round(this, state, key, dest, |state, key| {
let key = aes::Block::from(key.to_le_bytes());
let mut state = aes::Block::from(state.to_le_bytes());
// `aes::hazmat::equiv_inv_cipher_round` documentation states that
// it performs the same operation as the x86 aesdec instruction.
aes::hazmat::equiv_inv_cipher_round(&mut state, &key);
u128::from_le_bytes(state.into())
})?;
}
// Used to implement the _mm_aesdeclast_si128, _mm256_aesdeclast_epi128
// and _mm512_aesdeclast_epi128 functions.
// Performs last round of an AES decryption on each 128-bit word of
// `state` with the corresponding 128-bit key of `key`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
"aesdeclast" | "aesdeclast.256" | "aesdeclast.512" => {
let [state, key] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
aes_round(this, state, key, dest, |state, key| {
let mut state = aes::Block::from(state.to_le_bytes());
// `aes::hazmat::equiv_inv_cipher_round` does the following operations:
// state = InvShiftRows(state)
// state = InvSubBytes(state)
// state = InvMixColumns(state)
// state = state ^ key
// But we need to skip the InvMixColumns.
// First, use a zeroed key to skip the XOR.
aes::hazmat::equiv_inv_cipher_round(&mut state, &aes::Block::from([0; 16]));
// Then, undo the InvMixColumns with MixColumns.
aes::hazmat::mix_columns(&mut state);
// Finally, do the XOR.
u128::from_le_bytes(state.into()) ^ key
})?;
}
// Used to implement the _mm_aesenc_si128, _mm256_aesenc_epi128
// and _mm512_aesenc_epi128 functions.
// Performs one round of an AES encryption on each 128-bit word of
// `state` with the corresponding 128-bit key of `key`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenc_si128
"aesenc" | "aesenc.256" | "aesenc.512" => {
let [state, key] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
aes_round(this, state, key, dest, |state, key| {
let key = aes::Block::from(key.to_le_bytes());
let mut state = aes::Block::from(state.to_le_bytes());
// `aes::hazmat::cipher_round` documentation states that
// it performs the same operation as the x86 aesenc instruction.
aes::hazmat::cipher_round(&mut state, &key);
u128::from_le_bytes(state.into())
})?;
}
// Used to implement the _mm_aesenclast_si128, _mm256_aesenclast_epi128
// and _mm512_aesenclast_epi128 functions.
// Performs last round of an AES encryption on each 128-bit word of
// `state` with the corresponding 128-bit key of `key`.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
"aesenclast" | "aesenclast.256" | "aesenclast.512" => {
let [state, key] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
aes_round(this, state, key, dest, |state, key| {
let mut state = aes::Block::from(state.to_le_bytes());
// `aes::hazmat::cipher_round` does the following operations:
// state = ShiftRows(state)
// state = SubBytes(state)
// state = MixColumns(state)
// state = state ^ key
// But we need to skip the MixColumns.
// First, use a zeroed key to skip the XOR.
aes::hazmat::cipher_round(&mut state, &aes::Block::from([0; 16]));
// Then, undo the MixColumns with InvMixColumns.
aes::hazmat::inv_mix_columns(&mut state);
// Finally, do the XOR.
u128::from_le_bytes(state.into()) ^ key
})?;
}
// Used to implement the _mm_aesimc_si128 function.
// Performs the AES InvMixColumns operation on `op`
"aesimc" => {
let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
// Transmute to `u128`
let op = op.transmute(this.machine.layouts.u128, this)?;
let dest = dest.transmute(this.machine.layouts.u128, this)?;
let state = this.read_scalar(&op)?.to_u128()?;
let mut state = aes::Block::from(state.to_le_bytes());
aes::hazmat::inv_mix_columns(&mut state);
this.write_scalar(Scalar::from_u128(u128::from_le_bytes(state.into())), &dest)?;
}
// TODO: Implement the `llvm.x86.aesni.aeskeygenassist` when possible
// with an external crate.
_ => return interp_ok(EmulateItemResult::NotSupported),
}
interp_ok(EmulateItemResult::NeedsReturn)
}
}
// Performs an AES round (given by `f`) on each 128-bit word of
// `state` with the corresponding 128-bit key of `key`.
fn aes_round<'tcx>(
this: &mut crate::MiriInterpCx<'tcx>,
state: &OpTy<'tcx>,
key: &OpTy<'tcx>,
dest: &MPlaceTy<'tcx>,
f: impl Fn(u128, u128) -> u128,
) -> InterpResult<'tcx, ()> {
assert_eq!(dest.layout.size, state.layout.size);
assert_eq!(dest.layout.size, key.layout.size);
// Transmute arguments to arrays of `u128`.
assert_eq!(dest.layout.size.bytes() % 16, 0);
let len = dest.layout.size.bytes() / 16;
let u128_array_layout =
this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u128, len))?;
let state = state.transmute(u128_array_layout, this)?;
let key = key.transmute(u128_array_layout, this)?;
let dest = dest.transmute(u128_array_layout, this)?;
for i in 0..len {
let state = this.read_scalar(&this.project_index(&state, i)?)?.to_u128()?;
let key = this.read_scalar(&this.project_index(&key, i)?)?.to_u128()?;
let dest = this.project_index(&dest, i)?;
let res = f(state, key);
this.write_scalar(Scalar::from_u128(res), &dest)?;
}
interp_ok(())
}