1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
use rustc_index::{Idx, IndexVec};

use crate::graph::{DirectedGraph, NumEdges, Predecessors, Successors};

#[cfg(test)]
mod tests;

/// A directed graph, efficient for cases where node indices are pre-existing.
///
/// If `BR` is true, the graph will store back-references, allowing you to get predecessors.
pub struct VecGraph<N: Idx, const BR: bool = false> {
    // This is basically a `HashMap<N, (Vec<N>, If<BR, Vec<N>>)>` -- a map from a node index, to
    // a list of targets of outgoing edges and (if enabled) a list of sources of incoming edges.
    //
    // However, it is condensed into two arrays as an optimization.
    //
    // `node_starts[n]` is the start of the list of targets of outgoing edges for node `n`.
    // So you can get node's successors with `edge_targets[node_starts[n]..node_starts[n + 1]]`.
    //
    // If `BR` is true (back references are enabled), then `node_starts[n + edge_count]` is the
    // start of the list of *sources* of incoming edges. You can get predecessors of a node
    // similarly to its successors but offsetting by `edge_count`. `edge_count` is
    // `edge_targets.len()/2` (again, in case BR is true) because half of the vec is back refs.
    //
    // All of this might be confusing, so here is an example graph and its representation:
    //
    //       n3 ----+
    //        ^     |                           (if BR = true)
    //        |     v     outgoing edges        incoming edges
    // n0 -> n1 -> n2     ______________      __________________
    //                   /              \    /                  \
    //  node indices[1]:  n0, n1, n2, n3,     n0, n1, n2, n3,       n/a
    //      vec indices:  n0, n1, n2, n3,     n4, n5, n6, n7,       n8
    //      node_starts:  [0,  1,  3,  4       4,  4,  5,  7,        8]
    //                     |   |   |   |       |   |   |   |         |
    //                     |   |   +---+       +---+   |   +---+     |
    //                     |   |       |           |   |       |     |
    //                     v   v       v           v   v       v     v
    //     edge_targets: [n1, n2, n3, n2          n0, n1, n3, n1]
    //                   /    \____/   |           |  \____/    \
    //             n0->n1     /        |           |       \     n3<-n1
    //                       /    n3->n2 [2]  n1<-n0 [2]    \
    //         n1->n2, n1->n3                                n2<-n1, n2<-n3
    //
    // The incoming edges are basically stored in the same way as outgoing edges, but offset and
    // the graph they store is the inverse of the original. Last index in the `node_starts` array
    // always points to one-past-the-end, so that we don't need to bound check `node_starts[n + 1]`
    //
    // [1]: "node indices" are the indices a user of `VecGraph` might use,
    //      note that they are different from "vec indices",
    //      which are the real indices you need to index `node_starts`
    //
    // [2]: Note that even though n2 also points to here,
    //      the next index also points here, so n2 has no
    //      successors (`edge_targets[3..3] = []`).
    //      Similarly with n0 and incoming edges
    //
    // If this is still confusing... then sorry :(
    //
    /// Indices into `edge_targets` that signify a start of list of edges.
    node_starts: IndexVec<N, usize>,

    /// Targets (or sources for back refs) of edges
    edge_targets: Vec<N>,
}

impl<N: Idx + Ord, const BR: bool> VecGraph<N, BR> {
    pub fn new(num_nodes: usize, mut edge_pairs: Vec<(N, N)>) -> Self {
        let num_edges = edge_pairs.len();

        let nodes_cap = match BR {
            // +1 for special entry at the end, pointing one past the end of `edge_targets`
            false => num_nodes + 1,
            // *2 for back references
            true => (num_nodes * 2) + 1,
        };

        let edges_cap = match BR {
            false => num_edges,
            // *2 for back references
            true => num_edges * 2,
        };

        let mut node_starts = IndexVec::with_capacity(nodes_cap);
        let mut edge_targets = Vec::with_capacity(edges_cap);

        // Sort the edges by the source -- this is important.
        edge_pairs.sort();

        // Fill forward references
        create_index(
            num_nodes,
            &mut edge_pairs.iter().map(|&(src, _)| src),
            &mut edge_pairs.iter().map(|&(_, tgt)| tgt),
            &mut edge_targets,
            &mut node_starts,
        );

        // Fill back references
        if BR {
            // Pop the special "last" entry, it will be replaced by first back ref
            node_starts.pop();

            // Re-sort the edges so that they are sorted by target
            edge_pairs.sort_by_key(|&(src, tgt)| (tgt, src));

            create_index(
                // Back essentially double the number of nodes
                num_nodes * 2,
                // NB: the source/target are switched here too
                // NB: we double the key index, so that we can later use *2 to get the back references
                &mut edge_pairs.iter().map(|&(_, tgt)| N::new(tgt.index() + num_nodes)),
                &mut edge_pairs.iter().map(|&(src, _)| src),
                &mut edge_targets,
                &mut node_starts,
            );
        }

        Self { node_starts, edge_targets }
    }

    /// Gets the successors for `source` as a slice.
    pub fn successors(&self, source: N) -> &[N] {
        assert!(source.index() < self.num_nodes());

        let start_index = self.node_starts[source];
        let end_index = self.node_starts[source.plus(1)];
        &self.edge_targets[start_index..end_index]
    }
}

impl<N: Idx + Ord> VecGraph<N, true> {
    /// Gets the predecessors for `target` as a slice.
    pub fn predecessors(&self, target: N) -> &[N] {
        assert!(target.index() < self.num_nodes());

        let target = N::new(target.index() + self.num_nodes());

        let start_index = self.node_starts[target];
        let end_index = self.node_starts[target.plus(1)];
        &self.edge_targets[start_index..end_index]
    }
}

/// Creates/initializes the index for the [`VecGraph`]. A helper for [`VecGraph::new`].
///
/// - `num_nodes` is the target number of nodes in the graph
/// - `sorted_edge_sources` are the edge sources, sorted
/// - `associated_edge_targets` are the edge *targets* in the same order as sources
/// - `edge_targets` is the vec of targets to be extended
/// - `node_starts` is the index to be filled
fn create_index<N: Idx + Ord>(
    num_nodes: usize,
    sorted_edge_sources: &mut dyn Iterator<Item = N>,
    associated_edge_targets: &mut dyn Iterator<Item = N>,
    edge_targets: &mut Vec<N>,
    node_starts: &mut IndexVec<N, usize>,
) {
    let offset = edge_targets.len();

    // Store the *target* of each edge into `edge_targets`.
    edge_targets.extend(associated_edge_targets);

    // Create the *edge starts* array. We are iterating over the
    // (sorted) edge pairs. We maintain the invariant that the
    // length of the `node_starts` array is enough to store the
    // current source node -- so when we see that the source node
    // for an edge is greater than the current length, we grow the
    // edge-starts array by just enough.
    for (index, source) in sorted_edge_sources.enumerate() {
        // If we have a list like `[(0, x), (2, y)]`:
        //
        // - Start out with `node_starts` of `[]`
        // - Iterate to `(0, x)` at index 0:
        //   - Push one entry because `node_starts.len()` (0) is <= the source (0)
        //   - Leaving us with `node_starts` of `[0]`
        // - Iterate to `(2, y)` at index 1:
        //   - Push one entry because `node_starts.len()` (1) is <= the source (2)
        //   - Push one entry because `node_starts.len()` (2) is <= the source (2)
        //   - Leaving us with `node_starts` of `[0, 1, 1]`
        // - Loop terminates
        while node_starts.len() <= source.index() {
            node_starts.push(index + offset);
        }
    }

    // Pad out the `node_starts` array so that it has `num_nodes +
    // 1` entries. Continuing our example above, if `num_nodes` is
    // be `3`, we would push one more index: `[0, 1, 1, 2]`.
    //
    // Interpretation of that vector:
    //
    // [0, 1, 1, 2]
    //        ---- range for N=2
    //     ---- range for N=1
    //  ---- range for N=0
    while node_starts.len() <= num_nodes {
        node_starts.push(edge_targets.len());
    }

    assert_eq!(node_starts.len(), num_nodes + 1);
}

impl<N: Idx, const BR: bool> DirectedGraph for VecGraph<N, BR> {
    type Node = N;

    fn num_nodes(&self) -> usize {
        match BR {
            false => self.node_starts.len() - 1,
            // If back refs are enabled, half of the array is said back refs
            true => (self.node_starts.len() - 1) / 2,
        }
    }
}

impl<N: Idx, const BR: bool> NumEdges for VecGraph<N, BR> {
    fn num_edges(&self) -> usize {
        match BR {
            false => self.edge_targets.len(),
            // If back refs are enabled, half of the array is reversed edges for them
            true => self.edge_targets.len() / 2,
        }
    }
}

impl<N: Idx + Ord, const BR: bool> Successors for VecGraph<N, BR> {
    fn successors(&self, node: N) -> impl Iterator<Item = Self::Node> {
        self.successors(node).iter().cloned()
    }
}

impl<N: Idx + Ord> Predecessors for VecGraph<N, true> {
    fn predecessors(&self, node: Self::Node) -> impl Iterator<Item = Self::Node> {
        self.predecessors(node).iter().cloned()
    }
}