1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
use crate::consts::ConstEvalCtxt;
use crate::macros::macro_backtrace;
use crate::source::{walk_span_to_context, SpanRange, SpanRangeExt};
use crate::tokenize_with_text;
use rustc_ast::ast::InlineAsmTemplatePiece;
use rustc_data_structures::fx::FxHasher;
use rustc_hir::def::Res;
use rustc_hir::MatchSource::TryDesugar;
use rustc_hir::{
    ArrayLen, AssocItemConstraint, BinOpKind, BindingMode, Block, BodyId, Closure, ConstArg, ConstArgKind, Expr,
    ExprField, ExprKind, FnRetTy, GenericArg, GenericArgs, HirId, HirIdMap, InlineAsmOperand, LetExpr, Lifetime,
    LifetimeName, Pat, PatField, PatKind, Path, PathSegment, PrimTy, QPath, Stmt, StmtKind, Ty, TyKind,
};
use rustc_lexer::{tokenize, TokenKind};
use rustc_lint::LateContext;
use rustc_middle::ty::TypeckResults;
use rustc_span::{sym, BytePos, ExpnKind, MacroKind, Symbol, SyntaxContext};
use std::hash::{Hash, Hasher};
use std::ops::Range;

/// Callback that is called when two expressions are not equal in the sense of `SpanlessEq`, but
/// other conditions would make them equal.
type SpanlessEqCallback<'a> = dyn FnMut(&Expr<'_>, &Expr<'_>) -> bool + 'a;

/// Type used to check whether two ast are the same. This is different from the
/// operator `==` on ast types as this operator would compare true equality with
/// ID and span.
///
/// Note that some expressions kinds are not considered but could be added.
pub struct SpanlessEq<'a, 'tcx> {
    /// Context used to evaluate constant expressions.
    cx: &'a LateContext<'tcx>,
    maybe_typeck_results: Option<(&'tcx TypeckResults<'tcx>, &'tcx TypeckResults<'tcx>)>,
    allow_side_effects: bool,
    expr_fallback: Option<Box<SpanlessEqCallback<'a>>>,
}

impl<'a, 'tcx> SpanlessEq<'a, 'tcx> {
    pub fn new(cx: &'a LateContext<'tcx>) -> Self {
        Self {
            cx,
            maybe_typeck_results: cx.maybe_typeck_results().map(|x| (x, x)),
            allow_side_effects: true,
            expr_fallback: None,
        }
    }

    /// Consider expressions containing potential side effects as not equal.
    #[must_use]
    pub fn deny_side_effects(self) -> Self {
        Self {
            allow_side_effects: false,
            ..self
        }
    }

    #[must_use]
    pub fn expr_fallback(self, expr_fallback: impl FnMut(&Expr<'_>, &Expr<'_>) -> bool + 'a) -> Self {
        Self {
            expr_fallback: Some(Box::new(expr_fallback)),
            ..self
        }
    }

    /// Use this method to wrap comparisons that may involve inter-expression context.
    /// See `self.locals`.
    pub fn inter_expr(&mut self) -> HirEqInterExpr<'_, 'a, 'tcx> {
        HirEqInterExpr {
            inner: self,
            left_ctxt: SyntaxContext::root(),
            right_ctxt: SyntaxContext::root(),
            locals: HirIdMap::default(),
        }
    }

    pub fn eq_block(&mut self, left: &Block<'_>, right: &Block<'_>) -> bool {
        self.inter_expr().eq_block(left, right)
    }

    pub fn eq_expr(&mut self, left: &Expr<'_>, right: &Expr<'_>) -> bool {
        self.inter_expr().eq_expr(left, right)
    }

    pub fn eq_path(&mut self, left: &Path<'_>, right: &Path<'_>) -> bool {
        self.inter_expr().eq_path(left, right)
    }

    pub fn eq_path_segment(&mut self, left: &PathSegment<'_>, right: &PathSegment<'_>) -> bool {
        self.inter_expr().eq_path_segment(left, right)
    }

    pub fn eq_path_segments(&mut self, left: &[PathSegment<'_>], right: &[PathSegment<'_>]) -> bool {
        self.inter_expr().eq_path_segments(left, right)
    }
}

pub struct HirEqInterExpr<'a, 'b, 'tcx> {
    inner: &'a mut SpanlessEq<'b, 'tcx>,
    left_ctxt: SyntaxContext,
    right_ctxt: SyntaxContext,

    // When binding are declared, the binding ID in the left expression is mapped to the one on the
    // right. For example, when comparing `{ let x = 1; x + 2 }` and `{ let y = 1; y + 2 }`,
    // these blocks are considered equal since `x` is mapped to `y`.
    pub locals: HirIdMap<HirId>,
}

impl HirEqInterExpr<'_, '_, '_> {
    pub fn eq_stmt(&mut self, left: &Stmt<'_>, right: &Stmt<'_>) -> bool {
        match (&left.kind, &right.kind) {
            (&StmtKind::Let(l), &StmtKind::Let(r)) => {
                // This additional check ensures that the type of the locals are equivalent even if the init
                // expression or type have some inferred parts.
                if let Some((typeck_lhs, typeck_rhs)) = self.inner.maybe_typeck_results {
                    let l_ty = typeck_lhs.pat_ty(l.pat);
                    let r_ty = typeck_rhs.pat_ty(r.pat);
                    if l_ty != r_ty {
                        return false;
                    }
                }

                // eq_pat adds the HirIds to the locals map. We therefore call it last to make sure that
                // these only get added if the init and type is equal.
                both(&l.init, &r.init, |l, r| self.eq_expr(l, r))
                    && both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r))
                    && both(&l.els, &r.els, |l, r| self.eq_block(l, r))
                    && self.eq_pat(l.pat, r.pat)
            },
            (&StmtKind::Expr(l), &StmtKind::Expr(r)) | (&StmtKind::Semi(l), &StmtKind::Semi(r)) => self.eq_expr(l, r),
            _ => false,
        }
    }

    /// Checks whether two blocks are the same.
    fn eq_block(&mut self, left: &Block<'_>, right: &Block<'_>) -> bool {
        use TokenKind::{Semi, Whitespace};
        if left.stmts.len() != right.stmts.len() {
            return false;
        }
        let lspan = left.span.data();
        let rspan = right.span.data();
        if lspan.ctxt != SyntaxContext::root() && rspan.ctxt != SyntaxContext::root() {
            // Don't try to check in between statements inside macros.
            return over(left.stmts, right.stmts, |left, right| self.eq_stmt(left, right))
                && both(&left.expr, &right.expr, |left, right| self.eq_expr(left, right));
        }
        if lspan.ctxt != rspan.ctxt {
            return false;
        }

        let mut lstart = lspan.lo;
        let mut rstart = rspan.lo;

        for (left, right) in left.stmts.iter().zip(right.stmts) {
            if !self.eq_stmt(left, right) {
                return false;
            }

            // Try to detect any `cfg`ed statements or empty macro expansions.
            let Some(lstmt_span) = walk_span_to_context(left.span, lspan.ctxt) else {
                return false;
            };
            let Some(rstmt_span) = walk_span_to_context(right.span, rspan.ctxt) else {
                return false;
            };
            let lstmt_span = lstmt_span.data();
            let rstmt_span = rstmt_span.data();

            if lstmt_span.lo < lstart && rstmt_span.lo < rstart {
                // Can happen when macros expand to multiple statements, or rearrange statements.
                // Nothing in between the statements to check in this case.
                continue;
            }
            if lstmt_span.lo < lstart || rstmt_span.lo < rstart {
                // Only one of the blocks had a weird macro.
                return false;
            }
            if !eq_span_tokens(self.inner.cx, lstart..lstmt_span.lo, rstart..rstmt_span.lo, |t| {
                !matches!(t, Whitespace | Semi)
            }) {
                return false;
            }

            lstart = lstmt_span.hi;
            rstart = rstmt_span.hi;
        }

        let (lend, rend) = match (left.expr, right.expr) {
            (Some(left), Some(right)) => {
                if !self.eq_expr(left, right) {
                    return false;
                }
                let Some(lexpr_span) = walk_span_to_context(left.span, lspan.ctxt) else {
                    return false;
                };
                let Some(rexpr_span) = walk_span_to_context(right.span, rspan.ctxt) else {
                    return false;
                };
                (lexpr_span.lo(), rexpr_span.lo())
            },
            (None, None) => (lspan.hi, rspan.hi),
            (Some(_), None) | (None, Some(_)) => return false,
        };

        if lend < lstart && rend < rstart {
            // Can happen when macros rearrange the input.
            // Nothing in between the statements to check in this case.
            return true;
        } else if lend < lstart || rend < rstart {
            // Only one of the blocks had a weird macro
            return false;
        }
        eq_span_tokens(self.inner.cx, lstart..lend, rstart..rend, |t| {
            !matches!(t, Whitespace | Semi)
        })
    }

    fn should_ignore(&mut self, expr: &Expr<'_>) -> bool {
        macro_backtrace(expr.span).last().map_or(false, |macro_call| {
            matches!(
                &self.inner.cx.tcx.get_diagnostic_name(macro_call.def_id),
                Some(sym::todo_macro | sym::unimplemented_macro)
            )
        })
    }

    pub fn eq_array_length(&mut self, left: ArrayLen<'_>, right: ArrayLen<'_>) -> bool {
        match (left, right) {
            (ArrayLen::Infer(..), ArrayLen::Infer(..)) => true,
            (ArrayLen::Body(l_ct), ArrayLen::Body(r_ct)) => self.eq_const_arg(l_ct, r_ct),
            (_, _) => false,
        }
    }

    pub fn eq_body(&mut self, left: BodyId, right: BodyId) -> bool {
        // swap out TypeckResults when hashing a body
        let old_maybe_typeck_results = self.inner.maybe_typeck_results.replace((
            self.inner.cx.tcx.typeck_body(left),
            self.inner.cx.tcx.typeck_body(right),
        ));
        let res = self.eq_expr(
            self.inner.cx.tcx.hir().body(left).value,
            self.inner.cx.tcx.hir().body(right).value,
        );
        self.inner.maybe_typeck_results = old_maybe_typeck_results;
        res
    }

    #[expect(clippy::too_many_lines)]
    pub fn eq_expr(&mut self, left: &Expr<'_>, right: &Expr<'_>) -> bool {
        if !self.check_ctxt(left.span.ctxt(), right.span.ctxt()) {
            return false;
        }

        if let Some((typeck_lhs, typeck_rhs)) = self.inner.maybe_typeck_results
            && typeck_lhs.expr_ty(left) == typeck_rhs.expr_ty(right)
            && let (Some(l), Some(r)) = (
                ConstEvalCtxt::with_env(self.inner.cx.tcx, self.inner.cx.param_env, typeck_lhs).eval_simple(left),
                ConstEvalCtxt::with_env(self.inner.cx.tcx, self.inner.cx.param_env, typeck_rhs).eval_simple(right),
            )
            && l == r
        {
            return true;
        }

        let is_eq = match (
            reduce_exprkind(self.inner.cx, &left.kind),
            reduce_exprkind(self.inner.cx, &right.kind),
        ) {
            (&ExprKind::AddrOf(lb, l_mut, le), &ExprKind::AddrOf(rb, r_mut, re)) => {
                lb == rb && l_mut == r_mut && self.eq_expr(le, re)
            },
            (&ExprKind::Array(l), &ExprKind::Array(r)) => self.eq_exprs(l, r),
            (&ExprKind::Assign(ll, lr, _), &ExprKind::Assign(rl, rr, _)) => {
                self.inner.allow_side_effects && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
            },
            (&ExprKind::AssignOp(ref lo, ll, lr), &ExprKind::AssignOp(ref ro, rl, rr)) => {
                self.inner.allow_side_effects && lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
            },
            (&ExprKind::Block(l, _), &ExprKind::Block(r, _)) => self.eq_block(l, r),
            (&ExprKind::Binary(l_op, ll, lr), &ExprKind::Binary(r_op, rl, rr)) => {
                l_op.node == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
                    || swap_binop(l_op.node, ll, lr).map_or(false, |(l_op, ll, lr)| {
                        l_op == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
                    })
            },
            (&ExprKind::Break(li, ref le), &ExprKind::Break(ri, ref re)) => {
                both(&li.label, &ri.label, |l, r| l.ident.name == r.ident.name)
                    && both(le, re, |l, r| self.eq_expr(l, r))
            },
            (&ExprKind::Call(l_fun, l_args), &ExprKind::Call(r_fun, r_args)) => {
                self.inner.allow_side_effects && self.eq_expr(l_fun, r_fun) && self.eq_exprs(l_args, r_args)
            },
            (&ExprKind::Cast(lx, lt), &ExprKind::Cast(rx, rt)) => {
                self.eq_expr(lx, rx) && self.eq_ty(lt, rt)
            },
            (&ExprKind::Closure(_l), &ExprKind::Closure(_r)) => false,
            (&ExprKind::ConstBlock(lb), &ExprKind::ConstBlock(rb)) => self.eq_body(lb.body, rb.body),
            (&ExprKind::Continue(li), &ExprKind::Continue(ri)) => {
                both(&li.label, &ri.label, |l, r| l.ident.name == r.ident.name)
            },
            (&ExprKind::DropTemps(le), &ExprKind::DropTemps(re)) => self.eq_expr(le, re),
            (&ExprKind::Field(l_f_exp, ref l_f_ident), &ExprKind::Field(r_f_exp, ref r_f_ident)) => {
                l_f_ident.name == r_f_ident.name && self.eq_expr(l_f_exp, r_f_exp)
            },
            (&ExprKind::Index(la, li, _), &ExprKind::Index(ra, ri, _)) => self.eq_expr(la, ra) && self.eq_expr(li, ri),
            (&ExprKind::If(lc, lt, ref le), &ExprKind::If(rc, rt, ref re)) => {
                self.eq_expr(lc, rc) && self.eq_expr(lt, rt) && both(le, re, |l, r| self.eq_expr(l, r))
            },
            (&ExprKind::Let(l), &ExprKind::Let(r)) => {
                self.eq_pat(l.pat, r.pat) && both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && self.eq_expr(l.init, r.init)
            },
            (ExprKind::Lit(l), ExprKind::Lit(r)) => l.node == r.node,
            (&ExprKind::Loop(lb, ref ll, ref lls, _), &ExprKind::Loop(rb, ref rl, ref rls, _)) => {
                lls == rls && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.ident.name == r.ident.name)
            },
            (&ExprKind::Match(le, la, ref ls), &ExprKind::Match(re, ra, ref rs)) => {
                (ls == rs || (matches!((ls, rs), (TryDesugar(_), TryDesugar(_)))))
                    && self.eq_expr(le, re)
                    && over(la, ra, |l, r| {
                        self.eq_pat(l.pat, r.pat)
                            && both(&l.guard, &r.guard, |l, r| self.eq_expr(l, r))
                            && self.eq_expr(l.body, r.body)
                    })
            },
            (
                &ExprKind::MethodCall(l_path, l_receiver, l_args, _),
                &ExprKind::MethodCall(r_path, r_receiver, r_args, _),
            ) => {
                self.inner.allow_side_effects
                    && self.eq_path_segment(l_path, r_path)
                    && self.eq_expr(l_receiver, r_receiver)
                    && self.eq_exprs(l_args, r_args)
            },
            (&ExprKind::OffsetOf(l_container, l_fields), &ExprKind::OffsetOf(r_container, r_fields)) => {
                self.eq_ty(l_container, r_container) && over(l_fields, r_fields, |l, r| l.name == r.name)
            },
            (ExprKind::Path(l), ExprKind::Path(r)) => self.eq_qpath(l, r),
            (&ExprKind::Repeat(le, ll), &ExprKind::Repeat(re, rl)) => {
                self.eq_expr(le, re) && self.eq_array_length(ll, rl)
            },
            (ExprKind::Ret(l), ExprKind::Ret(r)) => both(l, r, |l, r| self.eq_expr(l, r)),
            (&ExprKind::Struct(l_path, lf, ref lo), &ExprKind::Struct(r_path, rf, ref ro)) => {
                self.eq_qpath(l_path, r_path)
                    && both(lo, ro, |l, r| self.eq_expr(l, r))
                    && over(lf, rf, |l, r| self.eq_expr_field(l, r))
            },
            (&ExprKind::Tup(l_tup), &ExprKind::Tup(r_tup)) => self.eq_exprs(l_tup, r_tup),
            (&ExprKind::Type(le, lt), &ExprKind::Type(re, rt)) => self.eq_expr(le, re) && self.eq_ty(lt, rt),
            (&ExprKind::Unary(l_op, le), &ExprKind::Unary(r_op, re)) => l_op == r_op && self.eq_expr(le, re),
            (&ExprKind::Yield(le, _), &ExprKind::Yield(re, _)) => return self.eq_expr(le, re),
            (
                // Else branches for branches above, grouped as per `match_same_arms`.
                | &ExprKind::AddrOf(..)
                | &ExprKind::Array(..)
                | &ExprKind::Assign(..)
                | &ExprKind::AssignOp(..)
                | &ExprKind::Binary(..)
                | &ExprKind::Become(..)
                | &ExprKind::Block(..)
                | &ExprKind::Break(..)
                | &ExprKind::Call(..)
                | &ExprKind::Cast(..)
                | &ExprKind::ConstBlock(..)
                | &ExprKind::Continue(..)
                | &ExprKind::DropTemps(..)
                | &ExprKind::Field(..)
                | &ExprKind::Index(..)
                | &ExprKind::If(..)
                | &ExprKind::Let(..)
                | &ExprKind::Lit(..)
                | &ExprKind::Loop(..)
                | &ExprKind::Match(..)
                | &ExprKind::MethodCall(..)
                | &ExprKind::OffsetOf(..)
                | &ExprKind::Path(..)
                | &ExprKind::Repeat(..)
                | &ExprKind::Ret(..)
                | &ExprKind::Struct(..)
                | &ExprKind::Tup(..)
                | &ExprKind::Type(..)
                | &ExprKind::Unary(..)
                | &ExprKind::Yield(..)

                // --- Special cases that do not have a positive branch.

                // `Err` represents an invalid expression, so let's never assume that
                // an invalid expressions is equal to anything.
                | &ExprKind::Err(..)

                // For the time being, we always consider that two closures are unequal.
                // This behavior may change in the future.
                | &ExprKind::Closure(..)
                // For the time being, we always consider that two instances of InlineAsm are different.
                // This behavior may change in the future.
                | &ExprKind::InlineAsm(_)
                , _
            ) => false,
        };
        (is_eq && (!self.should_ignore(left) || !self.should_ignore(right)))
            || self.inner.expr_fallback.as_mut().map_or(false, |f| f(left, right))
    }

    fn eq_exprs(&mut self, left: &[Expr<'_>], right: &[Expr<'_>]) -> bool {
        over(left, right, |l, r| self.eq_expr(l, r))
    }

    fn eq_expr_field(&mut self, left: &ExprField<'_>, right: &ExprField<'_>) -> bool {
        left.ident.name == right.ident.name && self.eq_expr(left.expr, right.expr)
    }

    fn eq_generic_arg(&mut self, left: &GenericArg<'_>, right: &GenericArg<'_>) -> bool {
        match (left, right) {
            (GenericArg::Const(l), GenericArg::Const(r)) => self.eq_const_arg(l, r),
            (GenericArg::Lifetime(l_lt), GenericArg::Lifetime(r_lt)) => Self::eq_lifetime(l_lt, r_lt),
            (GenericArg::Type(l_ty), GenericArg::Type(r_ty)) => self.eq_ty(l_ty, r_ty),
            (GenericArg::Infer(l_inf), GenericArg::Infer(r_inf)) => self.eq_ty(&l_inf.to_ty(), &r_inf.to_ty()),
            _ => false,
        }
    }

    fn eq_const_arg(&mut self, left: &ConstArg<'_>, right: &ConstArg<'_>) -> bool {
        match (&left.kind, &right.kind) {
            (ConstArgKind::Path(l_p), ConstArgKind::Path(r_p)) => self.eq_qpath(l_p, r_p),
            (ConstArgKind::Anon(l_an), ConstArgKind::Anon(r_an)) => self.eq_body(l_an.body, r_an.body),
            // Use explicit match for now since ConstArg is undergoing flux.
            (ConstArgKind::Path(..), ConstArgKind::Anon(..)) | (ConstArgKind::Anon(..), ConstArgKind::Path(..)) => {
                false
            },
        }
    }

    fn eq_lifetime(left: &Lifetime, right: &Lifetime) -> bool {
        left.res == right.res
    }

    fn eq_pat_field(&mut self, left: &PatField<'_>, right: &PatField<'_>) -> bool {
        let (PatField { ident: li, pat: lp, .. }, PatField { ident: ri, pat: rp, .. }) = (&left, &right);
        li.name == ri.name && self.eq_pat(lp, rp)
    }

    /// Checks whether two patterns are the same.
    fn eq_pat(&mut self, left: &Pat<'_>, right: &Pat<'_>) -> bool {
        match (&left.kind, &right.kind) {
            (&PatKind::Box(l), &PatKind::Box(r)) => self.eq_pat(l, r),
            (&PatKind::Struct(ref lp, la, ..), &PatKind::Struct(ref rp, ra, ..)) => {
                self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat_field(l, r))
            },
            (&PatKind::TupleStruct(ref lp, la, ls), &PatKind::TupleStruct(ref rp, ra, rs)) => {
                self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat(l, r)) && ls == rs
            },
            (&PatKind::Binding(lb, li, _, ref lp), &PatKind::Binding(rb, ri, _, ref rp)) => {
                let eq = lb == rb && both(lp, rp, |l, r| self.eq_pat(l, r));
                if eq {
                    self.locals.insert(li, ri);
                }
                eq
            },
            (PatKind::Path(l), PatKind::Path(r)) => self.eq_qpath(l, r),
            (&PatKind::Lit(l), &PatKind::Lit(r)) => self.eq_expr(l, r),
            (&PatKind::Tuple(l, ls), &PatKind::Tuple(r, rs)) => ls == rs && over(l, r, |l, r| self.eq_pat(l, r)),
            (&PatKind::Range(ref ls, ref le, li), &PatKind::Range(ref rs, ref re, ri)) => {
                both(ls, rs, |a, b| self.eq_expr(a, b)) && both(le, re, |a, b| self.eq_expr(a, b)) && (li == ri)
            },
            (&PatKind::Ref(le, ref lm), &PatKind::Ref(re, ref rm)) => lm == rm && self.eq_pat(le, re),
            (&PatKind::Slice(ls, ref li, le), &PatKind::Slice(rs, ref ri, re)) => {
                over(ls, rs, |l, r| self.eq_pat(l, r))
                    && over(le, re, |l, r| self.eq_pat(l, r))
                    && both(li, ri, |l, r| self.eq_pat(l, r))
            },
            (&PatKind::Wild, &PatKind::Wild) => true,
            _ => false,
        }
    }

    fn eq_qpath(&mut self, left: &QPath<'_>, right: &QPath<'_>) -> bool {
        match (left, right) {
            (&QPath::Resolved(ref lty, lpath), &QPath::Resolved(ref rty, rpath)) => {
                both(lty, rty, |l, r| self.eq_ty(l, r)) && self.eq_path(lpath, rpath)
            },
            (&QPath::TypeRelative(lty, lseg), &QPath::TypeRelative(rty, rseg)) => {
                self.eq_ty(lty, rty) && self.eq_path_segment(lseg, rseg)
            },
            (&QPath::LangItem(llang_item, ..), &QPath::LangItem(rlang_item, ..)) => llang_item == rlang_item,
            _ => false,
        }
    }

    pub fn eq_path(&mut self, left: &Path<'_>, right: &Path<'_>) -> bool {
        match (left.res, right.res) {
            (Res::Local(l), Res::Local(r)) => l == r || self.locals.get(&l) == Some(&r),
            (Res::Local(_), _) | (_, Res::Local(_)) => false,
            _ => over(left.segments, right.segments, |l, r| self.eq_path_segment(l, r)),
        }
    }

    fn eq_path_parameters(&mut self, left: &GenericArgs<'_>, right: &GenericArgs<'_>) -> bool {
        if left.parenthesized == right.parenthesized {
            over(left.args, right.args, |l, r| self.eq_generic_arg(l, r)) // FIXME(flip1995): may not work
                && over(left.constraints, right.constraints, |l, r| self.eq_assoc_type_binding(l, r))
        } else {
            false
        }
    }

    pub fn eq_path_segments(&mut self, left: &[PathSegment<'_>], right: &[PathSegment<'_>]) -> bool {
        left.len() == right.len() && left.iter().zip(right).all(|(l, r)| self.eq_path_segment(l, r))
    }

    pub fn eq_path_segment(&mut self, left: &PathSegment<'_>, right: &PathSegment<'_>) -> bool {
        // The == of idents doesn't work with different contexts,
        // we have to be explicit about hygiene
        left.ident.name == right.ident.name && both(&left.args, &right.args, |l, r| self.eq_path_parameters(l, r))
    }

    pub fn eq_ty(&mut self, left: &Ty<'_>, right: &Ty<'_>) -> bool {
        match (&left.kind, &right.kind) {
            (&TyKind::Slice(l_vec), &TyKind::Slice(r_vec)) => self.eq_ty(l_vec, r_vec),
            (&TyKind::Array(lt, ll), &TyKind::Array(rt, rl)) => self.eq_ty(lt, rt) && self.eq_array_length(ll, rl),
            (TyKind::Ptr(l_mut), TyKind::Ptr(r_mut)) => l_mut.mutbl == r_mut.mutbl && self.eq_ty(l_mut.ty, r_mut.ty),
            (TyKind::Ref(_, l_rmut), TyKind::Ref(_, r_rmut)) => {
                l_rmut.mutbl == r_rmut.mutbl && self.eq_ty(l_rmut.ty, r_rmut.ty)
            },
            (TyKind::Path(l), TyKind::Path(r)) => self.eq_qpath(l, r),
            (&TyKind::Tup(l), &TyKind::Tup(r)) => over(l, r, |l, r| self.eq_ty(l, r)),
            (&TyKind::Infer, &TyKind::Infer) => true,
            (TyKind::AnonAdt(l_item_id), TyKind::AnonAdt(r_item_id)) => l_item_id == r_item_id,
            _ => false,
        }
    }

    fn eq_assoc_type_binding(&mut self, left: &AssocItemConstraint<'_>, right: &AssocItemConstraint<'_>) -> bool {
        left.ident.name == right.ident.name
            && self.eq_ty(
                left.ty().expect("expected assoc type binding"),
                right.ty().expect("expected assoc type binding"),
            )
    }

    fn check_ctxt(&mut self, left: SyntaxContext, right: SyntaxContext) -> bool {
        if self.left_ctxt == left && self.right_ctxt == right {
            return true;
        } else if self.left_ctxt == left || self.right_ctxt == right {
            // Only one context has changed. This can only happen if the two nodes are written differently.
            return false;
        } else if left != SyntaxContext::root() {
            let mut left_data = left.outer_expn_data();
            let mut right_data = right.outer_expn_data();
            loop {
                use TokenKind::{BlockComment, LineComment, Whitespace};
                if left_data.macro_def_id != right_data.macro_def_id
                    || (matches!(
                        left_data.kind,
                        ExpnKind::Macro(MacroKind::Bang, name)
                        if name == sym::cfg || name == sym::option_env
                    ) && !eq_span_tokens(self.inner.cx, left_data.call_site, right_data.call_site, |t| {
                        !matches!(t, Whitespace | LineComment { .. } | BlockComment { .. })
                    }))
                {
                    // Either a different chain of macro calls, or different arguments to the `cfg` macro.
                    return false;
                }
                let left_ctxt = left_data.call_site.ctxt();
                let right_ctxt = right_data.call_site.ctxt();
                if left_ctxt == SyntaxContext::root() && right_ctxt == SyntaxContext::root() {
                    break;
                }
                if left_ctxt == SyntaxContext::root() || right_ctxt == SyntaxContext::root() {
                    // Different lengths for the expansion stack. This can only happen if nodes are written differently,
                    // or shouldn't be compared to start with.
                    return false;
                }
                left_data = left_ctxt.outer_expn_data();
                right_data = right_ctxt.outer_expn_data();
            }
        }
        self.left_ctxt = left;
        self.right_ctxt = right;
        true
    }
}

/// Some simple reductions like `{ return }` => `return`
fn reduce_exprkind<'hir>(cx: &LateContext<'_>, kind: &'hir ExprKind<'hir>) -> &'hir ExprKind<'hir> {
    if let ExprKind::Block(block, _) = kind {
        match (block.stmts, block.expr) {
            // From an `if let` expression without an `else` block. The arm for the implicit wild pattern is an empty
            // block with an empty span.
            ([], None) if block.span.is_empty() => &ExprKind::Tup(&[]),
            // `{}` => `()`
            ([], None)
                if block.span.check_source_text(cx, |src| {
                    tokenize(src)
                        .map(|t| t.kind)
                        .filter(|t| {
                            !matches!(
                                t,
                                TokenKind::LineComment { .. } | TokenKind::BlockComment { .. } | TokenKind::Whitespace
                            )
                        })
                        .eq([TokenKind::OpenBrace, TokenKind::CloseBrace].iter().copied())
                }) =>
            {
                &ExprKind::Tup(&[])
            },
            ([], Some(expr)) => match expr.kind {
                // `{ return .. }` => `return ..`
                ExprKind::Ret(..) => &expr.kind,
                _ => kind,
            },
            ([stmt], None) => match stmt.kind {
                StmtKind::Expr(expr) | StmtKind::Semi(expr) => match expr.kind {
                    // `{ return ..; }` => `return ..`
                    ExprKind::Ret(..) => &expr.kind,
                    _ => kind,
                },
                _ => kind,
            },
            _ => kind,
        }
    } else {
        kind
    }
}

fn swap_binop<'a>(
    binop: BinOpKind,
    lhs: &'a Expr<'a>,
    rhs: &'a Expr<'a>,
) -> Option<(BinOpKind, &'a Expr<'a>, &'a Expr<'a>)> {
    match binop {
        BinOpKind::Add | BinOpKind::Eq | BinOpKind::Ne | BinOpKind::BitAnd | BinOpKind::BitXor | BinOpKind::BitOr => {
            Some((binop, rhs, lhs))
        },
        BinOpKind::Lt => Some((BinOpKind::Gt, rhs, lhs)),
        BinOpKind::Le => Some((BinOpKind::Ge, rhs, lhs)),
        BinOpKind::Ge => Some((BinOpKind::Le, rhs, lhs)),
        BinOpKind::Gt => Some((BinOpKind::Lt, rhs, lhs)),
        BinOpKind::Mul // Not always commutative, e.g. with matrices. See issue #5698
        | BinOpKind::Shl
        | BinOpKind::Shr
        | BinOpKind::Rem
        | BinOpKind::Sub
        | BinOpKind::Div
        | BinOpKind::And
        | BinOpKind::Or => None,
    }
}

/// Checks if the two `Option`s are both `None` or some equal values as per
/// `eq_fn`.
pub fn both<X>(l: &Option<X>, r: &Option<X>, mut eq_fn: impl FnMut(&X, &X) -> bool) -> bool {
    l.as_ref()
        .map_or_else(|| r.is_none(), |x| r.as_ref().map_or(false, |y| eq_fn(x, y)))
}

/// Checks if two slices are equal as per `eq_fn`.
pub fn over<X>(left: &[X], right: &[X], mut eq_fn: impl FnMut(&X, &X) -> bool) -> bool {
    left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y))
}

/// Counts how many elements of the slices are equal as per `eq_fn`.
pub fn count_eq<X: Sized>(
    left: &mut dyn Iterator<Item = X>,
    right: &mut dyn Iterator<Item = X>,
    mut eq_fn: impl FnMut(&X, &X) -> bool,
) -> usize {
    left.zip(right).take_while(|(l, r)| eq_fn(l, r)).count()
}

/// Checks if two expressions evaluate to the same value, and don't contain any side effects.
pub fn eq_expr_value(cx: &LateContext<'_>, left: &Expr<'_>, right: &Expr<'_>) -> bool {
    SpanlessEq::new(cx).deny_side_effects().eq_expr(left, right)
}

/// Type used to hash an ast element. This is different from the `Hash` trait
/// on ast types as this
/// trait would consider IDs and spans.
///
/// All expressions kind are hashed, but some might have a weaker hash.
pub struct SpanlessHash<'a, 'tcx> {
    /// Context used to evaluate constant expressions.
    cx: &'a LateContext<'tcx>,
    maybe_typeck_results: Option<&'tcx TypeckResults<'tcx>>,
    s: FxHasher,
}

impl<'a, 'tcx> SpanlessHash<'a, 'tcx> {
    pub fn new(cx: &'a LateContext<'tcx>) -> Self {
        Self {
            cx,
            maybe_typeck_results: cx.maybe_typeck_results(),
            s: FxHasher::default(),
        }
    }

    pub fn finish(self) -> u64 {
        self.s.finish()
    }

    pub fn hash_block(&mut self, b: &Block<'_>) {
        for s in b.stmts {
            self.hash_stmt(s);
        }

        if let Some(e) = b.expr {
            self.hash_expr(e);
        }

        std::mem::discriminant(&b.rules).hash(&mut self.s);
    }

    #[expect(clippy::too_many_lines)]
    pub fn hash_expr(&mut self, e: &Expr<'_>) {
        let simple_const = self.maybe_typeck_results.and_then(|typeck_results| {
            ConstEvalCtxt::with_env(self.cx.tcx, self.cx.param_env, typeck_results).eval_simple(e)
        });

        // const hashing may result in the same hash as some unrelated node, so add a sort of
        // discriminant depending on which path we're choosing next
        simple_const.hash(&mut self.s);
        if simple_const.is_some() {
            return;
        }

        std::mem::discriminant(&e.kind).hash(&mut self.s);

        match e.kind {
            ExprKind::AddrOf(kind, m, e) => {
                std::mem::discriminant(&kind).hash(&mut self.s);
                m.hash(&mut self.s);
                self.hash_expr(e);
            },
            ExprKind::Continue(i) => {
                if let Some(i) = i.label {
                    self.hash_name(i.ident.name);
                }
            },
            ExprKind::Array(v) => {
                self.hash_exprs(v);
            },
            ExprKind::Assign(l, r, _) => {
                self.hash_expr(l);
                self.hash_expr(r);
            },
            ExprKind::AssignOp(ref o, l, r) => {
                std::mem::discriminant(&o.node).hash(&mut self.s);
                self.hash_expr(l);
                self.hash_expr(r);
            },
            ExprKind::Become(f) => {
                self.hash_expr(f);
            },
            ExprKind::Block(b, _) => {
                self.hash_block(b);
            },
            ExprKind::Binary(op, l, r) => {
                std::mem::discriminant(&op.node).hash(&mut self.s);
                self.hash_expr(l);
                self.hash_expr(r);
            },
            ExprKind::Break(i, ref j) => {
                if let Some(i) = i.label {
                    self.hash_name(i.ident.name);
                }
                if let Some(j) = *j {
                    self.hash_expr(j);
                }
            },
            ExprKind::Call(fun, args) => {
                self.hash_expr(fun);
                self.hash_exprs(args);
            },
            ExprKind::Cast(e, ty) | ExprKind::Type(e, ty) => {
                self.hash_expr(e);
                self.hash_ty(ty);
            },
            ExprKind::Closure(&Closure {
                capture_clause, body, ..
            }) => {
                std::mem::discriminant(&capture_clause).hash(&mut self.s);
                // closures inherit TypeckResults
                self.hash_expr(self.cx.tcx.hir().body(body).value);
            },
            ExprKind::ConstBlock(ref l_id) => {
                self.hash_body(l_id.body);
            },
            ExprKind::DropTemps(e) | ExprKind::Yield(e, _) => {
                self.hash_expr(e);
            },
            ExprKind::Field(e, ref f) => {
                self.hash_expr(e);
                self.hash_name(f.name);
            },
            ExprKind::Index(a, i, _) => {
                self.hash_expr(a);
                self.hash_expr(i);
            },
            ExprKind::InlineAsm(asm) => {
                for piece in asm.template {
                    match piece {
                        InlineAsmTemplatePiece::String(s) => s.hash(&mut self.s),
                        InlineAsmTemplatePiece::Placeholder {
                            operand_idx,
                            modifier,
                            span: _,
                        } => {
                            operand_idx.hash(&mut self.s);
                            modifier.hash(&mut self.s);
                        },
                    }
                }
                asm.options.hash(&mut self.s);
                for (op, _op_sp) in asm.operands {
                    match op {
                        InlineAsmOperand::In { reg, expr } => {
                            reg.hash(&mut self.s);
                            self.hash_expr(expr);
                        },
                        InlineAsmOperand::Out { reg, late, expr } => {
                            reg.hash(&mut self.s);
                            late.hash(&mut self.s);
                            if let Some(expr) = expr {
                                self.hash_expr(expr);
                            }
                        },
                        InlineAsmOperand::InOut { reg, late, expr } => {
                            reg.hash(&mut self.s);
                            late.hash(&mut self.s);
                            self.hash_expr(expr);
                        },
                        InlineAsmOperand::SplitInOut {
                            reg,
                            late,
                            in_expr,
                            out_expr,
                        } => {
                            reg.hash(&mut self.s);
                            late.hash(&mut self.s);
                            self.hash_expr(in_expr);
                            if let Some(out_expr) = out_expr {
                                self.hash_expr(out_expr);
                            }
                        },
                        InlineAsmOperand::Const { anon_const } | InlineAsmOperand::SymFn { anon_const } => {
                            self.hash_body(anon_const.body);
                        },
                        InlineAsmOperand::SymStatic { path, def_id: _ } => self.hash_qpath(path),
                        InlineAsmOperand::Label { block } => self.hash_block(block),
                    }
                }
            },
            ExprKind::Let(LetExpr { pat, init, ty, .. }) => {
                self.hash_expr(init);
                if let Some(ty) = ty {
                    self.hash_ty(ty);
                }
                self.hash_pat(pat);
            },
            ExprKind::Lit(l) => {
                l.node.hash(&mut self.s);
            },
            ExprKind::Loop(b, ref i, ..) => {
                self.hash_block(b);
                if let Some(i) = *i {
                    self.hash_name(i.ident.name);
                }
            },
            ExprKind::If(cond, then, ref else_opt) => {
                self.hash_expr(cond);
                self.hash_expr(then);
                if let Some(e) = *else_opt {
                    self.hash_expr(e);
                }
            },
            ExprKind::Match(e, arms, ref s) => {
                self.hash_expr(e);

                for arm in arms {
                    self.hash_pat(arm.pat);
                    if let Some(e) = arm.guard {
                        self.hash_expr(e);
                    }
                    self.hash_expr(arm.body);
                }

                s.hash(&mut self.s);
            },
            ExprKind::MethodCall(path, receiver, args, ref _fn_span) => {
                self.hash_name(path.ident.name);
                self.hash_expr(receiver);
                self.hash_exprs(args);
            },
            ExprKind::OffsetOf(container, fields) => {
                self.hash_ty(container);
                for field in fields {
                    self.hash_name(field.name);
                }
            },
            ExprKind::Path(ref qpath) => {
                self.hash_qpath(qpath);
            },
            ExprKind::Repeat(e, len) => {
                self.hash_expr(e);
                self.hash_array_length(len);
            },
            ExprKind::Ret(ref e) => {
                if let Some(e) = *e {
                    self.hash_expr(e);
                }
            },
            ExprKind::Struct(path, fields, ref expr) => {
                self.hash_qpath(path);

                for f in fields {
                    self.hash_name(f.ident.name);
                    self.hash_expr(f.expr);
                }

                if let Some(e) = *expr {
                    self.hash_expr(e);
                }
            },
            ExprKind::Tup(tup) => {
                self.hash_exprs(tup);
            },
            ExprKind::Unary(lop, le) => {
                std::mem::discriminant(&lop).hash(&mut self.s);
                self.hash_expr(le);
            },
            ExprKind::Err(_) => {},
        }
    }

    pub fn hash_exprs(&mut self, e: &[Expr<'_>]) {
        for e in e {
            self.hash_expr(e);
        }
    }

    pub fn hash_name(&mut self, n: Symbol) {
        n.hash(&mut self.s);
    }

    pub fn hash_qpath(&mut self, p: &QPath<'_>) {
        match *p {
            QPath::Resolved(_, path) => {
                self.hash_path(path);
            },
            QPath::TypeRelative(_, path) => {
                self.hash_name(path.ident.name);
            },
            QPath::LangItem(lang_item, ..) => {
                std::mem::discriminant(&lang_item).hash(&mut self.s);
            },
        }
        // self.maybe_typeck_results.unwrap().qpath_res(p, id).hash(&mut self.s);
    }

    pub fn hash_pat(&mut self, pat: &Pat<'_>) {
        std::mem::discriminant(&pat.kind).hash(&mut self.s);
        match pat.kind {
            PatKind::Binding(BindingMode(by_ref, mutability), _, _, pat) => {
                std::mem::discriminant(&by_ref).hash(&mut self.s);
                std::mem::discriminant(&mutability).hash(&mut self.s);
                if let Some(pat) = pat {
                    self.hash_pat(pat);
                }
            },
            PatKind::Box(pat) | PatKind::Deref(pat) => self.hash_pat(pat),
            PatKind::Lit(expr) => self.hash_expr(expr),
            PatKind::Or(pats) => {
                for pat in pats {
                    self.hash_pat(pat);
                }
            },
            PatKind::Path(ref qpath) => self.hash_qpath(qpath),
            PatKind::Range(s, e, i) => {
                if let Some(s) = s {
                    self.hash_expr(s);
                }
                if let Some(e) = e {
                    self.hash_expr(e);
                }
                std::mem::discriminant(&i).hash(&mut self.s);
            },
            PatKind::Ref(pat, mu) => {
                self.hash_pat(pat);
                std::mem::discriminant(&mu).hash(&mut self.s);
            },
            PatKind::Slice(l, m, r) => {
                for pat in l {
                    self.hash_pat(pat);
                }
                if let Some(pat) = m {
                    self.hash_pat(pat);
                }
                for pat in r {
                    self.hash_pat(pat);
                }
            },
            PatKind::Struct(ref qpath, fields, e) => {
                self.hash_qpath(qpath);
                for f in fields {
                    self.hash_name(f.ident.name);
                    self.hash_pat(f.pat);
                }
                e.hash(&mut self.s);
            },
            PatKind::Tuple(pats, e) => {
                for pat in pats {
                    self.hash_pat(pat);
                }
                e.hash(&mut self.s);
            },
            PatKind::TupleStruct(ref qpath, pats, e) => {
                self.hash_qpath(qpath);
                for pat in pats {
                    self.hash_pat(pat);
                }
                e.hash(&mut self.s);
            },
            PatKind::Never | PatKind::Wild | PatKind::Err(_) => {},
        }
    }

    pub fn hash_path(&mut self, path: &Path<'_>) {
        match path.res {
            // constant hash since equality is dependant on inter-expression context
            // e.g. The expressions `if let Some(x) = foo() {}` and `if let Some(y) = foo() {}` are considered equal
            // even though the binding names are different and they have different `HirId`s.
            Res::Local(_) => 1_usize.hash(&mut self.s),
            _ => {
                for seg in path.segments {
                    self.hash_name(seg.ident.name);
                    self.hash_generic_args(seg.args().args);
                }
            },
        }
    }

    pub fn hash_stmt(&mut self, b: &Stmt<'_>) {
        std::mem::discriminant(&b.kind).hash(&mut self.s);

        match &b.kind {
            StmtKind::Let(local) => {
                self.hash_pat(local.pat);
                if let Some(init) = local.init {
                    self.hash_expr(init);
                }
                if let Some(els) = local.els {
                    self.hash_block(els);
                }
            },
            StmtKind::Item(..) => {},
            StmtKind::Expr(expr) | StmtKind::Semi(expr) => {
                self.hash_expr(expr);
            },
        }
    }

    pub fn hash_lifetime(&mut self, lifetime: &Lifetime) {
        lifetime.ident.name.hash(&mut self.s);
        std::mem::discriminant(&lifetime.res).hash(&mut self.s);
        if let LifetimeName::Param(param_id) = lifetime.res {
            param_id.hash(&mut self.s);
        }
    }

    pub fn hash_ty(&mut self, ty: &Ty<'_>) {
        std::mem::discriminant(&ty.kind).hash(&mut self.s);
        self.hash_tykind(&ty.kind);
    }

    pub fn hash_tykind(&mut self, ty: &TyKind<'_>) {
        match ty {
            TyKind::Slice(ty) => {
                self.hash_ty(ty);
            },
            &TyKind::Array(ty, len) => {
                self.hash_ty(ty);
                self.hash_array_length(len);
            },
            TyKind::Pat(ty, pat) => {
                self.hash_ty(ty);
                self.hash_pat(pat);
            },
            TyKind::Ptr(ref mut_ty) => {
                self.hash_ty(mut_ty.ty);
                mut_ty.mutbl.hash(&mut self.s);
            },
            TyKind::Ref(lifetime, ref mut_ty) => {
                self.hash_lifetime(lifetime);
                self.hash_ty(mut_ty.ty);
                mut_ty.mutbl.hash(&mut self.s);
            },
            TyKind::BareFn(bfn) => {
                bfn.safety.hash(&mut self.s);
                bfn.abi.hash(&mut self.s);
                for arg in bfn.decl.inputs {
                    self.hash_ty(arg);
                }
                std::mem::discriminant(&bfn.decl.output).hash(&mut self.s);
                match bfn.decl.output {
                    FnRetTy::DefaultReturn(_) => {},
                    FnRetTy::Return(ty) => {
                        self.hash_ty(ty);
                    },
                }
                bfn.decl.c_variadic.hash(&mut self.s);
            },
            TyKind::Tup(ty_list) => {
                for ty in *ty_list {
                    self.hash_ty(ty);
                }
            },
            TyKind::Path(ref qpath) => self.hash_qpath(qpath),
            TyKind::OpaqueDef(_, arg_list, in_trait) => {
                self.hash_generic_args(arg_list);
                in_trait.hash(&mut self.s);
            },
            TyKind::TraitObject(_, lifetime, _) => {
                self.hash_lifetime(lifetime);
            },
            TyKind::Typeof(anon_const) => {
                self.hash_body(anon_const.body);
            },
            TyKind::Err(_) | TyKind::Infer | TyKind::Never | TyKind::InferDelegation(..) | TyKind::AnonAdt(_) => {},
        }
    }

    pub fn hash_array_length(&mut self, length: ArrayLen<'_>) {
        match length {
            ArrayLen::Infer(..) => {},
            ArrayLen::Body(ct) => self.hash_const_arg(ct),
        }
    }

    pub fn hash_body(&mut self, body_id: BodyId) {
        // swap out TypeckResults when hashing a body
        let old_maybe_typeck_results = self.maybe_typeck_results.replace(self.cx.tcx.typeck_body(body_id));
        self.hash_expr(self.cx.tcx.hir().body(body_id).value);
        self.maybe_typeck_results = old_maybe_typeck_results;
    }

    fn hash_const_arg(&mut self, const_arg: &ConstArg<'_>) {
        match &const_arg.kind {
            ConstArgKind::Path(path) => self.hash_qpath(path),
            ConstArgKind::Anon(anon) => self.hash_body(anon.body),
        }
    }

    fn hash_generic_args(&mut self, arg_list: &[GenericArg<'_>]) {
        for arg in arg_list {
            match *arg {
                GenericArg::Lifetime(l) => self.hash_lifetime(l),
                GenericArg::Type(ty) => self.hash_ty(ty),
                GenericArg::Const(ca) => self.hash_const_arg(ca),
                GenericArg::Infer(ref inf) => self.hash_ty(&inf.to_ty()),
            }
        }
    }
}

pub fn hash_stmt(cx: &LateContext<'_>, s: &Stmt<'_>) -> u64 {
    let mut h = SpanlessHash::new(cx);
    h.hash_stmt(s);
    h.finish()
}

pub fn is_bool(ty: &Ty<'_>) -> bool {
    if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind {
        matches!(path.res, Res::PrimTy(PrimTy::Bool))
    } else {
        false
    }
}

pub fn hash_expr(cx: &LateContext<'_>, e: &Expr<'_>) -> u64 {
    let mut h = SpanlessHash::new(cx);
    h.hash_expr(e);
    h.finish()
}

fn eq_span_tokens(
    cx: &LateContext<'_>,
    left: impl SpanRange,
    right: impl SpanRange,
    pred: impl Fn(TokenKind) -> bool,
) -> bool {
    fn f(cx: &LateContext<'_>, left: Range<BytePos>, right: Range<BytePos>, pred: impl Fn(TokenKind) -> bool) -> bool {
        if let Some(lsrc) = left.get_source_range(cx)
            && let Some(lsrc) = lsrc.as_str()
            && let Some(rsrc) = right.get_source_range(cx)
            && let Some(rsrc) = rsrc.as_str()
        {
            let pred = |t: &(_, _)| pred(t.0);
            let map = |(_, x)| x;

            let ltok = tokenize_with_text(lsrc).filter(pred).map(map);
            let rtok = tokenize_with_text(rsrc).filter(pred).map(map);
            ltok.eq(rtok)
        } else {
            // Unable to access the source. Conservatively assume the blocks aren't equal.
            false
        }
    }
    f(cx, left.into_range(), right.into_range(), pred)
}