1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
//! A classic liveness analysis based on dataflow over the AST. Computes,
//! for each local variable in a function, whether that variable is live
//! at a given point. Program execution points are identified by their
//! IDs.
//!
//! # Basic idea
//!
//! The basic model is that each local variable is assigned an index. We
//! represent sets of local variables using a vector indexed by this
//! index. The value in the vector is either 0, indicating the variable
//! is dead, or the ID of an expression that uses the variable.
//!
//! We conceptually walk over the AST in reverse execution order. If we
//! find a use of a variable, we add it to the set of live variables. If
//! we find an assignment to a variable, we remove it from the set of live
//! variables. When we have to merge two flows, we take the union of
//! those two flows -- if the variable is live on both paths, we simply
//! pick one ID. In the event of loops, we continue doing this until a
//! fixed point is reached.
//!
//! ## Checking initialization
//!
//! At the function entry point, all variables must be dead. If this is
//! not the case, we can report an error using the ID found in the set of
//! live variables, which identifies a use of the variable which is not
//! dominated by an assignment.
//!
//! ## Checking moves
//!
//! After each explicit move, the variable must be dead.
//!
//! ## Computing last uses
//!
//! Any use of the variable where the variable is dead afterwards is a
//! last use.
//!
//! # Implementation details
//!
//! The actual implementation contains two (nested) walks over the AST.
//! The outer walk has the job of building up the ir_maps instance for the
//! enclosing function. On the way down the tree, it identifies those AST
//! nodes and variable IDs that will be needed for the liveness analysis
//! and assigns them contiguous IDs. The liveness ID for an AST node is
//! called a `live_node` (it's a newtype'd `u32`) and the ID for a variable
//! is called a `variable` (another newtype'd `u32`).
//!
//! On the way back up the tree, as we are about to exit from a function
//! declaration we allocate a `liveness` instance. Now that we know
//! precisely how many nodes and variables we need, we can allocate all
//! the various arrays that we will need to precisely the right size. We then
//! perform the actual propagation on the `liveness` instance.
//!
//! This propagation is encoded in the various `propagate_through_*()`
//! methods. It effectively does a reverse walk of the AST; whenever we
//! reach a loop node, we iterate until a fixed point is reached.
//!
//! ## The `RWU` struct
//!
//! At each live node `N`, we track three pieces of information for each
//! variable `V` (these are encapsulated in the `RWU` struct):
//!
//! - `reader`: the `LiveNode` ID of some node which will read the value
//! that `V` holds on entry to `N`. Formally: a node `M` such
//! that there exists a path `P` from `N` to `M` where `P` does not
//! write `V`. If the `reader` is `None`, then the current
//! value will never be read (the variable is dead, essentially).
//!
//! - `writer`: the `LiveNode` ID of some node which will write the
//! variable `V` and which is reachable from `N`. Formally: a node `M`
//! such that there exists a path `P` from `N` to `M` and `M` writes
//! `V`. If the `writer` is `None`, then there is no writer
//! of `V` that follows `N`.
//!
//! - `used`: a boolean value indicating whether `V` is *used*. We
//! distinguish a *read* from a *use* in that a *use* is some read that
//! is not just used to generate a new value. For example, `x += 1` is
//! a read but not a use. This is used to generate better warnings.
//!
//! ## Special nodes and variables
//!
//! We generate various special nodes for various, well, special purposes.
//! These are described in the `Liveness` struct.
use std::io;
use std::io::prelude::*;
use std::rc::Rc;
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir as hir;
use rustc_hir::def::*;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{Expr, HirId, HirIdMap, HirIdSet};
use rustc_index::IndexVec;
use rustc_middle::query::Providers;
use rustc_middle::span_bug;
use rustc_middle::ty::{self, RootVariableMinCaptureList, Ty, TyCtxt};
use rustc_session::lint;
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_span::{BytePos, Span};
use tracing::{debug, instrument};
use self::LiveNodeKind::*;
use self::VarKind::*;
use crate::errors;
mod rwu_table;
rustc_index::newtype_index! {
#[debug_format = "v({})"]
pub struct Variable {}
}
rustc_index::newtype_index! {
#[debug_format = "ln({})"]
pub struct LiveNode {}
}
#[derive(Copy, Clone, PartialEq, Debug)]
enum LiveNodeKind {
UpvarNode(Span),
ExprNode(Span, HirId),
VarDefNode(Span, HirId),
ClosureNode,
ExitNode,
ErrNode,
}
fn live_node_kind_to_string(lnk: LiveNodeKind, tcx: TyCtxt<'_>) -> String {
let sm = tcx.sess.source_map();
match lnk {
UpvarNode(s) => format!("Upvar node [{}]", sm.span_to_diagnostic_string(s)),
ExprNode(s, _) => format!("Expr node [{}]", sm.span_to_diagnostic_string(s)),
VarDefNode(s, _) => format!("Var def node [{}]", sm.span_to_diagnostic_string(s)),
ClosureNode => "Closure node".to_owned(),
ExitNode => "Exit node".to_owned(),
ErrNode => "Error node".to_owned(),
}
}
fn check_liveness(tcx: TyCtxt<'_>, def_id: LocalDefId) {
// Don't run unused pass for #[derive()]
let parent = tcx.local_parent(def_id);
if let DefKind::Impl { .. } = tcx.def_kind(parent)
&& tcx.has_attr(parent, sym::automatically_derived)
{
return;
}
// Don't run unused pass for #[naked]
if tcx.has_attr(def_id.to_def_id(), sym::naked) {
return;
}
let mut maps = IrMaps::new(tcx);
let body = tcx.hir().body_owned_by(def_id);
let hir_id = tcx.hir().body_owner(body.id());
if let Some(upvars) = tcx.upvars_mentioned(def_id) {
for &var_hir_id in upvars.keys() {
let var_name = tcx.hir().name(var_hir_id);
maps.add_variable(Upvar(var_hir_id, var_name));
}
}
// gather up the various local variables, significant expressions,
// and so forth:
maps.visit_body(&body);
// compute liveness
let mut lsets = Liveness::new(&mut maps, def_id);
let entry_ln = lsets.compute(&body, hir_id);
lsets.log_liveness(entry_ln, body.id().hir_id);
// check for various error conditions
lsets.visit_body(&body);
lsets.warn_about_unused_upvars(entry_ln);
lsets.warn_about_unused_args(&body, entry_ln);
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { check_liveness, ..*providers };
}
// ______________________________________________________________________
// Creating ir_maps
//
// This is the first pass and the one that drives the main
// computation. It walks up and down the IR once. On the way down,
// we count for each function the number of variables as well as
// liveness nodes. A liveness node is basically an expression or
// capture clause that does something of interest: either it has
// interesting control flow or it uses/defines a local variable.
//
// On the way back up, at each function node we create liveness sets
// (we now know precisely how big to make our various vectors and so
// forth) and then do the data-flow propagation to compute the set
// of live variables at each program point.
//
// Finally, we run back over the IR one last time and, using the
// computed liveness, check various safety conditions. For example,
// there must be no live nodes at the definition site for a variable
// unless it has an initializer. Similarly, each non-mutable local
// variable must not be assigned if there is some successor
// assignment. And so forth.
struct CaptureInfo {
ln: LiveNode,
var_hid: HirId,
}
#[derive(Copy, Clone, Debug)]
struct LocalInfo {
id: HirId,
name: Symbol,
is_shorthand: bool,
}
#[derive(Copy, Clone, Debug)]
enum VarKind {
Param(HirId, Symbol),
Local(LocalInfo),
Upvar(HirId, Symbol),
}
struct CollectLitsVisitor<'tcx> {
lit_exprs: Vec<&'tcx hir::Expr<'tcx>>,
}
impl<'tcx> Visitor<'tcx> for CollectLitsVisitor<'tcx> {
fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
if let hir::ExprKind::Lit(_) = expr.kind {
self.lit_exprs.push(expr);
}
intravisit::walk_expr(self, expr);
}
}
struct IrMaps<'tcx> {
tcx: TyCtxt<'tcx>,
live_node_map: HirIdMap<LiveNode>,
variable_map: HirIdMap<Variable>,
capture_info_map: HirIdMap<Rc<Vec<CaptureInfo>>>,
var_kinds: IndexVec<Variable, VarKind>,
lnks: IndexVec<LiveNode, LiveNodeKind>,
}
impl<'tcx> IrMaps<'tcx> {
fn new(tcx: TyCtxt<'tcx>) -> IrMaps<'tcx> {
IrMaps {
tcx,
live_node_map: HirIdMap::default(),
variable_map: HirIdMap::default(),
capture_info_map: Default::default(),
var_kinds: IndexVec::new(),
lnks: IndexVec::new(),
}
}
fn add_live_node(&mut self, lnk: LiveNodeKind) -> LiveNode {
let ln = self.lnks.push(lnk);
debug!("{:?} is of kind {}", ln, live_node_kind_to_string(lnk, self.tcx));
ln
}
fn add_live_node_for_node(&mut self, hir_id: HirId, lnk: LiveNodeKind) {
let ln = self.add_live_node(lnk);
self.live_node_map.insert(hir_id, ln);
debug!("{:?} is node {:?}", ln, hir_id);
}
fn add_variable(&mut self, vk: VarKind) -> Variable {
let v = self.var_kinds.push(vk);
match vk {
Local(LocalInfo { id: node_id, .. }) | Param(node_id, _) | Upvar(node_id, _) => {
self.variable_map.insert(node_id, v);
}
}
debug!("{:?} is {:?}", v, vk);
v
}
fn variable(&self, hir_id: HirId, span: Span) -> Variable {
match self.variable_map.get(&hir_id) {
Some(&var) => var,
None => {
span_bug!(span, "no variable registered for id {:?}", hir_id);
}
}
}
fn variable_name(&self, var: Variable) -> Symbol {
match self.var_kinds[var] {
Local(LocalInfo { name, .. }) | Param(_, name) | Upvar(_, name) => name,
}
}
fn variable_is_shorthand(&self, var: Variable) -> bool {
match self.var_kinds[var] {
Local(LocalInfo { is_shorthand, .. }) => is_shorthand,
Param(..) | Upvar(..) => false,
}
}
fn set_captures(&mut self, hir_id: HirId, cs: Vec<CaptureInfo>) {
self.capture_info_map.insert(hir_id, Rc::new(cs));
}
fn collect_shorthand_field_ids(&self, pat: &hir::Pat<'tcx>) -> HirIdSet {
// For struct patterns, take note of which fields used shorthand
// (`x` rather than `x: x`).
let mut shorthand_field_ids = HirIdSet::default();
pat.walk_always(|pat| {
if let hir::PatKind::Struct(_, fields, _) = pat.kind {
let short = fields.iter().filter(|f| f.is_shorthand);
shorthand_field_ids.extend(short.map(|f| f.pat.hir_id));
}
});
shorthand_field_ids
}
fn add_from_pat(&mut self, pat: &hir::Pat<'tcx>) {
let shorthand_field_ids = self.collect_shorthand_field_ids(pat);
pat.each_binding(|_, hir_id, _, ident| {
self.add_live_node_for_node(hir_id, VarDefNode(ident.span, hir_id));
self.add_variable(Local(LocalInfo {
id: hir_id,
name: ident.name,
is_shorthand: shorthand_field_ids.contains(&hir_id),
}));
});
}
}
impl<'tcx> Visitor<'tcx> for IrMaps<'tcx> {
fn visit_local(&mut self, local: &'tcx hir::LetStmt<'tcx>) {
self.add_from_pat(local.pat);
if local.els.is_some() {
self.add_live_node_for_node(local.hir_id, ExprNode(local.span, local.hir_id));
}
intravisit::walk_local(self, local);
}
fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
self.add_from_pat(&arm.pat);
intravisit::walk_arm(self, arm);
}
fn visit_param(&mut self, param: &'tcx hir::Param<'tcx>) {
let shorthand_field_ids = self.collect_shorthand_field_ids(param.pat);
param.pat.each_binding(|_bm, hir_id, _x, ident| {
let var = match param.pat.kind {
rustc_hir::PatKind::Struct(..) => Local(LocalInfo {
id: hir_id,
name: ident.name,
is_shorthand: shorthand_field_ids.contains(&hir_id),
}),
_ => Param(hir_id, ident.name),
};
self.add_variable(var);
});
intravisit::walk_param(self, param);
}
fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
match expr.kind {
// live nodes required for uses or definitions of variables:
hir::ExprKind::Path(hir::QPath::Resolved(_, path)) => {
debug!("expr {}: path that leads to {:?}", expr.hir_id, path.res);
if let Res::Local(_var_hir_id) = path.res {
self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
}
}
hir::ExprKind::Closure(closure) => {
// Interesting control flow (for loops can contain labeled
// breaks or continues)
self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
// Make a live_node for each mentioned variable, with the span
// being the location that the variable is used. This results
// in better error messages than just pointing at the closure
// construction site.
let mut call_caps = Vec::new();
if let Some(upvars) = self.tcx.upvars_mentioned(closure.def_id) {
call_caps.extend(upvars.keys().map(|var_id| {
let upvar = upvars[var_id];
let upvar_ln = self.add_live_node(UpvarNode(upvar.span));
CaptureInfo { ln: upvar_ln, var_hid: *var_id }
}));
}
self.set_captures(expr.hir_id, call_caps);
}
hir::ExprKind::Let(let_expr) => {
self.add_from_pat(let_expr.pat);
}
// live nodes required for interesting control flow:
hir::ExprKind::If(..)
| hir::ExprKind::Match(..)
| hir::ExprKind::Loop(..)
| hir::ExprKind::Yield(..) => {
self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
}
hir::ExprKind::Binary(op, ..) if op.node.is_lazy() => {
self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
}
// Inline assembly may contain labels.
hir::ExprKind::InlineAsm(asm) if asm.contains_label() => {
self.add_live_node_for_node(expr.hir_id, ExprNode(expr.span, expr.hir_id));
intravisit::walk_expr(self, expr);
}
// otherwise, live nodes are not required:
hir::ExprKind::Index(..)
| hir::ExprKind::Field(..)
| hir::ExprKind::Array(..)
| hir::ExprKind::Call(..)
| hir::ExprKind::MethodCall(..)
| hir::ExprKind::Tup(..)
| hir::ExprKind::Binary(..)
| hir::ExprKind::AddrOf(..)
| hir::ExprKind::Cast(..)
| hir::ExprKind::DropTemps(..)
| hir::ExprKind::Unary(..)
| hir::ExprKind::Break(..)
| hir::ExprKind::Continue(_)
| hir::ExprKind::Lit(_)
| hir::ExprKind::ConstBlock(..)
| hir::ExprKind::Ret(..)
| hir::ExprKind::Become(..)
| hir::ExprKind::Block(..)
| hir::ExprKind::Assign(..)
| hir::ExprKind::AssignOp(..)
| hir::ExprKind::Struct(..)
| hir::ExprKind::Repeat(..)
| hir::ExprKind::InlineAsm(..)
| hir::ExprKind::OffsetOf(..)
| hir::ExprKind::Type(..)
| hir::ExprKind::Err(_)
| hir::ExprKind::Path(hir::QPath::TypeRelative(..))
| hir::ExprKind::Path(hir::QPath::LangItem(..)) => {}
}
intravisit::walk_expr(self, expr);
}
}
// ______________________________________________________________________
// Computing liveness sets
//
// Actually we compute just a bit more than just liveness, but we use
// the same basic propagation framework in all cases.
const ACC_READ: u32 = 1;
const ACC_WRITE: u32 = 2;
const ACC_USE: u32 = 4;
struct Liveness<'a, 'tcx> {
ir: &'a mut IrMaps<'tcx>,
typeck_results: &'a ty::TypeckResults<'tcx>,
param_env: ty::ParamEnv<'tcx>,
closure_min_captures: Option<&'tcx RootVariableMinCaptureList<'tcx>>,
successors: IndexVec<LiveNode, Option<LiveNode>>,
rwu_table: rwu_table::RWUTable,
/// A live node representing a point of execution before closure entry &
/// after closure exit. Used to calculate liveness of captured variables
/// through calls to the same closure. Used for Fn & FnMut closures only.
closure_ln: LiveNode,
/// A live node representing every 'exit' from the function, whether it be
/// by explicit return, panic, or other means.
exit_ln: LiveNode,
// mappings from loop node ID to LiveNode
// ("break" label should map to loop node ID,
// it probably doesn't now)
break_ln: HirIdMap<LiveNode>,
cont_ln: HirIdMap<LiveNode>,
}
impl<'a, 'tcx> Liveness<'a, 'tcx> {
fn new(ir: &'a mut IrMaps<'tcx>, body_owner: LocalDefId) -> Liveness<'a, 'tcx> {
let typeck_results = ir.tcx.typeck(body_owner);
let param_env = ir.tcx.param_env(body_owner);
let closure_min_captures = typeck_results.closure_min_captures.get(&body_owner);
let closure_ln = ir.add_live_node(ClosureNode);
let exit_ln = ir.add_live_node(ExitNode);
let num_live_nodes = ir.lnks.len();
let num_vars = ir.var_kinds.len();
Liveness {
ir,
typeck_results,
param_env,
closure_min_captures,
successors: IndexVec::from_elem_n(None, num_live_nodes),
rwu_table: rwu_table::RWUTable::new(num_live_nodes, num_vars),
closure_ln,
exit_ln,
break_ln: Default::default(),
cont_ln: Default::default(),
}
}
fn live_node(&self, hir_id: HirId, span: Span) -> LiveNode {
match self.ir.live_node_map.get(&hir_id) {
Some(&ln) => ln,
None => {
// This must be a mismatch between the ir_map construction
// above and the propagation code below; the two sets of
// code have to agree about which AST nodes are worth
// creating liveness nodes for.
span_bug!(span, "no live node registered for node {:?}", hir_id);
}
}
}
fn variable(&self, hir_id: HirId, span: Span) -> Variable {
self.ir.variable(hir_id, span)
}
fn define_bindings_in_pat(&mut self, pat: &hir::Pat<'_>, mut succ: LiveNode) -> LiveNode {
// In an or-pattern, only consider the first non-never pattern; any later patterns
// must have the same bindings, and we also consider that pattern
// to be the "authoritative" set of ids.
pat.each_binding_or_first(&mut |_, hir_id, pat_sp, ident| {
let ln = self.live_node(hir_id, pat_sp);
let var = self.variable(hir_id, ident.span);
self.init_from_succ(ln, succ);
self.define(ln, var);
succ = ln;
});
succ
}
fn live_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
self.rwu_table.get_reader(ln, var)
}
// Is this variable live on entry to any of its successor nodes?
fn live_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
let successor = self.successors[ln].unwrap();
self.live_on_entry(successor, var)
}
fn used_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
self.rwu_table.get_used(ln, var)
}
fn assigned_on_entry(&self, ln: LiveNode, var: Variable) -> bool {
self.rwu_table.get_writer(ln, var)
}
fn assigned_on_exit(&self, ln: LiveNode, var: Variable) -> bool {
match self.successors[ln] {
Some(successor) => self.assigned_on_entry(successor, var),
None => {
self.ir.tcx.dcx().delayed_bug("no successor");
true
}
}
}
fn write_vars<F>(&self, wr: &mut dyn Write, mut test: F) -> io::Result<()>
where
F: FnMut(Variable) -> bool,
{
for var_idx in 0..self.ir.var_kinds.len() {
let var = Variable::from(var_idx);
if test(var) {
write!(wr, " {var:?}")?;
}
}
Ok(())
}
#[allow(unused_must_use)]
fn ln_str(&self, ln: LiveNode) -> String {
let mut wr = Vec::new();
{
let wr = &mut wr as &mut dyn Write;
write!(wr, "[{:?} of kind {:?} reads", ln, self.ir.lnks[ln]);
self.write_vars(wr, |var| self.rwu_table.get_reader(ln, var));
write!(wr, " writes");
self.write_vars(wr, |var| self.rwu_table.get_writer(ln, var));
write!(wr, " uses");
self.write_vars(wr, |var| self.rwu_table.get_used(ln, var));
write!(wr, " precedes {:?}]", self.successors[ln]);
}
String::from_utf8(wr).unwrap()
}
fn log_liveness(&self, entry_ln: LiveNode, hir_id: HirId) {
// hack to skip the loop unless debug! is enabled:
debug!(
"^^ liveness computation results for body {} (entry={:?})",
{
for ln_idx in 0..self.ir.lnks.len() {
debug!("{:?}", self.ln_str(LiveNode::from(ln_idx)));
}
hir_id
},
entry_ln
);
}
fn init_empty(&mut self, ln: LiveNode, succ_ln: LiveNode) {
self.successors[ln] = Some(succ_ln);
// It is not necessary to initialize the RWUs here because they are all
// empty when created, and the sets only grow during iterations.
}
fn init_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) {
// more efficient version of init_empty() / merge_from_succ()
self.successors[ln] = Some(succ_ln);
self.rwu_table.copy(ln, succ_ln);
debug!("init_from_succ(ln={}, succ={})", self.ln_str(ln), self.ln_str(succ_ln));
}
fn merge_from_succ(&mut self, ln: LiveNode, succ_ln: LiveNode) -> bool {
if ln == succ_ln {
return false;
}
let changed = self.rwu_table.union(ln, succ_ln);
debug!("merge_from_succ(ln={:?}, succ={}, changed={})", ln, self.ln_str(succ_ln), changed);
changed
}
// Indicates that a local variable was *defined*; we know that no
// uses of the variable can precede the definition (resolve checks
// this) so we just clear out all the data.
fn define(&mut self, writer: LiveNode, var: Variable) {
let used = self.rwu_table.get_used(writer, var);
self.rwu_table.set(writer, var, rwu_table::RWU { reader: false, writer: false, used });
debug!("{:?} defines {:?}: {}", writer, var, self.ln_str(writer));
}
// Either read, write, or both depending on the acc bitset
fn acc(&mut self, ln: LiveNode, var: Variable, acc: u32) {
debug!("{:?} accesses[{:x}] {:?}: {}", ln, acc, var, self.ln_str(ln));
let mut rwu = self.rwu_table.get(ln, var);
if (acc & ACC_WRITE) != 0 {
rwu.reader = false;
rwu.writer = true;
}
// Important: if we both read/write, must do read second
// or else the write will override.
if (acc & ACC_READ) != 0 {
rwu.reader = true;
}
if (acc & ACC_USE) != 0 {
rwu.used = true;
}
self.rwu_table.set(ln, var, rwu);
}
fn compute(&mut self, body: &hir::Body<'_>, hir_id: HirId) -> LiveNode {
debug!("compute: for body {:?}", body.id().hir_id);
// # Liveness of captured variables
//
// When computing the liveness for captured variables we take into
// account how variable is captured (ByRef vs ByValue) and what is the
// closure kind (Coroutine / FnOnce vs Fn / FnMut).
//
// Variables captured by reference are assumed to be used on the exit
// from the closure.
//
// In FnOnce closures, variables captured by value are known to be dead
// on exit since it is impossible to call the closure again.
//
// In Fn / FnMut closures, variables captured by value are live on exit
// if they are live on the entry to the closure, since only the closure
// itself can access them on subsequent calls.
if let Some(closure_min_captures) = self.closure_min_captures {
// Mark upvars captured by reference as used after closure exits.
for (&var_hir_id, min_capture_list) in closure_min_captures {
for captured_place in min_capture_list {
match captured_place.info.capture_kind {
ty::UpvarCapture::ByRef(_) => {
let var = self.variable(
var_hir_id,
captured_place.get_capture_kind_span(self.ir.tcx),
);
self.acc(self.exit_ln, var, ACC_READ | ACC_USE);
}
ty::UpvarCapture::ByValue => {}
}
}
}
}
let succ = self.propagate_through_expr(body.value, self.exit_ln);
if self.closure_min_captures.is_none() {
// Either not a closure, or closure without any captured variables.
// No need to determine liveness of captured variables, since there
// are none.
return succ;
}
let ty = self.typeck_results.node_type(hir_id);
match ty.kind() {
ty::Closure(_def_id, args) => match args.as_closure().kind() {
ty::ClosureKind::Fn => {}
ty::ClosureKind::FnMut => {}
ty::ClosureKind::FnOnce => return succ,
},
ty::CoroutineClosure(_def_id, args) => match args.as_coroutine_closure().kind() {
ty::ClosureKind::Fn => {}
ty::ClosureKind::FnMut => {}
ty::ClosureKind::FnOnce => return succ,
},
ty::Coroutine(..) => return succ,
_ => {
span_bug!(
body.value.span,
"{} has upvars so it should have a closure type: {:?}",
hir_id,
ty
);
}
};
// Propagate through calls to the closure.
loop {
self.init_from_succ(self.closure_ln, succ);
for param in body.params {
param.pat.each_binding(|_bm, hir_id, _x, ident| {
let var = self.variable(hir_id, ident.span);
self.define(self.closure_ln, var);
})
}
if !self.merge_from_succ(self.exit_ln, self.closure_ln) {
break;
}
assert_eq!(succ, self.propagate_through_expr(body.value, self.exit_ln));
}
succ
}
fn propagate_through_block(&mut self, blk: &hir::Block<'_>, succ: LiveNode) -> LiveNode {
if blk.targeted_by_break {
self.break_ln.insert(blk.hir_id, succ);
}
let succ = self.propagate_through_opt_expr(blk.expr, succ);
blk.stmts.iter().rev().fold(succ, |succ, stmt| self.propagate_through_stmt(stmt, succ))
}
fn propagate_through_stmt(&mut self, stmt: &hir::Stmt<'_>, succ: LiveNode) -> LiveNode {
match stmt.kind {
hir::StmtKind::Let(local) => {
// Note: we mark the variable as defined regardless of whether
// there is an initializer. Initially I had thought to only mark
// the live variable as defined if it was initialized, and then we
// could check for uninit variables just by scanning what is live
// at the start of the function. But that doesn't work so well for
// immutable variables defined in a loop:
// loop { let x; x = 5; }
// because the "assignment" loops back around and generates an error.
//
// So now we just check that variables defined w/o an
// initializer are not live at the point of their
// initialization, which is mildly more complex than checking
// once at the func header but otherwise equivalent.
if let Some(els) = local.els {
// Eventually, `let pat: ty = init else { els };` is mostly equivalent to
// `let (bindings, ...) = match init { pat => (bindings, ...), _ => els };`
// except that extended lifetime applies at the `init` location.
//
// (e)
// |
// v
// (expr)
// / \
// | |
// v v
// bindings els
// |
// v
// ( succ )
//
if let Some(init) = local.init {
let else_ln = self.propagate_through_block(els, succ);
let ln = self.live_node(local.hir_id, local.span);
self.init_from_succ(ln, succ);
self.merge_from_succ(ln, else_ln);
let succ = self.propagate_through_expr(init, ln);
self.define_bindings_in_pat(local.pat, succ)
} else {
span_bug!(
stmt.span,
"variable is uninitialized but an unexpected else branch is found"
)
}
} else {
let succ = self.propagate_through_opt_expr(local.init, succ);
self.define_bindings_in_pat(local.pat, succ)
}
}
hir::StmtKind::Item(..) => succ,
hir::StmtKind::Expr(ref expr) | hir::StmtKind::Semi(ref expr) => {
self.propagate_through_expr(expr, succ)
}
}
}
fn propagate_through_exprs(&mut self, exprs: &[Expr<'_>], succ: LiveNode) -> LiveNode {
exprs.iter().rev().fold(succ, |succ, expr| self.propagate_through_expr(expr, succ))
}
fn propagate_through_opt_expr(
&mut self,
opt_expr: Option<&Expr<'_>>,
succ: LiveNode,
) -> LiveNode {
opt_expr.map_or(succ, |expr| self.propagate_through_expr(expr, succ))
}
fn propagate_through_expr(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
debug!("propagate_through_expr: {:?}", expr);
match expr.kind {
// Interesting cases with control flow or which gen/kill
hir::ExprKind::Path(hir::QPath::Resolved(_, path)) => {
self.access_path(expr.hir_id, path, succ, ACC_READ | ACC_USE)
}
hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(e, succ),
hir::ExprKind::Closure { .. } => {
debug!("{:?} is an ExprKind::Closure", expr);
// the construction of a closure itself is not important,
// but we have to consider the closed over variables.
let caps = self
.ir
.capture_info_map
.get(&expr.hir_id)
.cloned()
.unwrap_or_else(|| span_bug!(expr.span, "no registered caps"));
caps.iter().rev().fold(succ, |succ, cap| {
self.init_from_succ(cap.ln, succ);
let var = self.variable(cap.var_hid, expr.span);
self.acc(cap.ln, var, ACC_READ | ACC_USE);
cap.ln
})
}
hir::ExprKind::Let(let_expr) => {
let succ = self.propagate_through_expr(let_expr.init, succ);
self.define_bindings_in_pat(let_expr.pat, succ)
}
// Note that labels have been resolved, so we don't need to look
// at the label ident
hir::ExprKind::Loop(ref blk, ..) => self.propagate_through_loop(expr, blk, succ),
hir::ExprKind::Yield(e, ..) => {
let yield_ln = self.live_node(expr.hir_id, expr.span);
self.init_from_succ(yield_ln, succ);
self.merge_from_succ(yield_ln, self.exit_ln);
self.propagate_through_expr(e, yield_ln)
}
hir::ExprKind::If(ref cond, ref then, ref else_opt) => {
//
// (cond)
// |
// v
// (expr)
// / \
// | |
// v v
// (then)(els)
// | |
// v v
// ( succ )
//
let else_ln = self.propagate_through_opt_expr(else_opt.as_deref(), succ);
let then_ln = self.propagate_through_expr(then, succ);
let ln = self.live_node(expr.hir_id, expr.span);
self.init_from_succ(ln, else_ln);
self.merge_from_succ(ln, then_ln);
self.propagate_through_expr(cond, ln)
}
hir::ExprKind::Match(ref e, arms, _) => {
//
// (e)
// |
// v
// (expr)
// / | \
// | | |
// v v v
// (..arms..)
// | | |
// v v v
// ( succ )
//
//
let ln = self.live_node(expr.hir_id, expr.span);
self.init_empty(ln, succ);
for arm in arms {
let body_succ = self.propagate_through_expr(arm.body, succ);
let guard_succ = arm
.guard
.as_ref()
.map_or(body_succ, |g| self.propagate_through_expr(g, body_succ));
let arm_succ = self.define_bindings_in_pat(&arm.pat, guard_succ);
self.merge_from_succ(ln, arm_succ);
}
self.propagate_through_expr(e, ln)
}
hir::ExprKind::Ret(ref o_e) => {
// Ignore succ and subst exit_ln.
self.propagate_through_opt_expr(o_e.as_deref(), self.exit_ln)
}
hir::ExprKind::Become(e) => {
// Ignore succ and subst exit_ln.
self.propagate_through_expr(e, self.exit_ln)
}
hir::ExprKind::Break(label, ref opt_expr) => {
// Find which label this break jumps to
let target = match label.target_id {
Ok(hir_id) => self.break_ln.get(&hir_id),
Err(err) => span_bug!(expr.span, "loop scope error: {}", err),
}
.cloned();
// Now that we know the label we're going to,
// look it up in the break loop nodes table
match target {
Some(b) => self.propagate_through_opt_expr(opt_expr.as_deref(), b),
None => span_bug!(expr.span, "`break` to unknown label"),
}
}
hir::ExprKind::Continue(label) => {
// Find which label this expr continues to
let sc = label
.target_id
.unwrap_or_else(|err| span_bug!(expr.span, "loop scope error: {}", err));
// Now that we know the label we're going to,
// look it up in the continue loop nodes table
self.cont_ln.get(&sc).cloned().unwrap_or_else(|| {
self.ir.tcx.dcx().span_delayed_bug(expr.span, "continue to unknown label");
self.ir.add_live_node(ErrNode)
})
}
hir::ExprKind::Assign(ref l, ref r, _) => {
// see comment on places in
// propagate_through_place_components()
let succ = self.write_place(l, succ, ACC_WRITE);
let succ = self.propagate_through_place_components(l, succ);
self.propagate_through_expr(r, succ)
}
hir::ExprKind::AssignOp(_, ref l, ref r) => {
// an overloaded assign op is like a method call
if self.typeck_results.is_method_call(expr) {
let succ = self.propagate_through_expr(l, succ);
self.propagate_through_expr(r, succ)
} else {
// see comment on places in
// propagate_through_place_components()
let succ = self.write_place(l, succ, ACC_WRITE | ACC_READ);
let succ = self.propagate_through_expr(r, succ);
self.propagate_through_place_components(l, succ)
}
}
// Uninteresting cases: just propagate in rev exec order
hir::ExprKind::Array(exprs) => self.propagate_through_exprs(exprs, succ),
hir::ExprKind::Struct(_, fields, ref with_expr) => {
let succ = self.propagate_through_opt_expr(with_expr.as_deref(), succ);
fields
.iter()
.rev()
.fold(succ, |succ, field| self.propagate_through_expr(field.expr, succ))
}
hir::ExprKind::Call(ref f, args) => {
let succ = self.check_is_ty_uninhabited(expr, succ);
let succ = self.propagate_through_exprs(args, succ);
self.propagate_through_expr(f, succ)
}
hir::ExprKind::MethodCall(.., receiver, args, _) => {
let succ = self.check_is_ty_uninhabited(expr, succ);
let succ = self.propagate_through_exprs(args, succ);
self.propagate_through_expr(receiver, succ)
}
hir::ExprKind::Tup(exprs) => self.propagate_through_exprs(exprs, succ),
hir::ExprKind::Binary(op, ref l, ref r) if op.node.is_lazy() => {
let r_succ = self.propagate_through_expr(r, succ);
let ln = self.live_node(expr.hir_id, expr.span);
self.init_from_succ(ln, succ);
self.merge_from_succ(ln, r_succ);
self.propagate_through_expr(l, ln)
}
hir::ExprKind::Index(ref l, ref r, _) | hir::ExprKind::Binary(_, ref l, ref r) => {
let r_succ = self.propagate_through_expr(r, succ);
self.propagate_through_expr(l, r_succ)
}
hir::ExprKind::AddrOf(_, _, ref e)
| hir::ExprKind::Cast(ref e, _)
| hir::ExprKind::Type(ref e, _)
| hir::ExprKind::DropTemps(ref e)
| hir::ExprKind::Unary(_, ref e)
| hir::ExprKind::Repeat(ref e, _) => self.propagate_through_expr(e, succ),
hir::ExprKind::InlineAsm(asm) => {
//
// (inputs)
// |
// v
// (outputs)
// / \
// | |
// v v
// (labels)(fallthrough)
// | |
// v v
// ( succ / exit_ln )
// Handle non-returning asm
let mut succ =
if self.typeck_results.expr_ty(expr).is_never() { self.exit_ln } else { succ };
// Do a first pass for labels only
if asm.contains_label() {
let ln = self.live_node(expr.hir_id, expr.span);
self.init_from_succ(ln, succ);
for (op, _op_sp) in asm.operands.iter().rev() {
match op {
hir::InlineAsmOperand::Label { block } => {
let label_ln = self.propagate_through_block(block, succ);
self.merge_from_succ(ln, label_ln);
}
hir::InlineAsmOperand::In { .. }
| hir::InlineAsmOperand::Out { .. }
| hir::InlineAsmOperand::InOut { .. }
| hir::InlineAsmOperand::SplitInOut { .. }
| hir::InlineAsmOperand::Const { .. }
| hir::InlineAsmOperand::SymFn { .. }
| hir::InlineAsmOperand::SymStatic { .. } => {}
}
}
succ = ln;
}
// Do a second pass for writing outputs only
for (op, _op_sp) in asm.operands.iter().rev() {
match op {
hir::InlineAsmOperand::In { .. }
| hir::InlineAsmOperand::Const { .. }
| hir::InlineAsmOperand::SymFn { .. }
| hir::InlineAsmOperand::SymStatic { .. }
| hir::InlineAsmOperand::Label { .. } => {}
hir::InlineAsmOperand::Out { expr, .. } => {
if let Some(expr) = expr {
succ = self.write_place(expr, succ, ACC_WRITE);
}
}
hir::InlineAsmOperand::InOut { expr, .. } => {
succ = self.write_place(expr, succ, ACC_READ | ACC_WRITE | ACC_USE);
}
hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
if let Some(expr) = out_expr {
succ = self.write_place(expr, succ, ACC_WRITE);
}
}
}
}
// Then do a third pass for inputs
for (op, _op_sp) in asm.operands.iter().rev() {
match op {
hir::InlineAsmOperand::In { expr, .. } => {
succ = self.propagate_through_expr(expr, succ)
}
hir::InlineAsmOperand::Out { expr, .. } => {
if let Some(expr) = expr {
succ = self.propagate_through_place_components(expr, succ);
}
}
hir::InlineAsmOperand::InOut { expr, .. } => {
succ = self.propagate_through_place_components(expr, succ);
}
hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
if let Some(expr) = out_expr {
succ = self.propagate_through_place_components(expr, succ);
}
succ = self.propagate_through_expr(in_expr, succ);
}
hir::InlineAsmOperand::Const { .. }
| hir::InlineAsmOperand::SymFn { .. }
| hir::InlineAsmOperand::SymStatic { .. }
| hir::InlineAsmOperand::Label { .. } => {}
}
}
succ
}
hir::ExprKind::Lit(..)
| hir::ExprKind::ConstBlock(..)
| hir::ExprKind::Err(_)
| hir::ExprKind::Path(hir::QPath::TypeRelative(..))
| hir::ExprKind::Path(hir::QPath::LangItem(..))
| hir::ExprKind::OffsetOf(..) => succ,
// Note that labels have been resolved, so we don't need to look
// at the label ident
hir::ExprKind::Block(ref blk, _) => self.propagate_through_block(blk, succ),
}
}
fn propagate_through_place_components(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
// # Places
//
// In general, the full flow graph structure for an
// assignment/move/etc can be handled in one of two ways,
// depending on whether what is being assigned is a "tracked
// value" or not. A tracked value is basically a local
// variable or argument.
//
// The two kinds of graphs are:
//
// Tracked place Untracked place
// ----------------------++-----------------------
// ||
// | || |
// v || v
// (rvalue) || (rvalue)
// | || |
// v || v
// (write of place) || (place components)
// | || |
// v || v
// (succ) || (succ)
// ||
// ----------------------++-----------------------
//
// I will cover the two cases in turn:
//
// # Tracked places
//
// A tracked place is a local variable/argument `x`. In
// these cases, the link_node where the write occurs is linked
// to node id of `x`. The `write_place()` routine generates
// the contents of this node. There are no subcomponents to
// consider.
//
// # Non-tracked places
//
// These are places like `x[5]` or `x.f`. In that case, we
// basically ignore the value which is written to but generate
// reads for the components---`x` in these two examples. The
// components reads are generated by
// `propagate_through_place_components()` (this fn).
//
// # Illegal places
//
// It is still possible to observe assignments to non-places;
// these errors are detected in the later pass borrowck. We
// just ignore such cases and treat them as reads.
match expr.kind {
hir::ExprKind::Path(_) => succ,
hir::ExprKind::Field(ref e, _) => self.propagate_through_expr(e, succ),
_ => self.propagate_through_expr(expr, succ),
}
}
// see comment on propagate_through_place()
fn write_place(&mut self, expr: &Expr<'_>, succ: LiveNode, acc: u32) -> LiveNode {
match expr.kind {
hir::ExprKind::Path(hir::QPath::Resolved(_, path)) => {
self.access_path(expr.hir_id, path, succ, acc)
}
// We do not track other places, so just propagate through
// to their subcomponents. Also, it may happen that
// non-places occur here, because those are detected in the
// later pass borrowck.
_ => succ,
}
}
fn access_var(
&mut self,
hir_id: HirId,
var_hid: HirId,
succ: LiveNode,
acc: u32,
span: Span,
) -> LiveNode {
let ln = self.live_node(hir_id, span);
if acc != 0 {
self.init_from_succ(ln, succ);
let var = self.variable(var_hid, span);
self.acc(ln, var, acc);
}
ln
}
fn access_path(
&mut self,
hir_id: HirId,
path: &hir::Path<'_>,
succ: LiveNode,
acc: u32,
) -> LiveNode {
match path.res {
Res::Local(hid) => self.access_var(hir_id, hid, succ, acc, path.span),
_ => succ,
}
}
fn propagate_through_loop(
&mut self,
expr: &Expr<'_>,
body: &hir::Block<'_>,
succ: LiveNode,
) -> LiveNode {
/*
We model control flow like this:
(expr) <-+
| |
v |
(body) --+
Note that a `continue` expression targeting the `loop` will have a successor of `expr`.
Meanwhile, a `break` expression will have a successor of `succ`.
*/
// first iteration:
let ln = self.live_node(expr.hir_id, expr.span);
self.init_empty(ln, succ);
debug!("propagate_through_loop: using id for loop body {} {:?}", expr.hir_id, body);
self.break_ln.insert(expr.hir_id, succ);
self.cont_ln.insert(expr.hir_id, ln);
let body_ln = self.propagate_through_block(body, ln);
// repeat until fixed point is reached:
while self.merge_from_succ(ln, body_ln) {
assert_eq!(body_ln, self.propagate_through_block(body, ln));
}
ln
}
fn check_is_ty_uninhabited(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
let ty = self.typeck_results.expr_ty(expr);
let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
if ty.is_inhabited_from(self.ir.tcx, m, self.param_env) {
return succ;
}
match self.ir.lnks[succ] {
LiveNodeKind::ExprNode(succ_span, succ_id) => {
self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "expression");
}
LiveNodeKind::VarDefNode(succ_span, succ_id) => {
self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "definition");
}
_ => {}
};
self.exit_ln
}
fn warn_about_unreachable<'desc>(
&mut self,
orig_span: Span,
orig_ty: Ty<'tcx>,
expr_span: Span,
expr_id: HirId,
descr: &'desc str,
) {
if !orig_ty.is_never() {
// Unreachable code warnings are already emitted during type checking.
// However, during type checking, full type information is being
// calculated but not yet available, so the check for diverging
// expressions due to uninhabited result types is pretty crude and
// only checks whether ty.is_never(). Here, we have full type
// information available and can issue warnings for less obviously
// uninhabited types (e.g. empty enums). The check above is used so
// that we do not emit the same warning twice if the uninhabited type
// is indeed `!`.
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNREACHABLE_CODE,
expr_id,
expr_span,
errors::UnreachableDueToUninhabited {
expr: expr_span,
orig: orig_span,
descr,
ty: orig_ty,
},
);
}
}
}
// _______________________________________________________________________
// Checking for error conditions
impl<'a, 'tcx> Visitor<'tcx> for Liveness<'a, 'tcx> {
fn visit_local(&mut self, local: &'tcx hir::LetStmt<'tcx>) {
self.check_unused_vars_in_pat(local.pat, None, None, |spans, hir_id, ln, var| {
if local.init.is_some() {
self.warn_about_dead_assign(spans, hir_id, ln, var);
}
});
intravisit::walk_local(self, local);
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
check_expr(self, ex);
intravisit::walk_expr(self, ex);
}
fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
self.check_unused_vars_in_pat(arm.pat, None, None, |_, _, _, _| {});
intravisit::walk_arm(self, arm);
}
}
fn check_expr<'tcx>(this: &mut Liveness<'_, 'tcx>, expr: &'tcx Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Assign(ref l, ..) => {
this.check_place(l);
}
hir::ExprKind::AssignOp(_, ref l, _) => {
if !this.typeck_results.is_method_call(expr) {
this.check_place(l);
}
}
hir::ExprKind::InlineAsm(asm) => {
for (op, _op_sp) in asm.operands {
match op {
hir::InlineAsmOperand::Out { expr, .. } => {
if let Some(expr) = expr {
this.check_place(expr);
}
}
hir::InlineAsmOperand::InOut { expr, .. } => {
this.check_place(expr);
}
hir::InlineAsmOperand::SplitInOut { out_expr, .. } => {
if let Some(out_expr) = out_expr {
this.check_place(out_expr);
}
}
_ => {}
}
}
}
hir::ExprKind::Let(let_expr) => {
this.check_unused_vars_in_pat(let_expr.pat, None, None, |_, _, _, _| {});
}
// no correctness conditions related to liveness
hir::ExprKind::Call(..)
| hir::ExprKind::MethodCall(..)
| hir::ExprKind::Match(..)
| hir::ExprKind::Loop(..)
| hir::ExprKind::Index(..)
| hir::ExprKind::Field(..)
| hir::ExprKind::Array(..)
| hir::ExprKind::Tup(..)
| hir::ExprKind::Binary(..)
| hir::ExprKind::Cast(..)
| hir::ExprKind::If(..)
| hir::ExprKind::DropTemps(..)
| hir::ExprKind::Unary(..)
| hir::ExprKind::Ret(..)
| hir::ExprKind::Become(..)
| hir::ExprKind::Break(..)
| hir::ExprKind::Continue(..)
| hir::ExprKind::Lit(_)
| hir::ExprKind::ConstBlock(..)
| hir::ExprKind::Block(..)
| hir::ExprKind::AddrOf(..)
| hir::ExprKind::OffsetOf(..)
| hir::ExprKind::Struct(..)
| hir::ExprKind::Repeat(..)
| hir::ExprKind::Closure { .. }
| hir::ExprKind::Path(_)
| hir::ExprKind::Yield(..)
| hir::ExprKind::Type(..)
| hir::ExprKind::Err(_) => {}
}
}
impl<'tcx> Liveness<'_, 'tcx> {
fn check_place(&mut self, expr: &'tcx Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Path(hir::QPath::Resolved(_, path)) => {
if let Res::Local(var_hid) = path.res {
// Assignment to an immutable variable or argument: only legal
// if there is no later assignment. If this local is actually
// mutable, then check for a reassignment to flag the mutability
// as being used.
let ln = self.live_node(expr.hir_id, expr.span);
let var = self.variable(var_hid, expr.span);
self.warn_about_dead_assign(vec![expr.span], expr.hir_id, ln, var);
}
}
_ => {
// For other kinds of places, no checks are required,
// and any embedded expressions are actually rvalues
intravisit::walk_expr(self, expr);
}
}
}
fn should_warn(&self, var: Variable) -> Option<String> {
let name = self.ir.variable_name(var);
if name == kw::Empty {
return None;
}
let name = name.as_str();
if name.as_bytes()[0] == b'_' {
return None;
}
Some(name.to_owned())
}
fn warn_about_unused_upvars(&self, entry_ln: LiveNode) {
let Some(closure_min_captures) = self.closure_min_captures else {
return;
};
// If closure_min_captures is Some(), upvars must be Some() too.
for (&var_hir_id, min_capture_list) in closure_min_captures {
for captured_place in min_capture_list {
match captured_place.info.capture_kind {
ty::UpvarCapture::ByValue => {}
ty::UpvarCapture::ByRef(..) => continue,
};
let span = captured_place.get_capture_kind_span(self.ir.tcx);
let var = self.variable(var_hir_id, span);
if self.used_on_entry(entry_ln, var) {
if !self.live_on_entry(entry_ln, var) {
if let Some(name) = self.should_warn(var) {
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_ASSIGNMENTS,
var_hir_id,
vec![span],
errors::UnusedCaptureMaybeCaptureRef { name },
);
}
}
} else {
if let Some(name) = self.should_warn(var) {
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_VARIABLES,
var_hir_id,
vec![span],
errors::UnusedVarMaybeCaptureRef { name },
);
}
}
}
}
}
fn warn_about_unused_args(&self, body: &hir::Body<'_>, entry_ln: LiveNode) {
for p in body.params {
self.check_unused_vars_in_pat(
p.pat,
Some(entry_ln),
Some(body),
|spans, hir_id, ln, var| {
if !self.live_on_entry(ln, var)
&& let Some(name) = self.should_warn(var)
{
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_ASSIGNMENTS,
hir_id,
spans,
errors::UnusedAssignPassed { name },
);
}
},
);
}
}
fn check_unused_vars_in_pat(
&self,
pat: &hir::Pat<'_>,
entry_ln: Option<LiveNode>,
opt_body: Option<&hir::Body<'_>>,
on_used_on_entry: impl Fn(Vec<Span>, HirId, LiveNode, Variable),
) {
// In an or-pattern, only consider the variable; any later patterns must have the same
// bindings, and we also consider the first pattern to be the "authoritative" set of ids.
// However, we should take the ids and spans of variables with the same name from the later
// patterns so the suggestions to prefix with underscores will apply to those too.
let mut vars: FxIndexMap<Symbol, (LiveNode, Variable, Vec<(HirId, Span, Span)>)> =
<_>::default();
pat.each_binding(|_, hir_id, pat_sp, ident| {
let ln = entry_ln.unwrap_or_else(|| self.live_node(hir_id, pat_sp));
let var = self.variable(hir_id, ident.span);
let id_and_sp = (hir_id, pat_sp, ident.span);
vars.entry(self.ir.variable_name(var))
.and_modify(|(.., hir_ids_and_spans)| hir_ids_and_spans.push(id_and_sp))
.or_insert_with(|| (ln, var, vec![id_and_sp]));
});
let can_remove = match pat.kind {
hir::PatKind::Struct(_, fields, true) => {
// if all fields are shorthand, remove the struct field, otherwise, mark with _ as prefix
fields.iter().all(|f| f.is_shorthand)
}
_ => false,
};
for (_, (ln, var, hir_ids_and_spans)) in vars {
if self.used_on_entry(ln, var) {
let id = hir_ids_and_spans[0].0;
let spans =
hir_ids_and_spans.into_iter().map(|(_, _, ident_span)| ident_span).collect();
on_used_on_entry(spans, id, ln, var);
} else {
self.report_unused(hir_ids_and_spans, ln, var, can_remove, pat, opt_body);
}
}
}
#[instrument(skip(self), level = "INFO")]
fn report_unused(
&self,
hir_ids_and_spans: Vec<(HirId, Span, Span)>,
ln: LiveNode,
var: Variable,
can_remove: bool,
pat: &hir::Pat<'_>,
opt_body: Option<&hir::Body<'_>>,
) {
let first_hir_id = hir_ids_and_spans[0].0;
if let Some(name) = self.should_warn(var).filter(|name| name != "self") {
// annoying: for parameters in funcs like `fn(x: i32)
// {ret}`, there is only one node, so asking about
// assigned_on_exit() is not meaningful.
let is_assigned =
if ln == self.exit_ln { false } else { self.assigned_on_exit(ln, var) };
if is_assigned {
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_VARIABLES,
first_hir_id,
hir_ids_and_spans
.into_iter()
.map(|(_, _, ident_span)| ident_span)
.collect::<Vec<_>>(),
errors::UnusedVarAssignedOnly { name },
)
} else if can_remove {
let spans = hir_ids_and_spans
.iter()
.map(|(_, pat_span, _)| {
let span = self
.ir
.tcx
.sess
.source_map()
.span_extend_to_next_char(*pat_span, ',', true);
span.with_hi(BytePos(span.hi().0 + 1))
})
.collect();
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_VARIABLES,
first_hir_id,
hir_ids_and_spans.iter().map(|(_, pat_span, _)| *pat_span).collect::<Vec<_>>(),
errors::UnusedVarRemoveField {
name,
sugg: errors::UnusedVarRemoveFieldSugg { spans },
},
);
} else {
let (shorthands, non_shorthands): (Vec<_>, Vec<_>) =
hir_ids_and_spans.iter().copied().partition(|(hir_id, _, ident_span)| {
let var = self.variable(*hir_id, *ident_span);
self.ir.variable_is_shorthand(var)
});
// If we have both shorthand and non-shorthand, prefer the "try ignoring
// the field" message, and suggest `_` for the non-shorthands. If we only
// have non-shorthand, then prefix with an underscore instead.
if !shorthands.is_empty() {
let shorthands =
shorthands.into_iter().map(|(_, pat_span, _)| pat_span).collect();
let non_shorthands =
non_shorthands.into_iter().map(|(_, pat_span, _)| pat_span).collect();
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_VARIABLES,
first_hir_id,
hir_ids_and_spans
.iter()
.map(|(_, pat_span, _)| *pat_span)
.collect::<Vec<_>>(),
errors::UnusedVarTryIgnore {
sugg: errors::UnusedVarTryIgnoreSugg {
shorthands,
non_shorthands,
name,
},
},
);
} else {
// #117284, when `pat_span` and `ident_span` have different contexts
// we can't provide a good suggestion, instead we pointed out the spans from macro
let from_macro = non_shorthands
.iter()
.find(|(_, pat_span, ident_span)| {
!pat_span.eq_ctxt(*ident_span) && pat_span.from_expansion()
})
.map(|(_, pat_span, _)| *pat_span);
let non_shorthands = non_shorthands
.into_iter()
.map(|(_, _, ident_span)| ident_span)
.collect::<Vec<_>>();
let suggestions = self.string_interp_suggestions(&name, opt_body);
let sugg = if let Some(span) = from_macro {
errors::UnusedVariableSugg::NoSugg { span, name: name.clone() }
} else {
errors::UnusedVariableSugg::TryPrefixSugg {
spans: non_shorthands,
name: name.clone(),
}
};
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_VARIABLES,
first_hir_id,
hir_ids_and_spans
.iter()
.map(|(_, _, ident_span)| *ident_span)
.collect::<Vec<_>>(),
errors::UnusedVariableTryPrefix {
label: if !suggestions.is_empty() { Some(pat.span) } else { None },
name,
sugg,
string_interp: suggestions,
},
);
}
}
}
}
fn string_interp_suggestions(
&self,
name: &str,
opt_body: Option<&hir::Body<'_>>,
) -> Vec<errors::UnusedVariableStringInterp> {
let mut suggs = Vec::new();
let Some(opt_body) = opt_body else {
return suggs;
};
let mut visitor = CollectLitsVisitor { lit_exprs: vec![] };
intravisit::walk_body(&mut visitor, opt_body);
for lit_expr in visitor.lit_exprs {
let hir::ExprKind::Lit(litx) = &lit_expr.kind else { continue };
let rustc_ast::LitKind::Str(syb, _) = litx.node else {
continue;
};
let name_str: &str = syb.as_str();
let name_pa = format!("{{{name}}}");
if name_str.contains(&name_pa) {
suggs.push(errors::UnusedVariableStringInterp {
lit: lit_expr.span,
lo: lit_expr.span.shrink_to_lo(),
hi: lit_expr.span.shrink_to_hi(),
});
}
}
suggs
}
fn warn_about_dead_assign(&self, spans: Vec<Span>, hir_id: HirId, ln: LiveNode, var: Variable) {
if !self.live_on_exit(ln, var)
&& let Some(name) = self.should_warn(var)
{
self.ir.tcx.emit_node_span_lint(
lint::builtin::UNUSED_ASSIGNMENTS,
hir_id,
spans,
errors::UnusedAssign { name },
);
}
}
}