miri/shims/x86/sse42.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
use rustc_middle::mir;
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::LayoutOf as _;
use rustc_span::Symbol;
use rustc_target::abi::Size;
use rustc_target::spec::abi::Abi;
use crate::*;
/// A bitmask constant for scrutinizing the immediate byte provided
/// to the string comparison intrinsics. It distinuishes between
/// 16-bit integers and 8-bit integers. See [`compare_strings`]
/// for more details about the immediate byte.
const USE_WORDS: u8 = 1;
/// A bitmask constant for scrutinizing the immediate byte provided
/// to the string comparison intrinsics. It distinuishes between
/// signed integers and unsigned integers. See [`compare_strings`]
/// for more details about the immediate byte.
const USE_SIGNED: u8 = 2;
/// The main worker for the string comparison intrinsics, where the given
/// strings are analyzed according to the given immediate byte.
///
/// # Arguments
///
/// * `str1` - The first string argument. It is always a length 16 array of bytes
/// or a length 8 array of two-byte words.
/// * `str2` - The second string argument. It is always a length 16 array of bytes
/// or a length 8 array of two-byte words.
/// * `len` is the length values of the supplied strings. It is distinct from the operand length
/// in that it describes how much of `str1` and `str2` will be used for the calculation and may
/// be smaller than the array length of `str1` and `str2`. The string length is counted in bytes
/// if using byte operands and in two-byte words when using two-byte word operands.
/// If the value is `None`, the length of a string is determined by the first
/// null value inside the string.
/// * `imm` is the immediate byte argument supplied to the intrinsic. The byte influences
/// the operation as follows:
///
/// ```text
/// 0babccddef
/// || | |||- Use of bytes vs use of two-byte words inside the operation.
/// || | ||
/// || | ||- Use of signed values versus use of unsigned values.
/// || | |
/// || | |- The comparison operation performed. A total of four operations are available.
/// || | * Equal any: Checks which characters of `str2` are inside `str1`.
/// || | * String ranges: Check if characters in `str2` are inside the provided character ranges.
/// || | Adjacent characters in `str1` constitute one range.
/// || | * String comparison: Mark positions where `str1` and `str2` have the same character.
/// || | * Substring search: Mark positions where `str1` is a substring in `str2`.
/// || |
/// || |- Result Polarity. The result bits may be subjected to a bitwise complement
/// || if these bits are set.
/// ||
/// ||- Output selection. This bit has two meanings depending on the instruction.
/// | If the instruction is generating a mask, it distinguishes between a bit mask
/// | and a byte mask. Otherwise it distinguishes between the most significand bit
/// | and the least significand bit when generating an index.
/// |
/// |- This bit is ignored. It is expected that this bit is set to zero, but it is
/// not a requirement.
/// ```
///
/// # Returns
///
/// A result mask. The bit at index `i` inside the mask is set if 'str2' starting at `i`
/// fulfills the test as defined inside the immediate byte.
/// The mask may be negated if negation flags inside the immediate byte are set.
///
/// For more information, see the Intel Software Developer's Manual, Vol. 2b, Chapter 4.1.
#[allow(clippy::arithmetic_side_effects)]
fn compare_strings<'tcx>(
this: &mut MiriInterpCx<'tcx>,
str1: &OpTy<'tcx>,
str2: &OpTy<'tcx>,
len: Option<(u64, u64)>,
imm: u8,
) -> InterpResult<'tcx, i32> {
let default_len = default_len::<u64>(imm);
let (len1, len2) = if let Some(t) = len {
t
} else {
let len1 = implicit_len(this, str1, imm)?.unwrap_or(default_len);
let len2 = implicit_len(this, str2, imm)?.unwrap_or(default_len);
(len1, len2)
};
let mut result = 0;
match (imm >> 2) & 3 {
0 => {
// Equal any: Checks which characters of `str2` are inside `str1`.
for i in 0..len2 {
let ch2 = this.read_immediate(&this.project_index(str2, i)?)?;
for j in 0..len1 {
let ch1 = this.read_immediate(&this.project_index(str1, j)?)?;
let eq = this.binary_op(mir::BinOp::Eq, &ch1, &ch2)?;
if eq.to_scalar().to_bool()? {
result |= 1 << i;
break;
}
}
}
}
1 => {
// String ranges: Check if characters in `str2` are inside the provided character ranges.
// Adjacent characters in `str1` constitute one range.
let len1 = len1 - (len1 & 1);
let get_ch = |ch: Scalar| -> InterpResult<'tcx, i32> {
let result = match (imm & USE_WORDS != 0, imm & USE_SIGNED != 0) {
(true, true) => i32::from(ch.to_i16()?),
(true, false) => i32::from(ch.to_u16()?),
(false, true) => i32::from(ch.to_i8()?),
(false, false) => i32::from(ch.to_u8()?),
};
interp_ok(result)
};
for i in 0..len2 {
for j in (0..len1).step_by(2) {
let ch2 = get_ch(this.read_scalar(&this.project_index(str2, i)?)?)?;
let ch1_1 = get_ch(this.read_scalar(&this.project_index(str1, j)?)?)?;
let ch1_2 = get_ch(this.read_scalar(&this.project_index(str1, j + 1)?)?)?;
if ch1_1 <= ch2 && ch2 <= ch1_2 {
result |= 1 << i;
}
}
}
}
2 => {
// String comparison: Mark positions where `str1` and `str2` have the same character.
result = (1 << default_len) - 1;
result ^= (1 << len1.max(len2)) - 1;
for i in 0..len1.min(len2) {
let ch1 = this.read_immediate(&this.project_index(str1, i)?)?;
let ch2 = this.read_immediate(&this.project_index(str2, i)?)?;
let eq = this.binary_op(mir::BinOp::Eq, &ch1, &ch2)?;
result |= i32::from(eq.to_scalar().to_bool()?) << i;
}
}
3 => {
// Substring search: Mark positions where `str1` is a substring in `str2`.
if len1 == 0 {
result = (1 << default_len) - 1;
} else if len1 <= len2 {
for i in 0..len2 {
if len1 > len2 - i {
break;
}
result |= 1 << i;
for j in 0..len1 {
let k = i + j;
if k >= default_len {
break;
} else {
let ch1 = this.read_immediate(&this.project_index(str1, j)?)?;
let ch2 = this.read_immediate(&this.project_index(str2, k)?)?;
let ne = this.binary_op(mir::BinOp::Ne, &ch1, &ch2)?;
if ne.to_scalar().to_bool()? {
result &= !(1 << i);
break;
}
}
}
}
}
}
_ => unreachable!(),
}
// Polarity: Possibly perform a bitwise complement on the result.
match (imm >> 4) & 3 {
3 => result ^= (1 << len1) - 1,
1 => result ^= (1 << default_len) - 1,
_ => (),
}
interp_ok(result)
}
/// Obtain the arguments of the intrinsic based on its name.
/// The result is a tuple with the following values:
/// * The first string argument.
/// * The second string argument.
/// * The string length values, if the intrinsic requires them.
/// * The immediate instruction byte.
///
/// The string arguments will be transmuted into arrays of bytes
/// or two-byte words, depending on the value of the immediate byte.
/// Originally, they are [__m128i](https://doc.rust-lang.org/stable/core/arch/x86_64/struct.__m128i.html) values
/// corresponding to the x86 128-bit integer SIMD type.
fn deconstruct_args<'tcx>(
unprefixed_name: &str,
this: &mut MiriInterpCx<'tcx>,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
) -> InterpResult<'tcx, (OpTy<'tcx>, OpTy<'tcx>, Option<(u64, u64)>, u8)> {
let array_layout_fn = |this: &mut MiriInterpCx<'tcx>, imm: u8| {
if imm & USE_WORDS != 0 {
this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u16, 8))
} else {
this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u8, 16))
}
};
// The fourth letter of each string comparison intrinsic is either 'e' for "explicit" or 'i' for "implicit".
// The distinction will correspond to the intrinsics type signature. In this constext, "explicit" and "implicit"
// refer to the way the string length is determined. The length is either passed explicitly in the "explicit"
// case or determined by a null terminator in the "implicit" case.
let is_explicit = match unprefixed_name.as_bytes().get(4) {
Some(&b'e') => true,
Some(&b'i') => false,
_ => unreachable!(),
};
if is_explicit {
let [str1, len1, str2, len2, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let imm = this.read_scalar(imm)?.to_u8()?;
let default_len = default_len::<u32>(imm);
let len1 = u64::from(this.read_scalar(len1)?.to_u32()?.min(default_len));
let len2 = u64::from(this.read_scalar(len2)?.to_u32()?.min(default_len));
let array_layout = array_layout_fn(this, imm)?;
let str1 = str1.transmute(array_layout, this)?;
let str2 = str2.transmute(array_layout, this)?;
interp_ok((str1, str2, Some((len1, len2)), imm))
} else {
let [str1, str2, imm] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let imm = this.read_scalar(imm)?.to_u8()?;
let array_layout = array_layout_fn(this, imm)?;
let str1 = str1.transmute(array_layout, this)?;
let str2 = str2.transmute(array_layout, this)?;
interp_ok((str1, str2, None, imm))
}
}
/// Calculate the c-style string length for a given string `str`.
/// The string is either a length 16 array of bytes a length 8 array of two-byte words.
fn implicit_len<'tcx>(
this: &mut MiriInterpCx<'tcx>,
str: &OpTy<'tcx>,
imm: u8,
) -> InterpResult<'tcx, Option<u64>> {
let mut result = None;
let zero = ImmTy::from_int(0, str.layout.field(this, 0));
for i in 0..default_len::<u64>(imm) {
let ch = this.read_immediate(&this.project_index(str, i)?)?;
let is_zero = this.binary_op(mir::BinOp::Eq, &ch, &zero)?;
if is_zero.to_scalar().to_bool()? {
result = Some(i);
break;
}
}
interp_ok(result)
}
#[inline]
fn default_len<T: From<u8>>(imm: u8) -> T {
if imm & USE_WORDS != 0 { T::from(8u8) } else { T::from(16u8) }
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn emulate_x86_sse42_intrinsic(
&mut self,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, EmulateItemResult> {
let this = self.eval_context_mut();
this.expect_target_feature_for_intrinsic(link_name, "sse4.2")?;
// Prefix should have already been checked.
let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sse42.").unwrap();
match unprefixed_name {
// Used to implement the `_mm_cmpestrm` and the `_mm_cmpistrm` functions.
// These functions compare the input strings and return the resulting mask.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=1044,922
"pcmpistrm128" | "pcmpestrm128" => {
let (str1, str2, len, imm) =
deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
let mask = compare_strings(this, &str1, &str2, len, imm)?;
// The sixth bit inside the immediate byte distiguishes
// between a bit mask or a byte mask when generating a mask.
if imm & 0b100_0000 != 0 {
let (array_layout, size) = if imm & USE_WORDS != 0 {
(this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u16, 8))?, 2)
} else {
(this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u8, 16))?, 1)
};
let size = Size::from_bytes(size);
let dest = dest.transmute(array_layout, this)?;
for i in 0..default_len::<u64>(imm) {
let result = helpers::bool_to_simd_element(mask & (1 << i) != 0, size);
this.write_scalar(result, &this.project_index(&dest, i)?)?;
}
} else {
let layout = this.layout_of(this.tcx.types.i128)?;
let dest = dest.transmute(layout, this)?;
this.write_scalar(Scalar::from_i128(i128::from(mask)), &dest)?;
}
}
// Used to implement the `_mm_cmpestra` and the `_mm_cmpistra` functions.
// These functions compare the input strings and return `1` if the end of the second
// input string is not reached and the resulting mask is zero, and `0` otherwise.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=919,1041
"pcmpistria128" | "pcmpestria128" => {
let (str1, str2, len, imm) =
deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
let result = if compare_strings(this, &str1, &str2, len, imm)? != 0 {
false
} else if let Some((_, len)) = len {
len >= default_len::<u64>(imm)
} else {
implicit_len(this, &str1, imm)?.is_some()
};
this.write_scalar(Scalar::from_i32(i32::from(result)), dest)?;
}
// Used to implement the `_mm_cmpestri` and the `_mm_cmpistri` functions.
// These functions compare the input strings and return the bit index
// for most significant or least significant bit of the resulting mask.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=921,1043
"pcmpistri128" | "pcmpestri128" => {
let (str1, str2, len, imm) =
deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
let mask = compare_strings(this, &str1, &str2, len, imm)?;
let len = default_len::<u32>(imm);
// The sixth bit inside the immediate byte distiguishes between the least
// significant bit and the most significant bit when generating an index.
let result = if imm & 0b100_0000 != 0 {
// most significant bit
31u32.wrapping_sub(mask.leading_zeros()).min(len)
} else {
// least significant bit
mask.trailing_zeros().min(len)
};
this.write_scalar(Scalar::from_i32(i32::try_from(result).unwrap()), dest)?;
}
// Used to implement the `_mm_cmpestro` and the `_mm_cmpistro` functions.
// These functions compare the input strings and return the lowest bit of the
// resulting mask.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=923,1045
"pcmpistrio128" | "pcmpestrio128" => {
let (str1, str2, len, imm) =
deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
let mask = compare_strings(this, &str1, &str2, len, imm)?;
this.write_scalar(Scalar::from_i32(mask & 1), dest)?;
}
// Used to implement the `_mm_cmpestrc` and the `_mm_cmpistrc` functions.
// These functions compare the input strings and return `1` if the resulting
// mask was non-zero, and `0` otherwise.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=920,1042
"pcmpistric128" | "pcmpestric128" => {
let (str1, str2, len, imm) =
deconstruct_args(unprefixed_name, this, link_name, abi, args)?;
let mask = compare_strings(this, &str1, &str2, len, imm)?;
this.write_scalar(Scalar::from_i32(i32::from(mask != 0)), dest)?;
}
// Used to implement the `_mm_cmpistrz` and the `_mm_cmpistrs` functions.
// These functions return `1` if the string end has been reached and `0` otherwise.
// Since these functions define the string length implicitly, it is equal to a
// search for a null terminator (see `deconstruct_args` for more details).
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=924,925
"pcmpistriz128" | "pcmpistris128" => {
let [str1, str2, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let imm = this.read_scalar(imm)?.to_u8()?;
let str = if unprefixed_name == "pcmpistris128" { str1 } else { str2 };
let array_layout = if imm & USE_WORDS != 0 {
this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u16, 8))?
} else {
this.layout_of(Ty::new_array(this.tcx.tcx, this.tcx.types.u8, 16))?
};
let str = str.transmute(array_layout, this)?;
let result = implicit_len(this, &str, imm)?.is_some();
this.write_scalar(Scalar::from_i32(i32::from(result)), dest)?;
}
// Used to implement the `_mm_cmpestrz` and the `_mm_cmpestrs` functions.
// These functions return 1 if the explicitly passed string length is smaller
// than 16 for byte-sized operands or 8 for word-sized operands.
// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=1046,1047
"pcmpestriz128" | "pcmpestris128" => {
let [_, len1, _, len2, imm] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let len = if unprefixed_name == "pcmpestris128" { len1 } else { len2 };
let len = this.read_scalar(len)?.to_i32()?;
let imm = this.read_scalar(imm)?.to_u8()?;
this.write_scalar(
Scalar::from_i32(i32::from(len < default_len::<i32>(imm))),
dest,
)?;
}
// Used to implement the `_mm_crc32_u{8, 16, 32, 64}` functions.
// These functions calculate a 32-bit CRC using `0x11EDC6F41`
// as the polynomial, also known as CRC32C.
// https://datatracker.ietf.org/doc/html/rfc3720#section-12.1
"crc32.32.8" | "crc32.32.16" | "crc32.32.32" | "crc32.64.64" => {
let bit_size = match unprefixed_name {
"crc32.32.8" => 8,
"crc32.32.16" => 16,
"crc32.32.32" => 32,
"crc32.64.64" => 64,
_ => unreachable!(),
};
if bit_size == 64 && this.tcx.sess.target.arch != "x86_64" {
return interp_ok(EmulateItemResult::NotSupported);
}
let [left, right] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let left = this.read_scalar(left)?;
let right = this.read_scalar(right)?;
let crc = if bit_size == 64 {
// The 64-bit version will only consider the lower 32 bits,
// while the upper 32 bits get discarded.
#[allow(clippy::cast_possible_truncation)]
u128::from((left.to_u64()? as u32).reverse_bits())
} else {
u128::from(left.to_u32()?.reverse_bits())
};
let v = match bit_size {
8 => u128::from(right.to_u8()?.reverse_bits()),
16 => u128::from(right.to_u16()?.reverse_bits()),
32 => u128::from(right.to_u32()?.reverse_bits()),
64 => u128::from(right.to_u64()?.reverse_bits()),
_ => unreachable!(),
};
// Perform polynomial division modulo 2.
// The algorithm for the division is an adapted version of the
// schoolbook division algorithm used for normal integer or polynomial
// division. In this context, the quotient is not calculated, since
// only the remainder is needed.
//
// The algorithm works as follows:
// 1. Pull down digits until division can be performed. In the context of division
// modulo 2 it means locating the most significant digit of the dividend and shifting
// the divisor such that the position of the divisors most significand digit and the
// dividends most significand digit match.
// 2. Perform a division and determine the remainder. Since it is arithmetic modulo 2,
// this operation is a simple bitwise exclusive or.
// 3. Repeat steps 1. and 2. until the full remainder is calculated. This is the case
// once the degree of the remainder polynomial is smaller than the degree of the
// divisor polynomial. In other words, the number of leading zeros of the remainder
// is larger than the number of leading zeros of the divisor. It is important to
// note that standard arithmetic comparison is not applicable here:
// 0b10011 / 0b11111 = 0b01100 is a valid division, even though the dividend is
// smaller than the divisor.
let mut dividend = (crc << bit_size) ^ (v << 32);
const POLYNOMIAL: u128 = 0x11EDC6F41;
while dividend.leading_zeros() <= POLYNOMIAL.leading_zeros() {
dividend ^=
(POLYNOMIAL << POLYNOMIAL.leading_zeros()) >> dividend.leading_zeros();
}
let result = u32::try_from(dividend).unwrap().reverse_bits();
let result = if bit_size == 64 {
Scalar::from_u64(u64::from(result))
} else {
Scalar::from_u32(result)
};
this.write_scalar(result, dest)?;
}
_ => return interp_ok(EmulateItemResult::NotSupported),
}
interp_ok(EmulateItemResult::NeedsReturn)
}
}