1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
use crate::error;
use crate::fmt;
use crate::io::{
    self, ErrorKind, IntoInnerError, IoSlice, Seek, SeekFrom, Write, DEFAULT_BUF_SIZE,
};
use crate::mem;
use crate::ptr;

/// Wraps a writer and buffers its output.
///
/// It can be excessively inefficient to work directly with something that
/// implements [`Write`]. For example, every call to
/// [`write`][`TcpStream::write`] on [`TcpStream`] results in a system call. A
/// `BufWriter<W>` keeps an in-memory buffer of data and writes it to an underlying
/// writer in large, infrequent batches.
///
/// `BufWriter<W>` can improve the speed of programs that make *small* and
/// *repeated* write calls to the same file or network socket. It does not
/// help when writing very large amounts at once, or writing just one or a few
/// times. It also provides no advantage when writing to a destination that is
/// in memory, like a <code>[Vec]\<u8></code>.
///
/// It is critical to call [`flush`] before `BufWriter<W>` is dropped. Though
/// dropping will attempt to flush the contents of the buffer, any errors
/// that happen in the process of dropping will be ignored. Calling [`flush`]
/// ensures that the buffer is empty and thus dropping will not even attempt
/// file operations.
///
/// # Examples
///
/// Let's write the numbers one through ten to a [`TcpStream`]:
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::net::TcpStream;
///
/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
///
/// for i in 0..10 {
///     stream.write(&[i+1]).unwrap();
/// }
/// ```
///
/// Because we're not buffering, we write each one in turn, incurring the
/// overhead of a system call per byte written. We can fix this with a
/// `BufWriter<W>`:
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::BufWriter;
/// use std::net::TcpStream;
///
/// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
///
/// for i in 0..10 {
///     stream.write(&[i+1]).unwrap();
/// }
/// stream.flush().unwrap();
/// ```
///
/// By wrapping the stream with a `BufWriter<W>`, these ten writes are all grouped
/// together by the buffer and will all be written out in one system call when
/// the `stream` is flushed.
///
/// [`TcpStream::write`]: crate::net::TcpStream::write
/// [`TcpStream`]: crate::net::TcpStream
/// [`flush`]: BufWriter::flush
#[stable(feature = "rust1", since = "1.0.0")]
pub struct BufWriter<W: ?Sized + Write> {
    // The buffer. Avoid using this like a normal `Vec` in common code paths.
    // That is, don't use `buf.push`, `buf.extend_from_slice`, or any other
    // methods that require bounds checking or the like. This makes an enormous
    // difference to performance (we may want to stop using a `Vec` entirely).
    buf: Vec<u8>,
    // #30888: If the inner writer panics in a call to write, we don't want to
    // write the buffered data a second time in BufWriter's destructor. This
    // flag tells the Drop impl if it should skip the flush.
    panicked: bool,
    inner: W,
}

impl<W: Write> BufWriter<W> {
    /// Creates a new `BufWriter<W>` with a default buffer capacity. The default is currently 8 KiB,
    /// but may change in the future.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new(inner: W) -> BufWriter<W> {
        BufWriter::with_capacity(DEFAULT_BUF_SIZE, inner)
    }

    /// Creates a new `BufWriter<W>` with at least the specified buffer capacity.
    ///
    /// # Examples
    ///
    /// Creating a buffer with a buffer of at least a hundred bytes.
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let stream = TcpStream::connect("127.0.0.1:34254").unwrap();
    /// let mut buffer = BufWriter::with_capacity(100, stream);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn with_capacity(capacity: usize, inner: W) -> BufWriter<W> {
        BufWriter { inner, buf: Vec::with_capacity(capacity), panicked: false }
    }

    /// Unwraps this `BufWriter<W>`, returning the underlying writer.
    ///
    /// The buffer is written out before returning the writer.
    ///
    /// # Errors
    ///
    /// An [`Err`] will be returned if an error occurs while flushing the buffer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // unwrap the TcpStream and flush the buffer
    /// let stream = buffer.into_inner().unwrap();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn into_inner(mut self) -> Result<W, IntoInnerError<BufWriter<W>>> {
        match self.flush_buf() {
            Err(e) => Err(IntoInnerError::new(self, e)),
            Ok(()) => Ok(self.into_parts().0),
        }
    }

    /// Disassembles this `BufWriter<W>`, returning the underlying writer, and any buffered but
    /// unwritten data.
    ///
    /// If the underlying writer panicked, it is not known what portion of the data was written.
    /// In this case, we return `WriterPanicked` for the buffered data (from which the buffer
    /// contents can still be recovered).
    ///
    /// `into_parts` makes no attempt to flush data and cannot fail.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::{BufWriter, Write};
    ///
    /// let mut buffer = [0u8; 10];
    /// let mut stream = BufWriter::new(buffer.as_mut());
    /// write!(stream, "too much data").unwrap();
    /// stream.flush().expect_err("it doesn't fit");
    /// let (recovered_writer, buffered_data) = stream.into_parts();
    /// assert_eq!(recovered_writer.len(), 0);
    /// assert_eq!(&buffered_data.unwrap(), b"ata");
    /// ```
    #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
    pub fn into_parts(mut self) -> (W, Result<Vec<u8>, WriterPanicked>) {
        let buf = mem::take(&mut self.buf);
        let buf = if !self.panicked { Ok(buf) } else { Err(WriterPanicked { buf }) };

        // SAFETY: forget(self) prevents double dropping inner
        let inner = unsafe { ptr::read(&self.inner) };
        mem::forget(self);

        (inner, buf)
    }
}

impl<W: ?Sized + Write> BufWriter<W> {
    /// Send data in our local buffer into the inner writer, looping as
    /// necessary until either it's all been sent or an error occurs.
    ///
    /// Because all the data in the buffer has been reported to our owner as
    /// "successfully written" (by returning nonzero success values from
    /// `write`), any 0-length writes from `inner` must be reported as i/o
    /// errors from this method.
    pub(in crate::io) fn flush_buf(&mut self) -> io::Result<()> {
        /// Helper struct to ensure the buffer is updated after all the writes
        /// are complete. It tracks the number of written bytes and drains them
        /// all from the front of the buffer when dropped.
        struct BufGuard<'a> {
            buffer: &'a mut Vec<u8>,
            written: usize,
        }

        impl<'a> BufGuard<'a> {
            fn new(buffer: &'a mut Vec<u8>) -> Self {
                Self { buffer, written: 0 }
            }

            /// The unwritten part of the buffer
            fn remaining(&self) -> &[u8] {
                &self.buffer[self.written..]
            }

            /// Flag some bytes as removed from the front of the buffer
            fn consume(&mut self, amt: usize) {
                self.written += amt;
            }

            /// true if all of the bytes have been written
            fn done(&self) -> bool {
                self.written >= self.buffer.len()
            }
        }

        impl Drop for BufGuard<'_> {
            fn drop(&mut self) {
                if self.written > 0 {
                    self.buffer.drain(..self.written);
                }
            }
        }

        let mut guard = BufGuard::new(&mut self.buf);
        while !guard.done() {
            self.panicked = true;
            let r = self.inner.write(guard.remaining());
            self.panicked = false;

            match r {
                Ok(0) => {
                    return Err(io::const_io_error!(
                        ErrorKind::WriteZero,
                        "failed to write the buffered data",
                    ));
                }
                Ok(n) => guard.consume(n),
                Err(ref e) if e.is_interrupted() => {}
                Err(e) => return Err(e),
            }
        }
        Ok(())
    }

    /// Buffer some data without flushing it, regardless of the size of the
    /// data. Writes as much as possible without exceeding capacity. Returns
    /// the number of bytes written.
    pub(super) fn write_to_buf(&mut self, buf: &[u8]) -> usize {
        let available = self.spare_capacity();
        let amt_to_buffer = available.min(buf.len());

        // SAFETY: `amt_to_buffer` is <= buffer's spare capacity by construction.
        unsafe {
            self.write_to_buffer_unchecked(&buf[..amt_to_buffer]);
        }

        amt_to_buffer
    }

    /// Gets a reference to the underlying writer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // we can use reference just like buffer
    /// let reference = buffer.get_ref();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn get_ref(&self) -> &W {
        &self.inner
    }

    /// Gets a mutable reference to the underlying writer.
    ///
    /// It is inadvisable to directly write to the underlying writer.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // we can use reference just like buffer
    /// let reference = buffer.get_mut();
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn get_mut(&mut self) -> &mut W {
        &mut self.inner
    }

    /// Returns a reference to the internally buffered data.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // See how many bytes are currently buffered
    /// let bytes_buffered = buf_writer.buffer().len();
    /// ```
    #[stable(feature = "bufreader_buffer", since = "1.37.0")]
    pub fn buffer(&self) -> &[u8] {
        &self.buf
    }

    /// Returns a mutable reference to the internal buffer.
    ///
    /// This can be used to write data directly into the buffer without triggering writers
    /// to the underlying writer.
    ///
    /// That the buffer is a `Vec` is an implementation detail.
    /// Callers should not modify the capacity as there currently is no public API to do so
    /// and thus any capacity changes would be unexpected by the user.
    pub(in crate::io) fn buffer_mut(&mut self) -> &mut Vec<u8> {
        &mut self.buf
    }

    /// Returns the number of bytes the internal buffer can hold without flushing.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use std::io::BufWriter;
    /// use std::net::TcpStream;
    ///
    /// let buf_writer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
    ///
    /// // Check the capacity of the inner buffer
    /// let capacity = buf_writer.capacity();
    /// // Calculate how many bytes can be written without flushing
    /// let without_flush = capacity - buf_writer.buffer().len();
    /// ```
    #[stable(feature = "buffered_io_capacity", since = "1.46.0")]
    pub fn capacity(&self) -> usize {
        self.buf.capacity()
    }

    // Ensure this function does not get inlined into `write`, so that it
    // remains inlineable and its common path remains as short as possible.
    // If this function ends up being called frequently relative to `write`,
    // it's likely a sign that the client is using an improperly sized buffer
    // or their write patterns are somewhat pathological.
    #[cold]
    #[inline(never)]
    fn write_cold(&mut self, buf: &[u8]) -> io::Result<usize> {
        if buf.len() > self.spare_capacity() {
            self.flush_buf()?;
        }

        // Why not len > capacity? To avoid a needless trip through the buffer when the input
        // exactly fills it. We'd just need to flush it to the underlying writer anyway.
        if buf.len() >= self.buf.capacity() {
            self.panicked = true;
            let r = self.get_mut().write(buf);
            self.panicked = false;
            r
        } else {
            // Write to the buffer. In this case, we write to the buffer even if it fills it
            // exactly. Doing otherwise would mean flushing the buffer, then writing this
            // input to the inner writer, which in many cases would be a worse strategy.

            // SAFETY: There was either enough spare capacity already, or there wasn't and we
            // flushed the buffer to ensure that there is. In the latter case, we know that there
            // is because flushing ensured that our entire buffer is spare capacity, and we entered
            // this block because the input buffer length is less than that capacity. In either
            // case, it's safe to write the input buffer to our buffer.
            unsafe {
                self.write_to_buffer_unchecked(buf);
            }

            Ok(buf.len())
        }
    }

    // Ensure this function does not get inlined into `write_all`, so that it
    // remains inlineable and its common path remains as short as possible.
    // If this function ends up being called frequently relative to `write_all`,
    // it's likely a sign that the client is using an improperly sized buffer
    // or their write patterns are somewhat pathological.
    #[cold]
    #[inline(never)]
    fn write_all_cold(&mut self, buf: &[u8]) -> io::Result<()> {
        // Normally, `write_all` just calls `write` in a loop. We can do better
        // by calling `self.get_mut().write_all()` directly, which avoids
        // round trips through the buffer in the event of a series of partial
        // writes in some circumstances.

        if buf.len() > self.spare_capacity() {
            self.flush_buf()?;
        }

        // Why not len > capacity? To avoid a needless trip through the buffer when the input
        // exactly fills it. We'd just need to flush it to the underlying writer anyway.
        if buf.len() >= self.buf.capacity() {
            self.panicked = true;
            let r = self.get_mut().write_all(buf);
            self.panicked = false;
            r
        } else {
            // Write to the buffer. In this case, we write to the buffer even if it fills it
            // exactly. Doing otherwise would mean flushing the buffer, then writing this
            // input to the inner writer, which in many cases would be a worse strategy.

            // SAFETY: There was either enough spare capacity already, or there wasn't and we
            // flushed the buffer to ensure that there is. In the latter case, we know that there
            // is because flushing ensured that our entire buffer is spare capacity, and we entered
            // this block because the input buffer length is less than that capacity. In either
            // case, it's safe to write the input buffer to our buffer.
            unsafe {
                self.write_to_buffer_unchecked(buf);
            }

            Ok(())
        }
    }

    // SAFETY: Requires `buf.len() <= self.buf.capacity() - self.buf.len()`,
    // i.e., that input buffer length is less than or equal to spare capacity.
    #[inline]
    unsafe fn write_to_buffer_unchecked(&mut self, buf: &[u8]) {
        debug_assert!(buf.len() <= self.spare_capacity());
        let old_len = self.buf.len();
        let buf_len = buf.len();
        let src = buf.as_ptr();
        let dst = self.buf.as_mut_ptr().add(old_len);
        ptr::copy_nonoverlapping(src, dst, buf_len);
        self.buf.set_len(old_len + buf_len);
    }

    #[inline]
    fn spare_capacity(&self) -> usize {
        self.buf.capacity() - self.buf.len()
    }
}

#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
/// Error returned for the buffered data from `BufWriter::into_parts`, when the underlying
/// writer has previously panicked.  Contains the (possibly partly written) buffered data.
///
/// # Example
///
/// ```
/// use std::io::{self, BufWriter, Write};
/// use std::panic::{catch_unwind, AssertUnwindSafe};
///
/// struct PanickingWriter;
/// impl Write for PanickingWriter {
///   fn write(&mut self, buf: &[u8]) -> io::Result<usize> { panic!() }
///   fn flush(&mut self) -> io::Result<()> { panic!() }
/// }
///
/// let mut stream = BufWriter::new(PanickingWriter);
/// write!(stream, "some data").unwrap();
/// let result = catch_unwind(AssertUnwindSafe(|| {
///     stream.flush().unwrap()
/// }));
/// assert!(result.is_err());
/// let (recovered_writer, buffered_data) = stream.into_parts();
/// assert!(matches!(recovered_writer, PanickingWriter));
/// assert_eq!(buffered_data.unwrap_err().into_inner(), b"some data");
/// ```
pub struct WriterPanicked {
    buf: Vec<u8>,
}

impl WriterPanicked {
    /// Returns the perhaps-unwritten data.  Some of this data may have been written by the
    /// panicking call(s) to the underlying writer, so simply writing it again is not a good idea.
    #[must_use = "`self` will be dropped if the result is not used"]
    #[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
    pub fn into_inner(self) -> Vec<u8> {
        self.buf
    }

    const DESCRIPTION: &'static str =
        "BufWriter inner writer panicked, what data remains unwritten is not known";
}

#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
impl error::Error for WriterPanicked {
    #[allow(deprecated, deprecated_in_future)]
    fn description(&self) -> &str {
        Self::DESCRIPTION
    }
}

#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
impl fmt::Display for WriterPanicked {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", Self::DESCRIPTION)
    }
}

#[stable(feature = "bufwriter_into_parts", since = "1.56.0")]
impl fmt::Debug for WriterPanicked {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("WriterPanicked")
            .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
            .finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<W: ?Sized + Write> Write for BufWriter<W> {
    #[inline]
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        // Use < instead of <= to avoid a needless trip through the buffer in some cases.
        // See `write_cold` for details.
        if buf.len() < self.spare_capacity() {
            // SAFETY: safe by above conditional.
            unsafe {
                self.write_to_buffer_unchecked(buf);
            }

            Ok(buf.len())
        } else {
            self.write_cold(buf)
        }
    }

    #[inline]
    fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
        // Use < instead of <= to avoid a needless trip through the buffer in some cases.
        // See `write_all_cold` for details.
        if buf.len() < self.spare_capacity() {
            // SAFETY: safe by above conditional.
            unsafe {
                self.write_to_buffer_unchecked(buf);
            }

            Ok(())
        } else {
            self.write_all_cold(buf)
        }
    }

    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
        // FIXME: Consider applying `#[inline]` / `#[inline(never)]` optimizations already applied
        // to `write` and `write_all`. The performance benefits can be significant. See #79930.
        if self.get_ref().is_write_vectored() {
            // We have to handle the possibility that the total length of the buffers overflows
            // `usize` (even though this can only happen if multiple `IoSlice`s reference the
            // same underlying buffer, as otherwise the buffers wouldn't fit in memory). If the
            // computation overflows, then surely the input cannot fit in our buffer, so we forward
            // to the inner writer's `write_vectored` method to let it handle it appropriately.
            let mut saturated_total_len: usize = 0;

            for buf in bufs {
                saturated_total_len = saturated_total_len.saturating_add(buf.len());

                if saturated_total_len > self.spare_capacity() && !self.buf.is_empty() {
                    // Flush if the total length of the input exceeds our buffer's spare capacity.
                    // If we would have overflowed, this condition also holds, and we need to flush.
                    self.flush_buf()?;
                }

                if saturated_total_len >= self.buf.capacity() {
                    // Forward to our inner writer if the total length of the input is greater than or
                    // equal to our buffer capacity. If we would have overflowed, this condition also
                    // holds, and we punt to the inner writer.
                    self.panicked = true;
                    let r = self.get_mut().write_vectored(bufs);
                    self.panicked = false;
                    return r;
                }
            }

            // `saturated_total_len < self.buf.capacity()` implies that we did not saturate.

            // SAFETY: We checked whether or not the spare capacity was large enough above. If
            // it was, then we're safe already. If it wasn't, we flushed, making sufficient
            // room for any input <= the buffer size, which includes this input.
            unsafe {
                bufs.iter().for_each(|b| self.write_to_buffer_unchecked(b));
            };

            Ok(saturated_total_len)
        } else {
            let mut iter = bufs.iter();
            let mut total_written = if let Some(buf) = iter.by_ref().find(|&buf| !buf.is_empty()) {
                // This is the first non-empty slice to write, so if it does
                // not fit in the buffer, we still get to flush and proceed.
                if buf.len() > self.spare_capacity() {
                    self.flush_buf()?;
                }
                if buf.len() >= self.buf.capacity() {
                    // The slice is at least as large as the buffering capacity,
                    // so it's better to write it directly, bypassing the buffer.
                    self.panicked = true;
                    let r = self.get_mut().write(buf);
                    self.panicked = false;
                    return r;
                } else {
                    // SAFETY: We checked whether or not the spare capacity was large enough above.
                    // If it was, then we're safe already. If it wasn't, we flushed, making
                    // sufficient room for any input <= the buffer size, which includes this input.
                    unsafe {
                        self.write_to_buffer_unchecked(buf);
                    }

                    buf.len()
                }
            } else {
                return Ok(0);
            };
            debug_assert!(total_written != 0);
            for buf in iter {
                if buf.len() <= self.spare_capacity() {
                    // SAFETY: safe by above conditional.
                    unsafe {
                        self.write_to_buffer_unchecked(buf);
                    }

                    // This cannot overflow `usize`. If we are here, we've written all of the bytes
                    // so far to our buffer, and we've ensured that we never exceed the buffer's
                    // capacity. Therefore, `total_written` <= `self.buf.capacity()` <= `usize::MAX`.
                    total_written += buf.len();
                } else {
                    break;
                }
            }
            Ok(total_written)
        }
    }

    fn is_write_vectored(&self) -> bool {
        true
    }

    fn flush(&mut self) -> io::Result<()> {
        self.flush_buf().and_then(|()| self.get_mut().flush())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<W: ?Sized + Write> fmt::Debug for BufWriter<W>
where
    W: fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("BufWriter")
            .field("writer", &&self.inner)
            .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
            .finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<W: ?Sized + Write + Seek> Seek for BufWriter<W> {
    /// Seek to the offset, in bytes, in the underlying writer.
    ///
    /// Seeking always writes out the internal buffer before seeking.
    fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
        self.flush_buf()?;
        self.get_mut().seek(pos)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<W: ?Sized + Write> Drop for BufWriter<W> {
    fn drop(&mut self) {
        if !self.panicked {
            // dtors should not panic, so we ignore a failed flush
            let _r = self.flush_buf();
        }
    }
}