core/mem/mod.rs
1//! Basic functions for dealing with memory.
2//!
3//! This module contains functions for querying the size and alignment of
4//! types, initializing and manipulating memory.
5
6#![stable(feature = "rust1", since = "1.0.0")]
7
8use crate::alloc::Layout;
9use crate::clone::TrivialClone;
10use crate::marker::{Destruct, DiscriminantKind};
11use crate::panic::const_assert;
12use crate::{clone, cmp, fmt, hash, intrinsics, ptr};
13
14mod manually_drop;
15#[stable(feature = "manually_drop", since = "1.20.0")]
16pub use manually_drop::ManuallyDrop;
17
18mod maybe_uninit;
19#[stable(feature = "maybe_uninit", since = "1.36.0")]
20pub use maybe_uninit::MaybeUninit;
21
22mod maybe_dangling;
23#[unstable(feature = "maybe_dangling", issue = "118166")]
24pub use maybe_dangling::MaybeDangling;
25
26mod transmutability;
27#[unstable(feature = "transmutability", issue = "99571")]
28pub use transmutability::{Assume, TransmuteFrom};
29
30mod drop_guard;
31#[unstable(feature = "drop_guard", issue = "144426")]
32pub use drop_guard::DropGuard;
33
34// This one has to be a re-export (rather than wrapping the underlying intrinsic) so that we can do
35// the special magic "types have equal size" check at the call site.
36#[stable(feature = "rust1", since = "1.0.0")]
37#[doc(inline)]
38pub use crate::intrinsics::transmute;
39
40#[unstable(feature = "type_info", issue = "146922")]
41pub mod type_info;
42
43/// Takes ownership and "forgets" about the value **without running its destructor**.
44///
45/// Any resources the value manages, such as heap memory or a file handle, will linger
46/// forever in an unreachable state. However, it does not guarantee that pointers
47/// to this memory will remain valid.
48///
49/// * If you want to leak memory, see [`Box::leak`].
50/// * If you want to obtain a raw pointer to the memory, see [`Box::into_raw`].
51/// * If you want to dispose of a value properly, running its destructor, see
52/// [`mem::drop`].
53///
54/// # Safety
55///
56/// `forget` is not marked as `unsafe`, because Rust's safety guarantees
57/// do not include a guarantee that destructors will always run. For example,
58/// a program can create a reference cycle using [`Rc`][rc], or call
59/// [`process::exit`][exit] to exit without running destructors. Thus, allowing
60/// `mem::forget` from safe code does not fundamentally change Rust's safety
61/// guarantees.
62///
63/// That said, leaking resources such as memory or I/O objects is usually undesirable.
64/// The need comes up in some specialized use cases for FFI or unsafe code, but even
65/// then, [`ManuallyDrop`] is typically preferred.
66///
67/// Because forgetting a value is allowed, any `unsafe` code you write must
68/// allow for this possibility. You cannot return a value and expect that the
69/// caller will necessarily run the value's destructor.
70///
71/// [rc]: ../../std/rc/struct.Rc.html
72/// [exit]: ../../std/process/fn.exit.html
73///
74/// # Examples
75///
76/// The canonical safe use of `mem::forget` is to circumvent a value's destructor
77/// implemented by the `Drop` trait. For example, this will leak a `File`, i.e. reclaim
78/// the space taken by the variable but never close the underlying system resource:
79///
80/// ```no_run
81/// use std::mem;
82/// use std::fs::File;
83///
84/// let file = File::open("foo.txt").unwrap();
85/// mem::forget(file);
86/// ```
87///
88/// This is useful when the ownership of the underlying resource was previously
89/// transferred to code outside of Rust, for example by transmitting the raw
90/// file descriptor to C code.
91///
92/// # Relationship with `ManuallyDrop`
93///
94/// While `mem::forget` can also be used to transfer *memory* ownership, doing so is error-prone.
95/// [`ManuallyDrop`] should be used instead. Consider, for example, this code:
96///
97/// ```
98/// use std::mem;
99///
100/// let mut v = vec![65, 122];
101/// // Build a `String` using the contents of `v`
102/// let s = unsafe { String::from_raw_parts(v.as_mut_ptr(), v.len(), v.capacity()) };
103/// // leak `v` because its memory is now managed by `s`
104/// mem::forget(v); // ERROR - v is invalid and must not be passed to a function
105/// assert_eq!(s, "Az");
106/// // `s` is implicitly dropped and its memory deallocated.
107/// ```
108///
109/// There are two issues with the above example:
110///
111/// * If more code were added between the construction of `String` and the invocation of
112/// `mem::forget()`, a panic within it would cause a double free because the same memory
113/// is handled by both `v` and `s`.
114/// * After calling `v.as_mut_ptr()` and transmitting the ownership of the data to `s`,
115/// the `v` value is invalid. Even when a value is just moved to `mem::forget` (which won't
116/// inspect it), some types have strict requirements on their values that
117/// make them invalid when dangling or no longer owned. Using invalid values in any
118/// way, including passing them to or returning them from functions, constitutes
119/// undefined behavior and may break the assumptions made by the compiler.
120///
121/// Switching to `ManuallyDrop` avoids both issues:
122///
123/// ```
124/// use std::mem::ManuallyDrop;
125///
126/// let v = vec![65, 122];
127/// // Before we disassemble `v` into its raw parts, make sure it
128/// // does not get dropped!
129/// let mut v = ManuallyDrop::new(v);
130/// // Now disassemble `v`. These operations cannot panic, so there cannot be a leak.
131/// let (ptr, len, cap) = (v.as_mut_ptr(), v.len(), v.capacity());
132/// // Finally, build a `String`.
133/// let s = unsafe { String::from_raw_parts(ptr, len, cap) };
134/// assert_eq!(s, "Az");
135/// // `s` is implicitly dropped and its memory deallocated.
136/// ```
137///
138/// `ManuallyDrop` robustly prevents double-free because we disable `v`'s destructor
139/// before doing anything else. `mem::forget()` doesn't allow this because it consumes its
140/// argument, forcing us to call it only after extracting anything we need from `v`. Even
141/// if a panic were introduced between construction of `ManuallyDrop` and building the
142/// string (which cannot happen in the code as shown), it would result in a leak and not a
143/// double free. In other words, `ManuallyDrop` errs on the side of leaking instead of
144/// erring on the side of (double-)dropping.
145///
146/// Also, `ManuallyDrop` prevents us from having to "touch" `v` after transferring the
147/// ownership to `s` — the final step of interacting with `v` to dispose of it without
148/// running its destructor is entirely avoided.
149///
150/// [`Box`]: ../../std/boxed/struct.Box.html
151/// [`Box::leak`]: ../../std/boxed/struct.Box.html#method.leak
152/// [`Box::into_raw`]: ../../std/boxed/struct.Box.html#method.into_raw
153/// [`mem::drop`]: drop
154/// [ub]: ../../reference/behavior-considered-undefined.html
155#[inline]
156#[rustc_const_stable(feature = "const_forget", since = "1.46.0")]
157#[stable(feature = "rust1", since = "1.0.0")]
158#[rustc_diagnostic_item = "mem_forget"]
159pub const fn forget<T>(t: T) {
160 let _ = ManuallyDrop::new(t);
161}
162
163/// Like [`forget`], but also accepts unsized values.
164///
165/// While Rust does not permit unsized locals since its removal in [#111942] it is
166/// still possible to call functions with unsized values from a function argument
167/// or place expression.
168///
169/// ```rust
170/// #![feature(unsized_fn_params, forget_unsized)]
171/// #![allow(internal_features)]
172///
173/// use std::mem::forget_unsized;
174///
175/// pub fn in_place() {
176/// forget_unsized(*Box::<str>::from("str"));
177/// }
178///
179/// pub fn param(x: str) {
180/// forget_unsized(x);
181/// }
182/// ```
183///
184/// This works because the compiler will alter these functions to pass the parameter
185/// by reference instead. This trick is necessary to support `Box<dyn FnOnce()>: FnOnce()`.
186/// See [#68304] and [#71170] for more information.
187///
188/// [#111942]: https://github.com/rust-lang/rust/issues/111942
189/// [#68304]: https://github.com/rust-lang/rust/issues/68304
190/// [#71170]: https://github.com/rust-lang/rust/pull/71170
191#[inline]
192#[unstable(feature = "forget_unsized", issue = "none")]
193pub fn forget_unsized<T: ?Sized>(t: T) {
194 intrinsics::forget(t)
195}
196
197/// Returns the size of a type in bytes.
198///
199/// More specifically, this is the offset in bytes between successive elements
200/// in an array with that item type including alignment padding. Thus, for any
201/// type `T` and length `n`, `[T; n]` has a size of `n * size_of::<T>()`.
202///
203/// In general, the size of a type is not stable across compilations, but
204/// specific types such as primitives are.
205///
206/// The following table gives the size for primitives.
207///
208/// Type | `size_of::<Type>()`
209/// ---- | ---------------
210/// () | 0
211/// bool | 1
212/// u8 | 1
213/// u16 | 2
214/// u32 | 4
215/// u64 | 8
216/// u128 | 16
217/// i8 | 1
218/// i16 | 2
219/// i32 | 4
220/// i64 | 8
221/// i128 | 16
222/// f32 | 4
223/// f64 | 8
224/// char | 4
225///
226/// Furthermore, `usize` and `isize` have the same size.
227///
228/// The types [`*const T`], `&T`, [`Box<T>`], [`Option<&T>`], and `Option<Box<T>>` all have
229/// the same size. If `T` is `Sized`, all of those types have the same size as `usize`.
230///
231/// The mutability of a pointer does not change its size. As such, `&T` and `&mut T`
232/// have the same size. Likewise for `*const T` and `*mut T`.
233///
234/// # Size of `#[repr(C)]` items
235///
236/// The `C` representation for items has a defined layout. With this layout,
237/// the size of items is also stable as long as all fields have a stable size.
238///
239/// ## Size of Structs
240///
241/// For `struct`s, the size is determined by the following algorithm.
242///
243/// For each field in the struct ordered by declaration order:
244///
245/// 1. Add the size of the field.
246/// 2. Round up the current size to the nearest multiple of the next field's [alignment].
247///
248/// Finally, round the size of the struct to the nearest multiple of its [alignment].
249/// The alignment of the struct is usually the largest alignment of all its
250/// fields; this can be changed with the use of `repr(align(N))`.
251///
252/// Unlike `C`, zero sized structs are not rounded up to one byte in size.
253///
254/// ## Size of Enums
255///
256/// Enums that carry no data other than the discriminant have the same size as C enums
257/// on the platform they are compiled for.
258///
259/// ## Size of Unions
260///
261/// The size of a union is the size of its largest field.
262///
263/// Unlike `C`, zero sized unions are not rounded up to one byte in size.
264///
265/// # Examples
266///
267/// ```
268/// // Some primitives
269/// assert_eq!(4, size_of::<i32>());
270/// assert_eq!(8, size_of::<f64>());
271/// assert_eq!(0, size_of::<()>());
272///
273/// // Some arrays
274/// assert_eq!(8, size_of::<[i32; 2]>());
275/// assert_eq!(12, size_of::<[i32; 3]>());
276/// assert_eq!(0, size_of::<[i32; 0]>());
277///
278///
279/// // Pointer size equality
280/// assert_eq!(size_of::<&i32>(), size_of::<*const i32>());
281/// assert_eq!(size_of::<&i32>(), size_of::<Box<i32>>());
282/// assert_eq!(size_of::<&i32>(), size_of::<Option<&i32>>());
283/// assert_eq!(size_of::<Box<i32>>(), size_of::<Option<Box<i32>>>());
284/// ```
285///
286/// Using `#[repr(C)]`.
287///
288/// ```
289/// #[repr(C)]
290/// struct FieldStruct {
291/// first: u8,
292/// second: u16,
293/// third: u8
294/// }
295///
296/// // The size of the first field is 1, so add 1 to the size. Size is 1.
297/// // The alignment of the second field is 2, so add 1 to the size for padding. Size is 2.
298/// // The size of the second field is 2, so add 2 to the size. Size is 4.
299/// // The alignment of the third field is 1, so add 0 to the size for padding. Size is 4.
300/// // The size of the third field is 1, so add 1 to the size. Size is 5.
301/// // Finally, the alignment of the struct is 2 (because the largest alignment amongst its
302/// // fields is 2), so add 1 to the size for padding. Size is 6.
303/// assert_eq!(6, size_of::<FieldStruct>());
304///
305/// #[repr(C)]
306/// struct TupleStruct(u8, u16, u8);
307///
308/// // Tuple structs follow the same rules.
309/// assert_eq!(6, size_of::<TupleStruct>());
310///
311/// // Note that reordering the fields can lower the size. We can remove both padding bytes
312/// // by putting `third` before `second`.
313/// #[repr(C)]
314/// struct FieldStructOptimized {
315/// first: u8,
316/// third: u8,
317/// second: u16
318/// }
319///
320/// assert_eq!(4, size_of::<FieldStructOptimized>());
321///
322/// // Union size is the size of the largest field.
323/// #[repr(C)]
324/// union ExampleUnion {
325/// smaller: u8,
326/// larger: u16
327/// }
328///
329/// assert_eq!(2, size_of::<ExampleUnion>());
330/// ```
331///
332/// [alignment]: align_of
333/// [`*const T`]: primitive@pointer
334/// [`Box<T>`]: ../../std/boxed/struct.Box.html
335/// [`Option<&T>`]: crate::option::Option
336///
337#[inline(always)]
338#[must_use]
339#[stable(feature = "rust1", since = "1.0.0")]
340#[rustc_promotable]
341#[rustc_const_stable(feature = "const_mem_size_of", since = "1.24.0")]
342#[rustc_diagnostic_item = "mem_size_of"]
343pub const fn size_of<T>() -> usize {
344 <T as SizedTypeProperties>::SIZE
345}
346
347/// Returns the size of the pointed-to value in bytes.
348///
349/// This is usually the same as [`size_of::<T>()`]. However, when `T` *has* no
350/// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object],
351/// then `size_of_val` can be used to get the dynamically-known size.
352///
353/// [trait object]: ../../book/ch17-02-trait-objects.html
354///
355/// # Examples
356///
357/// ```
358/// assert_eq!(4, size_of_val(&5i32));
359///
360/// let x: [u8; 13] = [0; 13];
361/// let y: &[u8] = &x;
362/// assert_eq!(13, size_of_val(y));
363/// ```
364///
365/// [`size_of::<T>()`]: size_of
366#[inline]
367#[must_use]
368#[stable(feature = "rust1", since = "1.0.0")]
369#[rustc_const_stable(feature = "const_size_of_val", since = "1.85.0")]
370#[rustc_diagnostic_item = "mem_size_of_val"]
371pub const fn size_of_val<T: ?Sized>(val: &T) -> usize {
372 // SAFETY: `val` is a reference, so it's a valid raw pointer
373 unsafe { intrinsics::size_of_val(val) }
374}
375
376/// Returns the size of the pointed-to value in bytes.
377///
378/// This is usually the same as [`size_of::<T>()`]. However, when `T` *has* no
379/// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object],
380/// then `size_of_val_raw` can be used to get the dynamically-known size.
381///
382/// # Safety
383///
384/// This function is only safe to call if the following conditions hold:
385///
386/// - If `T` is `Sized`, this function is always safe to call.
387/// - If the unsized tail of `T` is:
388/// - a [slice], then the length of the slice tail must be an initialized
389/// integer, and the size of the *entire value*
390/// (dynamic tail length + statically sized prefix) must fit in `isize`.
391/// For the special case where the dynamic tail length is 0, this function
392/// is safe to call.
393// NOTE: the reason this is safe is that if an overflow were to occur already with size 0,
394// then we would stop compilation as even the "statically known" part of the type would
395// already be too big (or the call may be in dead code and optimized away, but then it
396// doesn't matter).
397/// - a [trait object], then the vtable part of the pointer must point
398/// to a valid vtable acquired by an unsizing coercion, and the size
399/// of the *entire value* (dynamic tail length + statically sized prefix)
400/// must fit in `isize`.
401/// - an (unstable) [extern type], then this function is always safe to
402/// call, but may panic or otherwise return the wrong value, as the
403/// extern type's layout is not known. This is the same behavior as
404/// [`size_of_val`] on a reference to a type with an extern type tail.
405/// - otherwise, it is conservatively not allowed to call this function.
406///
407/// [`size_of::<T>()`]: size_of
408/// [trait object]: ../../book/ch17-02-trait-objects.html
409/// [extern type]: ../../unstable-book/language-features/extern-types.html
410///
411/// # Examples
412///
413/// ```
414/// #![feature(layout_for_ptr)]
415/// use std::mem;
416///
417/// assert_eq!(4, size_of_val(&5i32));
418///
419/// let x: [u8; 13] = [0; 13];
420/// let y: &[u8] = &x;
421/// assert_eq!(13, unsafe { mem::size_of_val_raw(y) });
422/// ```
423#[inline]
424#[must_use]
425#[unstable(feature = "layout_for_ptr", issue = "69835")]
426pub const unsafe fn size_of_val_raw<T: ?Sized>(val: *const T) -> usize {
427 // SAFETY: the caller must provide a valid raw pointer
428 unsafe { intrinsics::size_of_val(val) }
429}
430
431/// Returns the [ABI]-required minimum alignment of a type in bytes.
432///
433/// Every reference to a value of the type `T` must be a multiple of this number.
434///
435/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
436///
437/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
438///
439/// # Examples
440///
441/// ```
442/// # #![allow(deprecated)]
443/// use std::mem;
444///
445/// assert_eq!(4, mem::min_align_of::<i32>());
446/// ```
447#[inline]
448#[must_use]
449#[stable(feature = "rust1", since = "1.0.0")]
450#[deprecated(note = "use `align_of` instead", since = "1.2.0", suggestion = "align_of")]
451pub fn min_align_of<T>() -> usize {
452 <T as SizedTypeProperties>::ALIGN
453}
454
455/// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to in
456/// bytes.
457///
458/// Every reference to a value of the type `T` must be a multiple of this number.
459///
460/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
461///
462/// # Examples
463///
464/// ```
465/// # #![allow(deprecated)]
466/// use std::mem;
467///
468/// assert_eq!(4, mem::min_align_of_val(&5i32));
469/// ```
470#[inline]
471#[must_use]
472#[stable(feature = "rust1", since = "1.0.0")]
473#[deprecated(note = "use `align_of_val` instead", since = "1.2.0", suggestion = "align_of_val")]
474pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
475 // SAFETY: val is a reference, so it's a valid raw pointer
476 unsafe { intrinsics::align_of_val(val) }
477}
478
479/// Returns the [ABI]-required minimum alignment of a type in bytes.
480///
481/// Every reference to a value of the type `T` must be a multiple of this number.
482///
483/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
484///
485/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
486///
487/// # Examples
488///
489/// ```
490/// assert_eq!(4, align_of::<i32>());
491/// ```
492#[inline(always)]
493#[must_use]
494#[stable(feature = "rust1", since = "1.0.0")]
495#[rustc_promotable]
496#[rustc_const_stable(feature = "const_align_of", since = "1.24.0")]
497#[rustc_diagnostic_item = "mem_align_of"]
498pub const fn align_of<T>() -> usize {
499 <T as SizedTypeProperties>::ALIGN
500}
501
502/// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to in
503/// bytes.
504///
505/// Every reference to a value of the type `T` must be a multiple of this number.
506///
507/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
508///
509/// # Examples
510///
511/// ```
512/// assert_eq!(4, align_of_val(&5i32));
513/// ```
514#[inline]
515#[must_use]
516#[stable(feature = "rust1", since = "1.0.0")]
517#[rustc_const_stable(feature = "const_align_of_val", since = "1.85.0")]
518pub const fn align_of_val<T: ?Sized>(val: &T) -> usize {
519 // SAFETY: val is a reference, so it's a valid raw pointer
520 unsafe { intrinsics::align_of_val(val) }
521}
522
523/// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to in
524/// bytes.
525///
526/// Every reference to a value of the type `T` must be a multiple of this number.
527///
528/// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface
529///
530/// # Safety
531///
532/// This function is only safe to call if the following conditions hold:
533///
534/// - If `T` is `Sized`, this function is always safe to call.
535/// - If the unsized tail of `T` is:
536/// - a [slice], then the length of the slice tail must be an initialized
537/// integer, and the size of the *entire value*
538/// (dynamic tail length + statically sized prefix) must fit in `isize`.
539/// For the special case where the dynamic tail length is 0, this function
540/// is safe to call.
541/// - a [trait object], then the vtable part of the pointer must point
542/// to a valid vtable acquired by an unsizing coercion, and the size
543/// of the *entire value* (dynamic tail length + statically sized prefix)
544/// must fit in `isize`.
545/// - an (unstable) [extern type], then this function is always safe to
546/// call, but may panic or otherwise return the wrong value, as the
547/// extern type's layout is not known. This is the same behavior as
548/// [`align_of_val`] on a reference to a type with an extern type tail.
549/// - otherwise, it is conservatively not allowed to call this function.
550///
551/// [trait object]: ../../book/ch17-02-trait-objects.html
552/// [extern type]: ../../unstable-book/language-features/extern-types.html
553///
554/// # Examples
555///
556/// ```
557/// #![feature(layout_for_ptr)]
558/// use std::mem;
559///
560/// assert_eq!(4, unsafe { mem::align_of_val_raw(&5i32) });
561/// ```
562#[inline]
563#[must_use]
564#[unstable(feature = "layout_for_ptr", issue = "69835")]
565pub const unsafe fn align_of_val_raw<T: ?Sized>(val: *const T) -> usize {
566 // SAFETY: the caller must provide a valid raw pointer
567 unsafe { intrinsics::align_of_val(val) }
568}
569
570/// Returns `true` if dropping values of type `T` matters.
571///
572/// This is purely an optimization hint, and may be implemented conservatively:
573/// it may return `true` for types that don't actually need to be dropped.
574/// As such always returning `true` would be a valid implementation of
575/// this function. However if this function actually returns `false`, then you
576/// can be certain dropping `T` has no side effect.
577///
578/// Low level implementations of things like collections, which need to manually
579/// drop their data, should use this function to avoid unnecessarily
580/// trying to drop all their contents when they are destroyed. This might not
581/// make a difference in release builds (where a loop that has no side-effects
582/// is easily detected and eliminated), but is often a big win for debug builds.
583///
584/// Note that [`drop_in_place`] already performs this check, so if your workload
585/// can be reduced to some small number of [`drop_in_place`] calls, using this is
586/// unnecessary. In particular note that you can [`drop_in_place`] a slice, and that
587/// will do a single needs_drop check for all the values.
588///
589/// Types like Vec therefore just `drop_in_place(&mut self[..])` without using
590/// `needs_drop` explicitly. Types like [`HashMap`], on the other hand, have to drop
591/// values one at a time and should use this API.
592///
593/// [`drop_in_place`]: crate::ptr::drop_in_place
594/// [`HashMap`]: ../../std/collections/struct.HashMap.html
595///
596/// # Examples
597///
598/// Here's an example of how a collection might make use of `needs_drop`:
599///
600/// ```
601/// use std::{mem, ptr};
602///
603/// pub struct MyCollection<T> {
604/// # data: [T; 1],
605/// /* ... */
606/// }
607/// # impl<T> MyCollection<T> {
608/// # fn iter_mut(&mut self) -> &mut [T] { &mut self.data }
609/// # fn free_buffer(&mut self) {}
610/// # }
611///
612/// impl<T> Drop for MyCollection<T> {
613/// fn drop(&mut self) {
614/// unsafe {
615/// // drop the data
616/// if mem::needs_drop::<T>() {
617/// for x in self.iter_mut() {
618/// ptr::drop_in_place(x);
619/// }
620/// }
621/// self.free_buffer();
622/// }
623/// }
624/// }
625/// ```
626#[inline]
627#[must_use]
628#[stable(feature = "needs_drop", since = "1.21.0")]
629#[rustc_const_stable(feature = "const_mem_needs_drop", since = "1.36.0")]
630#[rustc_diagnostic_item = "needs_drop"]
631pub const fn needs_drop<T: ?Sized>() -> bool {
632 const { intrinsics::needs_drop::<T>() }
633}
634
635/// Returns the value of type `T` represented by the all-zero byte-pattern.
636///
637/// This means that, for example, the padding byte in `(u8, u16)` is not
638/// necessarily zeroed.
639///
640/// There is no guarantee that an all-zero byte-pattern represents a valid value
641/// of some type `T`. For example, the all-zero byte-pattern is not a valid value
642/// for reference types (`&T`, `&mut T`) and function pointers. Using `zeroed`
643/// on such types causes immediate [undefined behavior][ub] because [the Rust
644/// compiler assumes][inv] that there always is a valid value in a variable it
645/// considers initialized.
646///
647/// This has the same effect as [`MaybeUninit::zeroed().assume_init()`][zeroed].
648/// It is useful for FFI sometimes, but should generally be avoided.
649///
650/// [zeroed]: MaybeUninit::zeroed
651/// [ub]: ../../reference/behavior-considered-undefined.html
652/// [inv]: MaybeUninit#initialization-invariant
653///
654/// # Examples
655///
656/// Correct usage of this function: initializing an integer with zero.
657///
658/// ```
659/// use std::mem;
660///
661/// let x: i32 = unsafe { mem::zeroed() };
662/// assert_eq!(0, x);
663/// ```
664///
665/// *Incorrect* usage of this function: initializing a reference with zero.
666///
667/// ```rust,no_run
668/// # #![allow(invalid_value)]
669/// use std::mem;
670///
671/// let _x: &i32 = unsafe { mem::zeroed() }; // Undefined behavior!
672/// let _y: fn() = unsafe { mem::zeroed() }; // And again!
673/// ```
674#[inline(always)]
675#[must_use]
676#[stable(feature = "rust1", since = "1.0.0")]
677#[rustc_diagnostic_item = "mem_zeroed"]
678#[track_caller]
679#[rustc_const_stable(feature = "const_mem_zeroed", since = "1.75.0")]
680pub const unsafe fn zeroed<T>() -> T {
681 // SAFETY: the caller must guarantee that an all-zero value is valid for `T`.
682 unsafe {
683 intrinsics::assert_zero_valid::<T>();
684 MaybeUninit::zeroed().assume_init()
685 }
686}
687
688/// Bypasses Rust's normal memory-initialization checks by pretending to
689/// produce a value of type `T`, while doing nothing at all.
690///
691/// **This function is deprecated.** Use [`MaybeUninit<T>`] instead.
692/// It also might be slower than using `MaybeUninit<T>` due to mitigations that were put in place to
693/// limit the potential harm caused by incorrect use of this function in legacy code.
694///
695/// The reason for deprecation is that the function basically cannot be used
696/// correctly: it has the same effect as [`MaybeUninit::uninit().assume_init()`][uninit].
697/// As the [`assume_init` documentation][assume_init] explains,
698/// [the Rust compiler assumes][inv] that values are properly initialized.
699///
700/// Truly uninitialized memory like what gets returned here
701/// is special in that the compiler knows that it does not have a fixed value.
702/// This makes it undefined behavior to have uninitialized data in a variable even
703/// if that variable has an integer type.
704///
705/// Therefore, it is immediate undefined behavior to call this function on nearly all types,
706/// including integer types and arrays of integer types, and even if the result is unused.
707///
708/// [uninit]: MaybeUninit::uninit
709/// [assume_init]: MaybeUninit::assume_init
710/// [inv]: MaybeUninit#initialization-invariant
711#[inline(always)]
712#[must_use]
713#[deprecated(since = "1.39.0", note = "use `mem::MaybeUninit` instead")]
714#[stable(feature = "rust1", since = "1.0.0")]
715#[rustc_diagnostic_item = "mem_uninitialized"]
716#[track_caller]
717pub unsafe fn uninitialized<T>() -> T {
718 // SAFETY: the caller must guarantee that an uninitialized value is valid for `T`.
719 unsafe {
720 intrinsics::assert_mem_uninitialized_valid::<T>();
721 let mut val = MaybeUninit::<T>::uninit();
722
723 // Fill memory with 0x01, as an imperfect mitigation for old code that uses this function on
724 // bool, nonnull, and noundef types. But don't do this if we actively want to detect UB.
725 if !cfg!(any(miri, sanitize = "memory")) {
726 val.as_mut_ptr().write_bytes(0x01, 1);
727 }
728
729 val.assume_init()
730 }
731}
732
733/// Swaps the values at two mutable locations, without deinitializing either one.
734///
735/// * If you want to swap with a default or dummy value, see [`take`].
736/// * If you want to swap with a passed value, returning the old value, see [`replace`].
737///
738/// # Examples
739///
740/// ```
741/// use std::mem;
742///
743/// let mut x = 5;
744/// let mut y = 42;
745///
746/// mem::swap(&mut x, &mut y);
747///
748/// assert_eq!(42, x);
749/// assert_eq!(5, y);
750/// ```
751#[inline]
752#[stable(feature = "rust1", since = "1.0.0")]
753#[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
754#[rustc_diagnostic_item = "mem_swap"]
755pub const fn swap<T>(x: &mut T, y: &mut T) {
756 // SAFETY: `&mut` guarantees these are typed readable and writable
757 // as well as non-overlapping.
758 unsafe { intrinsics::typed_swap_nonoverlapping(x, y) }
759}
760
761/// Replaces `dest` with the default value of `T`, returning the previous `dest` value.
762///
763/// * If you want to replace the values of two variables, see [`swap`].
764/// * If you want to replace with a passed value instead of the default value, see [`replace`].
765///
766/// # Examples
767///
768/// A simple example:
769///
770/// ```
771/// use std::mem;
772///
773/// let mut v: Vec<i32> = vec![1, 2];
774///
775/// let old_v = mem::take(&mut v);
776/// assert_eq!(vec![1, 2], old_v);
777/// assert!(v.is_empty());
778/// ```
779///
780/// `take` allows taking ownership of a struct field by replacing it with an "empty" value.
781/// Without `take` you can run into issues like these:
782///
783/// ```compile_fail,E0507
784/// struct Buffer<T> { buf: Vec<T> }
785///
786/// impl<T> Buffer<T> {
787/// fn get_and_reset(&mut self) -> Vec<T> {
788/// // error: cannot move out of dereference of `&mut`-pointer
789/// let buf = self.buf;
790/// self.buf = Vec::new();
791/// buf
792/// }
793/// }
794/// ```
795///
796/// Note that `T` does not necessarily implement [`Clone`], so it can't even clone and reset
797/// `self.buf`. But `take` can be used to disassociate the original value of `self.buf` from
798/// `self`, allowing it to be returned:
799///
800/// ```
801/// use std::mem;
802///
803/// # struct Buffer<T> { buf: Vec<T> }
804/// impl<T> Buffer<T> {
805/// fn get_and_reset(&mut self) -> Vec<T> {
806/// mem::take(&mut self.buf)
807/// }
808/// }
809///
810/// let mut buffer = Buffer { buf: vec![0, 1] };
811/// assert_eq!(buffer.buf.len(), 2);
812///
813/// assert_eq!(buffer.get_and_reset(), vec![0, 1]);
814/// assert_eq!(buffer.buf.len(), 0);
815/// ```
816#[inline]
817#[stable(feature = "mem_take", since = "1.40.0")]
818#[rustc_const_unstable(feature = "const_default", issue = "143894")]
819pub const fn take<T: [const] Default>(dest: &mut T) -> T {
820 replace(dest, T::default())
821}
822
823/// Moves `src` into the referenced `dest`, returning the previous `dest` value.
824///
825/// Neither value is dropped.
826///
827/// * If you want to replace the values of two variables, see [`swap`].
828/// * If you want to replace with a default value, see [`take`].
829///
830/// # Examples
831///
832/// A simple example:
833///
834/// ```
835/// use std::mem;
836///
837/// let mut v: Vec<i32> = vec![1, 2];
838///
839/// let old_v = mem::replace(&mut v, vec![3, 4, 5]);
840/// assert_eq!(vec![1, 2], old_v);
841/// assert_eq!(vec![3, 4, 5], v);
842/// ```
843///
844/// `replace` allows consumption of a struct field by replacing it with another value.
845/// Without `replace` you can run into issues like these:
846///
847/// ```compile_fail,E0507
848/// struct Buffer<T> { buf: Vec<T> }
849///
850/// impl<T> Buffer<T> {
851/// fn replace_index(&mut self, i: usize, v: T) -> T {
852/// // error: cannot move out of dereference of `&mut`-pointer
853/// let t = self.buf[i];
854/// self.buf[i] = v;
855/// t
856/// }
857/// }
858/// ```
859///
860/// Note that `T` does not necessarily implement [`Clone`], so we can't even clone `self.buf[i]` to
861/// avoid the move. But `replace` can be used to disassociate the original value at that index from
862/// `self`, allowing it to be returned:
863///
864/// ```
865/// # #![allow(dead_code)]
866/// use std::mem;
867///
868/// # struct Buffer<T> { buf: Vec<T> }
869/// impl<T> Buffer<T> {
870/// fn replace_index(&mut self, i: usize, v: T) -> T {
871/// mem::replace(&mut self.buf[i], v)
872/// }
873/// }
874///
875/// let mut buffer = Buffer { buf: vec![0, 1] };
876/// assert_eq!(buffer.buf[0], 0);
877///
878/// assert_eq!(buffer.replace_index(0, 2), 0);
879/// assert_eq!(buffer.buf[0], 2);
880/// ```
881#[inline]
882#[stable(feature = "rust1", since = "1.0.0")]
883#[must_use = "if you don't need the old value, you can just assign the new value directly"]
884#[rustc_const_stable(feature = "const_replace", since = "1.83.0")]
885#[rustc_diagnostic_item = "mem_replace"]
886pub const fn replace<T>(dest: &mut T, src: T) -> T {
887 // It may be tempting to use `swap` to avoid `unsafe` here. Don't!
888 // The compiler optimizes the implementation below to two `memcpy`s
889 // while `swap` would require at least three. See PR#83022 for details.
890
891 // SAFETY: We read from `dest` but directly write `src` into it afterwards,
892 // such that the old value is not duplicated. Nothing is dropped and
893 // nothing here can panic.
894 unsafe {
895 // Ideally we wouldn't use the intrinsics here, but going through the
896 // `ptr` methods introduces two unnecessary UbChecks, so until we can
897 // remove those for pointers that come from references, this uses the
898 // intrinsics instead so this stays very cheap in MIR (and debug).
899
900 let result = crate::intrinsics::read_via_copy(dest);
901 crate::intrinsics::write_via_move(dest, src);
902 result
903 }
904}
905
906/// Disposes of a value.
907///
908/// This effectively does nothing for types which implement `Copy`, e.g.
909/// integers. Such values are copied and _then_ moved into the function, so the
910/// value persists after this function call.
911///
912/// This function is not magic; it is literally defined as
913///
914/// ```
915/// pub fn drop<T>(_x: T) {}
916/// ```
917///
918/// Because `_x` is moved into the function, it is automatically [dropped][drop] before
919/// the function returns.
920///
921/// [drop]: Drop
922///
923/// # Examples
924///
925/// Basic usage:
926///
927/// ```
928/// let v = vec![1, 2, 3];
929///
930/// drop(v); // explicitly drop the vector
931/// ```
932///
933/// Since [`RefCell`] enforces the borrow rules at runtime, `drop` can
934/// release a [`RefCell`] borrow:
935///
936/// ```
937/// use std::cell::RefCell;
938///
939/// let x = RefCell::new(1);
940///
941/// let mut mutable_borrow = x.borrow_mut();
942/// *mutable_borrow = 1;
943///
944/// drop(mutable_borrow); // relinquish the mutable borrow on this slot
945///
946/// let borrow = x.borrow();
947/// println!("{}", *borrow);
948/// ```
949///
950/// Integers and other types implementing [`Copy`] are unaffected by `drop`.
951///
952/// ```
953/// # #![allow(dropping_copy_types)]
954/// #[derive(Copy, Clone)]
955/// struct Foo(u8);
956///
957/// let x = 1;
958/// let y = Foo(2);
959/// drop(x); // a copy of `x` is moved and dropped
960/// drop(y); // a copy of `y` is moved and dropped
961///
962/// println!("x: {}, y: {}", x, y.0); // still available
963/// ```
964///
965/// [`RefCell`]: crate::cell::RefCell
966#[inline]
967#[stable(feature = "rust1", since = "1.0.0")]
968#[rustc_const_unstable(feature = "const_destruct", issue = "133214")]
969#[rustc_diagnostic_item = "mem_drop"]
970pub const fn drop<T>(_x: T)
971where
972 T: [const] Destruct,
973{
974}
975
976/// Bitwise-copies a value.
977///
978/// This function is not magic; it is literally defined as
979/// ```
980/// pub const fn copy<T: Copy>(x: &T) -> T { *x }
981/// ```
982///
983/// It is useful when you want to pass a function pointer to a combinator, rather than defining a new closure.
984///
985/// Example:
986/// ```
987/// #![feature(mem_copy_fn)]
988/// use core::mem::copy;
989/// let result_from_ffi_function: Result<(), &i32> = Err(&1);
990/// let result_copied: Result<(), i32> = result_from_ffi_function.map_err(copy);
991/// ```
992#[inline]
993#[unstable(feature = "mem_copy_fn", issue = "98262")]
994pub const fn copy<T: Copy>(x: &T) -> T {
995 *x
996}
997
998/// Interprets `src` as having type `&Dst`, and then reads `src` without moving
999/// the contained value.
1000///
1001/// This function will unsafely assume the pointer `src` is valid for [`size_of::<Dst>`][size_of]
1002/// bytes by transmuting `&Src` to `&Dst` and then reading the `&Dst` (except that this is done
1003/// in a way that is correct even when `&Dst` has stricter alignment requirements than `&Src`).
1004/// It will also unsafely create a copy of the contained value instead of moving out of `src`.
1005///
1006/// It is not a compile-time error if `Src` and `Dst` have different sizes, but it
1007/// is highly encouraged to only invoke this function where `Src` and `Dst` have the
1008/// same size. This function triggers [undefined behavior][ub] if `Dst` is larger than
1009/// `Src`.
1010///
1011/// [ub]: ../../reference/behavior-considered-undefined.html
1012///
1013/// # Examples
1014///
1015/// ```
1016/// use std::mem;
1017///
1018/// #[repr(packed)]
1019/// struct Foo {
1020/// bar: u8,
1021/// }
1022///
1023/// let foo_array = [10u8];
1024///
1025/// unsafe {
1026/// // Copy the data from 'foo_array' and treat it as a 'Foo'
1027/// let mut foo_struct: Foo = mem::transmute_copy(&foo_array);
1028/// assert_eq!(foo_struct.bar, 10);
1029///
1030/// // Modify the copied data
1031/// foo_struct.bar = 20;
1032/// assert_eq!(foo_struct.bar, 20);
1033/// }
1034///
1035/// // The contents of 'foo_array' should not have changed
1036/// assert_eq!(foo_array, [10]);
1037/// ```
1038#[inline]
1039#[must_use]
1040#[track_caller]
1041#[stable(feature = "rust1", since = "1.0.0")]
1042#[rustc_const_stable(feature = "const_transmute_copy", since = "1.74.0")]
1043pub const unsafe fn transmute_copy<Src, Dst>(src: &Src) -> Dst {
1044 assert!(
1045 size_of::<Src>() >= size_of::<Dst>(),
1046 "cannot transmute_copy if Dst is larger than Src"
1047 );
1048
1049 // If Dst has a higher alignment requirement, src might not be suitably aligned.
1050 if align_of::<Dst>() > align_of::<Src>() {
1051 // SAFETY: `src` is a reference which is guaranteed to be valid for reads.
1052 // The caller must guarantee that the actual transmutation is safe.
1053 unsafe { ptr::read_unaligned(src as *const Src as *const Dst) }
1054 } else {
1055 // SAFETY: `src` is a reference which is guaranteed to be valid for reads.
1056 // We just checked that `src as *const Dst` was properly aligned.
1057 // The caller must guarantee that the actual transmutation is safe.
1058 unsafe { ptr::read(src as *const Src as *const Dst) }
1059 }
1060}
1061
1062/// Opaque type representing the discriminant of an enum.
1063///
1064/// See the [`discriminant`] function in this module for more information.
1065#[stable(feature = "discriminant_value", since = "1.21.0")]
1066pub struct Discriminant<T>(<T as DiscriminantKind>::Discriminant);
1067
1068// N.B. These trait implementations cannot be derived because we don't want any bounds on T.
1069
1070#[stable(feature = "discriminant_value", since = "1.21.0")]
1071impl<T> Copy for Discriminant<T> {}
1072
1073#[stable(feature = "discriminant_value", since = "1.21.0")]
1074impl<T> clone::Clone for Discriminant<T> {
1075 fn clone(&self) -> Self {
1076 *self
1077 }
1078}
1079
1080#[doc(hidden)]
1081#[unstable(feature = "trivial_clone", issue = "none")]
1082unsafe impl<T> TrivialClone for Discriminant<T> {}
1083
1084#[stable(feature = "discriminant_value", since = "1.21.0")]
1085impl<T> cmp::PartialEq for Discriminant<T> {
1086 fn eq(&self, rhs: &Self) -> bool {
1087 self.0 == rhs.0
1088 }
1089}
1090
1091#[stable(feature = "discriminant_value", since = "1.21.0")]
1092impl<T> cmp::Eq for Discriminant<T> {}
1093
1094#[stable(feature = "discriminant_value", since = "1.21.0")]
1095impl<T> hash::Hash for Discriminant<T> {
1096 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1097 self.0.hash(state);
1098 }
1099}
1100
1101#[stable(feature = "discriminant_value", since = "1.21.0")]
1102impl<T> fmt::Debug for Discriminant<T> {
1103 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1104 fmt.debug_tuple("Discriminant").field(&self.0).finish()
1105 }
1106}
1107
1108/// Returns a value uniquely identifying the enum variant in `v`.
1109///
1110/// If `T` is not an enum, calling this function will not result in undefined behavior, but the
1111/// return value is unspecified.
1112///
1113/// # Stability
1114///
1115/// The discriminant of an enum variant may change if the enum definition changes. A discriminant
1116/// of some variant will not change between compilations with the same compiler. See the [Reference]
1117/// for more information.
1118///
1119/// [Reference]: ../../reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
1120///
1121/// The value of a [`Discriminant<T>`] is independent of any *free lifetimes* in `T`. As such,
1122/// reading or writing a `Discriminant<Foo<'a>>` as a `Discriminant<Foo<'b>>` (whether via
1123/// [`transmute`] or otherwise) is always sound. Note that this is **not** true for other kinds
1124/// of generic parameters and for higher-ranked lifetimes; `Discriminant<Foo<A>>` and
1125/// `Discriminant<Foo<B>>` as well as `Discriminant<Bar<dyn for<'a> Trait<'a>>>` and
1126/// `Discriminant<Bar<dyn Trait<'static>>>` may be incompatible.
1127///
1128/// # Examples
1129///
1130/// This can be used to compare enums that carry data, while disregarding
1131/// the actual data:
1132///
1133/// ```
1134/// use std::mem;
1135///
1136/// enum Foo { A(&'static str), B(i32), C(i32) }
1137///
1138/// assert_eq!(mem::discriminant(&Foo::A("bar")), mem::discriminant(&Foo::A("baz")));
1139/// assert_eq!(mem::discriminant(&Foo::B(1)), mem::discriminant(&Foo::B(2)));
1140/// assert_ne!(mem::discriminant(&Foo::B(3)), mem::discriminant(&Foo::C(3)));
1141/// ```
1142///
1143/// ## Accessing the numeric value of the discriminant
1144///
1145/// Note that it is *undefined behavior* to [`transmute`] from [`Discriminant`] to a primitive!
1146///
1147/// If an enum has only unit variants, then the numeric value of the discriminant can be accessed
1148/// with an [`as`] cast:
1149///
1150/// ```
1151/// enum Enum {
1152/// Foo,
1153/// Bar,
1154/// Baz,
1155/// }
1156///
1157/// assert_eq!(0, Enum::Foo as isize);
1158/// assert_eq!(1, Enum::Bar as isize);
1159/// assert_eq!(2, Enum::Baz as isize);
1160/// ```
1161///
1162/// If an enum has opted-in to having a [primitive representation] for its discriminant,
1163/// then it's possible to use pointers to read the memory location storing the discriminant.
1164/// That **cannot** be done for enums using the [default representation], however, as it's
1165/// undefined what layout the discriminant has and where it's stored — it might not even be
1166/// stored at all!
1167///
1168/// [`as`]: ../../std/keyword.as.html
1169/// [primitive representation]: ../../reference/type-layout.html#primitive-representations
1170/// [default representation]: ../../reference/type-layout.html#the-default-representation
1171/// ```
1172/// #[repr(u8)]
1173/// enum Enum {
1174/// Unit,
1175/// Tuple(bool),
1176/// Struct { a: bool },
1177/// }
1178///
1179/// impl Enum {
1180/// fn discriminant(&self) -> u8 {
1181/// // SAFETY: Because `Self` is marked `repr(u8)`, its layout is a `repr(C)` `union`
1182/// // between `repr(C)` structs, each of which has the `u8` discriminant as its first
1183/// // field, so we can read the discriminant without offsetting the pointer.
1184/// unsafe { *<*const _>::from(self).cast::<u8>() }
1185/// }
1186/// }
1187///
1188/// let unit_like = Enum::Unit;
1189/// let tuple_like = Enum::Tuple(true);
1190/// let struct_like = Enum::Struct { a: false };
1191/// assert_eq!(0, unit_like.discriminant());
1192/// assert_eq!(1, tuple_like.discriminant());
1193/// assert_eq!(2, struct_like.discriminant());
1194///
1195/// // ⚠️ This is undefined behavior. Don't do this. ⚠️
1196/// // assert_eq!(0, unsafe { std::mem::transmute::<_, u8>(std::mem::discriminant(&unit_like)) });
1197/// ```
1198#[stable(feature = "discriminant_value", since = "1.21.0")]
1199#[rustc_const_stable(feature = "const_discriminant", since = "1.75.0")]
1200#[rustc_diagnostic_item = "mem_discriminant"]
1201#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1202pub const fn discriminant<T>(v: &T) -> Discriminant<T> {
1203 Discriminant(intrinsics::discriminant_value(v))
1204}
1205
1206/// Returns the number of variants in the enum type `T`.
1207///
1208/// If `T` is not an enum, calling this function will not result in undefined behavior, but the
1209/// return value is unspecified. Equally, if `T` is an enum with more variants than `usize::MAX`
1210/// the return value is unspecified. Uninhabited variants will be counted.
1211///
1212/// Note that an enum may be expanded with additional variants in the future
1213/// as a non-breaking change, for example if it is marked `#[non_exhaustive]`,
1214/// which will change the result of this function.
1215///
1216/// # Examples
1217///
1218/// ```
1219/// # #![feature(never_type)]
1220/// # #![feature(variant_count)]
1221///
1222/// use std::mem;
1223///
1224/// enum Void {}
1225/// enum Foo { A(&'static str), B(i32), C(i32) }
1226///
1227/// assert_eq!(mem::variant_count::<Void>(), 0);
1228/// assert_eq!(mem::variant_count::<Foo>(), 3);
1229///
1230/// assert_eq!(mem::variant_count::<Option<!>>(), 2);
1231/// assert_eq!(mem::variant_count::<Result<!, !>>(), 2);
1232/// ```
1233#[inline(always)]
1234#[must_use]
1235#[unstable(feature = "variant_count", issue = "73662")]
1236#[rustc_const_unstable(feature = "variant_count", issue = "73662")]
1237#[rustc_diagnostic_item = "mem_variant_count"]
1238pub const fn variant_count<T>() -> usize {
1239 const { intrinsics::variant_count::<T>() }
1240}
1241
1242/// Provides associated constants for various useful properties of types,
1243/// to give them a canonical form in our code and make them easier to read.
1244///
1245/// This is here only to simplify all the ZST checks we need in the library.
1246/// It's not on a stabilization track right now.
1247#[doc(hidden)]
1248#[unstable(feature = "sized_type_properties", issue = "none")]
1249pub trait SizedTypeProperties: Sized {
1250 #[doc(hidden)]
1251 #[unstable(feature = "sized_type_properties", issue = "none")]
1252 #[lang = "mem_size_const"]
1253 const SIZE: usize = intrinsics::size_of::<Self>();
1254
1255 #[doc(hidden)]
1256 #[unstable(feature = "sized_type_properties", issue = "none")]
1257 #[lang = "mem_align_const"]
1258 const ALIGN: usize = intrinsics::align_of::<Self>();
1259
1260 /// `true` if this type requires no storage.
1261 /// `false` if its [size](size_of) is greater than zero.
1262 ///
1263 /// # Examples
1264 ///
1265 /// ```
1266 /// #![feature(sized_type_properties)]
1267 /// use core::mem::SizedTypeProperties;
1268 ///
1269 /// fn do_something_with<T>() {
1270 /// if T::IS_ZST {
1271 /// // ... special approach ...
1272 /// } else {
1273 /// // ... the normal thing ...
1274 /// }
1275 /// }
1276 ///
1277 /// struct MyUnit;
1278 /// assert!(MyUnit::IS_ZST);
1279 ///
1280 /// // For negative checks, consider using UFCS to emphasize the negation
1281 /// assert!(!<i32>::IS_ZST);
1282 /// // As it can sometimes hide in the type otherwise
1283 /// assert!(!String::IS_ZST);
1284 /// ```
1285 #[doc(hidden)]
1286 #[unstable(feature = "sized_type_properties", issue = "none")]
1287 const IS_ZST: bool = Self::SIZE == 0;
1288
1289 #[doc(hidden)]
1290 #[unstable(feature = "sized_type_properties", issue = "none")]
1291 const LAYOUT: Layout = {
1292 // SAFETY: if the type is instantiated, rustc already ensures that its
1293 // layout is valid. Use the unchecked constructor to avoid inserting a
1294 // panicking codepath that needs to be optimized out.
1295 unsafe { Layout::from_size_align_unchecked(Self::SIZE, Self::ALIGN) }
1296 };
1297
1298 /// The largest safe length for a `[Self]`.
1299 ///
1300 /// Anything larger than this would make `size_of_val` overflow `isize::MAX`,
1301 /// which is never allowed for a single object.
1302 #[doc(hidden)]
1303 #[unstable(feature = "sized_type_properties", issue = "none")]
1304 const MAX_SLICE_LEN: usize = match Self::SIZE {
1305 0 => usize::MAX,
1306 n => (isize::MAX as usize) / n,
1307 };
1308}
1309#[doc(hidden)]
1310#[unstable(feature = "sized_type_properties", issue = "none")]
1311impl<T> SizedTypeProperties for T {}
1312
1313/// Expands to the offset in bytes of a field from the beginning of the given type.
1314///
1315/// The type may be a `struct`, `enum`, `union`, or tuple.
1316///
1317/// The field may be a nested field (`field1.field2`), but not an array index.
1318/// The field must be visible to the call site.
1319///
1320/// The offset is returned as a [`usize`].
1321///
1322/// # Offsets of, and in, dynamically sized types
1323///
1324/// The field’s type must be [`Sized`], but it may be located in a [dynamically sized] container.
1325/// If the field type is dynamically sized, then you cannot use `offset_of!` (since the field's
1326/// alignment, and therefore its offset, may also be dynamic) and must take the offset from an
1327/// actual pointer to the container instead.
1328///
1329/// ```
1330/// # use core::mem;
1331/// # use core::fmt::Debug;
1332/// #[repr(C)]
1333/// pub struct Struct<T: ?Sized> {
1334/// a: u8,
1335/// b: T,
1336/// }
1337///
1338/// #[derive(Debug)]
1339/// #[repr(C, align(4))]
1340/// struct Align4(u32);
1341///
1342/// assert_eq!(mem::offset_of!(Struct<dyn Debug>, a), 0); // OK — Sized field
1343/// assert_eq!(mem::offset_of!(Struct<Align4>, b), 4); // OK — not DST
1344///
1345/// // assert_eq!(mem::offset_of!(Struct<dyn Debug>, b), 1);
1346/// // ^^^ error[E0277]: ... cannot be known at compilation time
1347///
1348/// // To obtain the offset of a !Sized field, examine a concrete value
1349/// // instead of using offset_of!.
1350/// let value: Struct<Align4> = Struct { a: 1, b: Align4(2) };
1351/// let ref_unsized: &Struct<dyn Debug> = &value;
1352/// let offset_of_b = unsafe {
1353/// (&raw const ref_unsized.b).byte_offset_from_unsigned(ref_unsized)
1354/// };
1355/// assert_eq!(offset_of_b, 4);
1356/// ```
1357///
1358/// If you need to obtain the offset of a field of a `!Sized` type, then, since the offset may
1359/// depend on the particular value being stored (in particular, `dyn Trait` values have a
1360/// dynamically-determined alignment), you must retrieve the offset from a specific reference
1361/// or pointer, and so you cannot use `offset_of!` to work without one.
1362///
1363/// # Layout is subject to change
1364///
1365/// Note that type layout is, in general, [subject to change and
1366/// platform-specific](https://doc.rust-lang.org/reference/type-layout.html). If
1367/// layout stability is required, consider using an [explicit `repr` attribute].
1368///
1369/// Rust guarantees that the offset of a given field within a given type will not
1370/// change over the lifetime of the program. However, two different compilations of
1371/// the same program may result in different layouts. Also, even within a single
1372/// program execution, no guarantees are made about types which are *similar* but
1373/// not *identical*, e.g.:
1374///
1375/// ```
1376/// struct Wrapper<T, U>(T, U);
1377///
1378/// type A = Wrapper<u8, u8>;
1379/// type B = Wrapper<u8, i8>;
1380///
1381/// // Not necessarily identical even though `u8` and `i8` have the same layout!
1382/// // assert_eq!(mem::offset_of!(A, 1), mem::offset_of!(B, 1));
1383///
1384/// #[repr(transparent)]
1385/// struct U8(u8);
1386///
1387/// type C = Wrapper<u8, U8>;
1388///
1389/// // Not necessarily identical even though `u8` and `U8` have the same layout!
1390/// // assert_eq!(mem::offset_of!(A, 1), mem::offset_of!(C, 1));
1391///
1392/// struct Empty<T>(core::marker::PhantomData<T>);
1393///
1394/// // Not necessarily identical even though `PhantomData` always has the same layout!
1395/// // assert_eq!(mem::offset_of!(Empty<u8>, 0), mem::offset_of!(Empty<i8>, 0));
1396/// ```
1397///
1398/// [explicit `repr` attribute]: https://doc.rust-lang.org/reference/type-layout.html#representations
1399///
1400/// # Unstable features
1401///
1402/// The following unstable features expand the functionality of `offset_of!`:
1403///
1404/// * [`offset_of_enum`] — allows `enum` variants to be traversed as if they were fields.
1405/// * [`offset_of_slice`] — allows getting the offset of a field of type `[T]`.
1406///
1407/// # Examples
1408///
1409/// ```
1410/// use std::mem;
1411/// #[repr(C)]
1412/// struct FieldStruct {
1413/// first: u8,
1414/// second: u16,
1415/// third: u8
1416/// }
1417///
1418/// assert_eq!(mem::offset_of!(FieldStruct, first), 0);
1419/// assert_eq!(mem::offset_of!(FieldStruct, second), 2);
1420/// assert_eq!(mem::offset_of!(FieldStruct, third), 4);
1421///
1422/// #[repr(C)]
1423/// struct NestedA {
1424/// b: NestedB
1425/// }
1426///
1427/// #[repr(C)]
1428/// struct NestedB(u8);
1429///
1430/// assert_eq!(mem::offset_of!(NestedA, b.0), 0);
1431/// ```
1432///
1433/// [dynamically sized]: https://doc.rust-lang.org/reference/dynamically-sized-types.html
1434/// [`offset_of_enum`]: https://doc.rust-lang.org/nightly/unstable-book/language-features/offset-of-enum.html
1435/// [`offset_of_slice`]: https://doc.rust-lang.org/nightly/unstable-book/language-features/offset-of-slice.html
1436#[stable(feature = "offset_of", since = "1.77.0")]
1437#[allow_internal_unstable(builtin_syntax, core_intrinsics)]
1438pub macro offset_of($Container:ty, $($fields:expr)+ $(,)?) {
1439 // The `{}` is for better error messages
1440 const {builtin # offset_of($Container, $($fields)+)}
1441}
1442
1443/// Create a fresh instance of the inhabited ZST type `T`.
1444///
1445/// Prefer this to [`zeroed`] or [`uninitialized`] or [`transmute_copy`]
1446/// in places where you know that `T` is zero-sized, but don't have a bound
1447/// (such as [`Default`]) that would allow you to instantiate it using safe code.
1448///
1449/// If you're not sure whether `T` is an inhabited ZST, then you should be
1450/// using [`MaybeUninit`], not this function.
1451///
1452/// # Panics
1453///
1454/// If `size_of::<T>() != 0`.
1455///
1456/// # Safety
1457///
1458/// - `T` must be *[inhabited]*, i.e. possible to construct. This means that types
1459/// like zero-variant enums and [`!`] are unsound to conjure.
1460/// - You must use the value only in ways which do not violate any *safety*
1461/// invariants of the type.
1462///
1463/// While it's easy to create a *valid* instance of an inhabited ZST, since having
1464/// no bits in its representation means there's only one possible value, that
1465/// doesn't mean that it's always *sound* to do so.
1466///
1467/// For example, a library could design zero-sized tokens that are `!Default + !Clone`, limiting
1468/// their creation to functions that initialize some state or establish a scope. Conjuring such a
1469/// token could break invariants and lead to unsoundness.
1470///
1471/// # Examples
1472///
1473/// ```
1474/// #![feature(mem_conjure_zst)]
1475/// use std::mem::conjure_zst;
1476///
1477/// assert_eq!(unsafe { conjure_zst::<()>() }, ());
1478/// assert_eq!(unsafe { conjure_zst::<[i32; 0]>() }, []);
1479/// ```
1480///
1481/// [inhabited]: https://doc.rust-lang.org/reference/glossary.html#inhabited
1482#[unstable(feature = "mem_conjure_zst", issue = "95383")]
1483pub const unsafe fn conjure_zst<T>() -> T {
1484 const_assert!(
1485 size_of::<T>() == 0,
1486 "mem::conjure_zst invoked on a nonzero-sized type",
1487 "mem::conjure_zst invoked on type {t}, which is not zero-sized",
1488 t: &str = stringify!(T)
1489 );
1490
1491 // SAFETY: because the caller must guarantee that it's inhabited and zero-sized,
1492 // there's nothing in the representation that needs to be set.
1493 // `assume_init` calls `assert_inhabited`, so we don't need to here.
1494 unsafe {
1495 #[allow(clippy::uninit_assumed_init)]
1496 MaybeUninit::uninit().assume_init()
1497 }
1498}