1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
// Copyright 2012-2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![stable(feature = "duration_core", since = "1.25.0")]

//! Temporal quantification.
//!
//! Example:
//!
//! ```
//! use std::time::Duration;
//!
//! let five_seconds = Duration::new(5, 0);
//! // both declarations are equivalent
//! assert_eq!(Duration::new(5, 0), Duration::from_secs(5));
//! ```

use fmt;
use iter::Sum;
use ops::{Add, Sub, Mul, Div, AddAssign, SubAssign, MulAssign, DivAssign};

const NANOS_PER_SEC: u32 = 1_000_000_000;
const NANOS_PER_MILLI: u32 = 1_000_000;
const NANOS_PER_MICRO: u32 = 1_000;
const MILLIS_PER_SEC: u64 = 1_000;
const MICROS_PER_SEC: u64 = 1_000_000;

/// A `Duration` type to represent a span of time, typically used for system
/// timeouts.
///
/// Each `Duration` is composed of a whole number of seconds and a fractional part
/// represented in nanoseconds.  If the underlying system does not support
/// nanosecond-level precision, APIs binding a system timeout will typically round up
/// the number of nanoseconds.
///
/// `Duration`s implement many common traits, including [`Add`], [`Sub`], and other
/// [`ops`] traits.
///
/// [`Add`]: ../../std/ops/trait.Add.html
/// [`Sub`]: ../../std/ops/trait.Sub.html
/// [`ops`]: ../../std/ops/index.html
///
/// # Examples
///
/// ```
/// use std::time::Duration;
///
/// let five_seconds = Duration::new(5, 0);
/// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5);
///
/// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5);
/// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5);
///
/// let ten_millis = Duration::from_millis(10);
/// ```
#[stable(feature = "duration", since = "1.3.0")]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Duration {
    secs: u64,
    nanos: u32, // Always 0 <= nanos < NANOS_PER_SEC
}

impl Duration {
    /// Creates a new `Duration` from the specified number of whole seconds and
    /// additional nanoseconds.
    ///
    /// If the number of nanoseconds is greater than 1 billion (the number of
    /// nanoseconds in a second), then it will carry over into the seconds provided.
    ///
    /// # Panics
    ///
    /// This constructor will panic if the carry from the nanoseconds overflows
    /// the seconds counter.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let five_seconds = Duration::new(5, 0);
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[inline]
    pub fn new(secs: u64, nanos: u32) -> Duration {
        let secs = secs.checked_add((nanos / NANOS_PER_SEC) as u64)
            .expect("overflow in Duration::new");
        let nanos = nanos % NANOS_PER_SEC;
        Duration { secs, nanos }
    }

    /// Creates a new `Duration` from the specified number of whole seconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_secs(5);
    ///
    /// assert_eq!(5, duration.as_secs());
    /// assert_eq!(0, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[inline]
    pub const fn from_secs(secs: u64) -> Duration {
        Duration { secs, nanos: 0 }
    }

    /// Creates a new `Duration` from the specified number of milliseconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_millis(2569);
    ///
    /// assert_eq!(2, duration.as_secs());
    /// assert_eq!(569_000_000, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[inline]
    pub const fn from_millis(millis: u64) -> Duration {
        Duration {
            secs: millis / MILLIS_PER_SEC,
            nanos: ((millis % MILLIS_PER_SEC) as u32) * NANOS_PER_MILLI,
        }
    }

    /// Creates a new `Duration` from the specified number of microseconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_micros(1_000_002);
    ///
    /// assert_eq!(1, duration.as_secs());
    /// assert_eq!(2000, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration_from_micros", since = "1.27.0")]
    #[inline]
    pub const fn from_micros(micros: u64) -> Duration {
        Duration {
            secs: micros / MICROS_PER_SEC,
            nanos: ((micros % MICROS_PER_SEC) as u32) * NANOS_PER_MICRO,
        }
    }

    /// Creates a new `Duration` from the specified number of nanoseconds.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_nanos(1_000_000_123);
    ///
    /// assert_eq!(1, duration.as_secs());
    /// assert_eq!(123, duration.subsec_nanos());
    /// ```
    #[stable(feature = "duration_extras", since = "1.27.0")]
    #[inline]
    pub const fn from_nanos(nanos: u64) -> Duration {
        Duration {
            secs: nanos / (NANOS_PER_SEC as u64),
            nanos: (nanos % (NANOS_PER_SEC as u64)) as u32,
        }
    }

    /// Returns the number of _whole_ seconds contained by this `Duration`.
    ///
    /// The returned value does not include the fractional (nanosecond) part of the
    /// duration, which can be obtained using [`subsec_nanos`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_secs(), 5);
    /// ```
    ///
    /// To determine the total number of seconds represented by the `Duration`,
    /// use `as_secs` in combination with [`subsec_nanos`]:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    ///
    /// assert_eq!(5.730023852,
    ///            duration.as_secs() as f64
    ///            + duration.subsec_nanos() as f64 * 1e-9);
    /// ```
    ///
    /// [`subsec_nanos`]: #method.subsec_nanos
    #[stable(feature = "duration", since = "1.3.0")]
    #[rustc_const_unstable(feature="duration_getters")]
    #[inline]
    pub const fn as_secs(&self) -> u64 { self.secs }

    /// Returns the fractional part of this `Duration`, in whole milliseconds.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by milliseconds. The returned number always represents a
    /// fractional portion of a second (i.e. it is less than one thousand).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_millis(5432);
    /// assert_eq!(duration.as_secs(), 5);
    /// assert_eq!(duration.subsec_millis(), 432);
    /// ```
    #[stable(feature = "duration_extras", since = "1.27.0")]
    #[rustc_const_unstable(feature="duration_getters")]
    #[inline]
    pub const fn subsec_millis(&self) -> u32 { self.nanos / NANOS_PER_MILLI }

    /// Returns the fractional part of this `Duration`, in whole microseconds.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by microseconds. The returned number always represents a
    /// fractional portion of a second (i.e. it is less than one million).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_micros(1_234_567);
    /// assert_eq!(duration.as_secs(), 1);
    /// assert_eq!(duration.subsec_micros(), 234_567);
    /// ```
    #[stable(feature = "duration_extras", since = "1.27.0")]
    #[rustc_const_unstable(feature="duration_getters")]
    #[inline]
    pub const fn subsec_micros(&self) -> u32 { self.nanos / NANOS_PER_MICRO }

    /// Returns the fractional part of this `Duration`, in nanoseconds.
    ///
    /// This method does **not** return the length of the duration when
    /// represented by nanoseconds. The returned number always represents a
    /// fractional portion of a second (i.e. it is less than one billion).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// let duration = Duration::from_millis(5010);
    /// assert_eq!(duration.as_secs(), 5);
    /// assert_eq!(duration.subsec_nanos(), 10_000_000);
    /// ```
    #[stable(feature = "duration", since = "1.3.0")]
    #[rustc_const_unstable(feature="duration_getters")]
    #[inline]
    pub const fn subsec_nanos(&self) -> u32 { self.nanos }

    /// Returns the total number of whole milliseconds contained by this `Duration`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(duration_as_u128)]
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_millis(), 5730);
    /// ```
    #[unstable(feature = "duration_as_u128", issue = "50202")]
    #[inline]
    pub fn as_millis(&self) -> u128 {
        self.secs as u128 * MILLIS_PER_SEC as u128 + (self.nanos / NANOS_PER_MILLI) as u128
    }

    /// Returns the total number of whole microseconds contained by this `Duration`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(duration_as_u128)]
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_micros(), 5730023);
    /// ```
    #[unstable(feature = "duration_as_u128", issue = "50202")]
    #[inline]
    pub fn as_micros(&self) -> u128 {
        self.secs as u128 * MICROS_PER_SEC as u128 + (self.nanos / NANOS_PER_MICRO) as u128
    }

    /// Returns the total number of nanoseconds contained by this `Duration`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![feature(duration_as_u128)]
    /// use std::time::Duration;
    ///
    /// let duration = Duration::new(5, 730023852);
    /// assert_eq!(duration.as_nanos(), 5730023852);
    /// ```
    #[unstable(feature = "duration_as_u128", issue = "50202")]
    #[inline]
    pub fn as_nanos(&self) -> u128 {
        self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos as u128
    }

    /// Checked `Duration` addition. Computes `self + other`, returning [`None`]
    /// if overflow occurred.
    ///
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1)));
    /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(std::u64::MAX, 0)), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[inline]
    pub fn checked_add(self, rhs: Duration) -> Option<Duration> {
        if let Some(mut secs) = self.secs.checked_add(rhs.secs) {
            let mut nanos = self.nanos + rhs.nanos;
            if nanos >= NANOS_PER_SEC {
                nanos -= NANOS_PER_SEC;
                if let Some(new_secs) = secs.checked_add(1) {
                    secs = new_secs;
                } else {
                    return None;
                }
            }
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration {
                secs,
                nanos,
            })
        } else {
            None
        }
    }

    /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`]
    /// if the result would be negative or if overflow occurred.
    ///
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1)));
    /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[inline]
    pub fn checked_sub(self, rhs: Duration) -> Option<Duration> {
        if let Some(mut secs) = self.secs.checked_sub(rhs.secs) {
            let nanos = if self.nanos >= rhs.nanos {
                self.nanos - rhs.nanos
            } else {
                if let Some(sub_secs) = secs.checked_sub(1) {
                    secs = sub_secs;
                    self.nanos + NANOS_PER_SEC - rhs.nanos
                } else {
                    return None;
                }
            };
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration { secs, nanos })
        } else {
            None
        }
    }

    /// Checked `Duration` multiplication. Computes `self * other`, returning
    /// [`None`] if overflow occurred.
    ///
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2)));
    /// assert_eq!(Duration::new(std::u64::MAX - 1, 0).checked_mul(2), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[inline]
    pub fn checked_mul(self, rhs: u32) -> Option<Duration> {
        // Multiply nanoseconds as u64, because it cannot overflow that way.
        let total_nanos = self.nanos as u64 * rhs as u64;
        let extra_secs = total_nanos / (NANOS_PER_SEC as u64);
        let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32;
        if let Some(secs) = self.secs
            .checked_mul(rhs as u64)
            .and_then(|s| s.checked_add(extra_secs)) {
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration {
                secs,
                nanos,
            })
        } else {
            None
        }
    }

    /// Checked `Duration` division. Computes `self / other`, returning [`None`]
    /// if `other == 0`.
    ///
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0)));
    /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000)));
    /// assert_eq!(Duration::new(2, 0).checked_div(0), None);
    /// ```
    #[stable(feature = "duration_checked_ops", since = "1.16.0")]
    #[inline]
    pub fn checked_div(self, rhs: u32) -> Option<Duration> {
        if rhs != 0 {
            let secs = self.secs / (rhs as u64);
            let carry = self.secs - secs * (rhs as u64);
            let extra_nanos = carry * (NANOS_PER_SEC as u64) / (rhs as u64);
            let nanos = self.nanos / rhs + (extra_nanos as u32);
            debug_assert!(nanos < NANOS_PER_SEC);
            Some(Duration { secs, nanos })
        } else {
            None
        }
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Add for Duration {
    type Output = Duration;

    fn add(self, rhs: Duration) -> Duration {
        self.checked_add(rhs).expect("overflow when adding durations")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl AddAssign for Duration {
    fn add_assign(&mut self, rhs: Duration) {
        *self = *self + rhs;
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Sub for Duration {
    type Output = Duration;

    fn sub(self, rhs: Duration) -> Duration {
        self.checked_sub(rhs).expect("overflow when subtracting durations")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl SubAssign for Duration {
    fn sub_assign(&mut self, rhs: Duration) {
        *self = *self - rhs;
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Mul<u32> for Duration {
    type Output = Duration;

    fn mul(self, rhs: u32) -> Duration {
        self.checked_mul(rhs).expect("overflow when multiplying duration by scalar")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl MulAssign<u32> for Duration {
    fn mul_assign(&mut self, rhs: u32) {
        *self = *self * rhs;
    }
}

#[stable(feature = "duration", since = "1.3.0")]
impl Div<u32> for Duration {
    type Output = Duration;

    fn div(self, rhs: u32) -> Duration {
        self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar")
    }
}

#[stable(feature = "time_augmented_assignment", since = "1.9.0")]
impl DivAssign<u32> for Duration {
    fn div_assign(&mut self, rhs: u32) {
        *self = *self / rhs;
    }
}

macro_rules! sum_durations {
    ($iter:expr) => {{
        let mut total_secs: u64 = 0;
        let mut total_nanos: u64 = 0;

        for entry in $iter {
            total_secs = total_secs
                .checked_add(entry.secs)
                .expect("overflow in iter::sum over durations");
            total_nanos = match total_nanos.checked_add(entry.nanos as u64) {
                Some(n) => n,
                None => {
                    total_secs = total_secs
                        .checked_add(total_nanos / NANOS_PER_SEC as u64)
                        .expect("overflow in iter::sum over durations");
                    (total_nanos % NANOS_PER_SEC as u64) + entry.nanos as u64
                }
            };
        }
        total_secs = total_secs
            .checked_add(total_nanos / NANOS_PER_SEC as u64)
            .expect("overflow in iter::sum over durations");
        total_nanos = total_nanos % NANOS_PER_SEC as u64;
        Duration {
            secs: total_secs,
            nanos: total_nanos as u32,
        }
    }};
}

#[stable(feature = "duration_sum", since = "1.16.0")]
impl Sum for Duration {
    fn sum<I: Iterator<Item=Duration>>(iter: I) -> Duration {
        sum_durations!(iter)
    }
}

#[stable(feature = "duration_sum", since = "1.16.0")]
impl<'a> Sum<&'a Duration> for Duration {
    fn sum<I: Iterator<Item=&'a Duration>>(iter: I) -> Duration {
        sum_durations!(iter)
    }
}

#[stable(feature = "duration_debug_impl", since = "1.27.0")]
impl fmt::Debug for Duration {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        /// Formats a floating point number in decimal notation.
        ///
        /// The number is given as the `integer_part` and a fractional part.
        /// The value of the fractional part is `fractional_part / divisor`. So
        /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100
        /// represents the number `3.012`. Trailing zeros are omitted.
        ///
        /// `divisor` must not be above 100_000_000. It also should be a power
        /// of 10, everything else doesn't make sense. `fractional_part` has
        /// to be less than `10 * divisor`!
        fn fmt_decimal(
            f: &mut fmt::Formatter,
            mut integer_part: u64,
            mut fractional_part: u32,
            mut divisor: u32,
        ) -> fmt::Result {
            // Encode the fractional part into a temporary buffer. The buffer
            // only need to hold 9 elements, because `fractional_part` has to
            // be smaller than 10^9. The buffer is prefilled with '0' digits
            // to simplify the code below.
            let mut buf = [b'0'; 9];

            // The next digit is written at this position
            let mut pos = 0;

            // We keep writing digits into the buffer while there are non-zero
            // digits left and we haven't written enough digits yet.
            while fractional_part > 0 && pos < f.precision().unwrap_or(9) {
                // Write new digit into the buffer
                buf[pos] = b'0' + (fractional_part / divisor) as u8;

                fractional_part %= divisor;
                divisor /= 10;
                pos += 1;
            }

            // If a precision < 9 was specified, there may be some non-zero
            // digits left that weren't written into the buffer. In that case we
            // need to perform rounding to match the semantics of printing
            // normal floating point numbers. However, we only need to do work
            // when rounding up. This happens if the first digit of the
            // remaining ones is >= 5.
            if fractional_part > 0 && fractional_part >= divisor * 5 {
                // Round up the number contained in the buffer. We go through
                // the buffer backwards and keep track of the carry.
                let mut rev_pos = pos;
                let mut carry = true;
                while carry && rev_pos > 0 {
                    rev_pos -= 1;

                    // If the digit in the buffer is not '9', we just need to
                    // increment it and can stop then (since we don't have a
                    // carry anymore). Otherwise, we set it to '0' (overflow)
                    // and continue.
                    if buf[rev_pos] < b'9' {
                        buf[rev_pos] += 1;
                        carry = false;
                    } else {
                        buf[rev_pos] = b'0';
                    }
                }

                // If we still have the carry bit set, that means that we set
                // the whole buffer to '0's and need to increment the integer
                // part.
                if carry {
                    integer_part += 1;
                }
            }

            // Determine the end of the buffer: if precision is set, we just
            // use as many digits from the buffer (capped to 9). If it isn't
            // set, we only use all digits up to the last non-zero one.
            let end = f.precision().map(|p| ::cmp::min(p, 9)).unwrap_or(pos);

            // If we haven't emitted a single fractional digit and the precision
            // wasn't set to a non-zero value, we don't print the decimal point.
            if end == 0 {
                write!(f, "{}", integer_part)
            } else {
                // We are only writing ASCII digits into the buffer and it was
                // initialized with '0's, so it contains valid UTF8.
                let s = unsafe {
                    ::str::from_utf8_unchecked(&buf[..end])
                };

                // If the user request a precision > 9, we pad '0's at the end.
                let w = f.precision().unwrap_or(pos);
                write!(f, "{}.{:0<width$}", integer_part, s, width = w)
            }
        }

        // Print leading '+' sign if requested
        if f.sign_plus() {
            write!(f, "+")?;
        }

        if self.secs > 0 {
            fmt_decimal(f, self.secs, self.nanos, 100_000_000)?;
            f.write_str("s")
        } else if self.nanos >= 1_000_000 {
            fmt_decimal(f, self.nanos as u64 / 1_000_000, self.nanos % 1_000_000, 100_000)?;
            f.write_str("ms")
        } else if self.nanos >= 1_000 {
            fmt_decimal(f, self.nanos as u64 / 1_000, self.nanos % 1_000, 100)?;
            f.write_str("µs")
        } else {
            fmt_decimal(f, self.nanos as u64, 0, 1)?;
            f.write_str("ns")
        }
    }
}