1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! `i686`'s Streaming SIMD Extensions 4a (`SSE4a`)
use crate::core_arch::{simd::*, x86::*};
#[cfg(test)]
use stdarch_test::assert_instr;
#[allow(improper_ctypes)]
extern "C" {
#[link_name = "llvm.x86.sse4a.extrq"]
fn extrq(x: i64x2, y: i8x16) -> i64x2;
#[link_name = "llvm.x86.sse4a.extrqi"]
fn extrqi(x: i64x2, len: u8, idx: u8) -> i64x2;
#[link_name = "llvm.x86.sse4a.insertq"]
fn insertq(x: i64x2, y: i64x2) -> i64x2;
#[link_name = "llvm.x86.sse4a.insertqi"]
fn insertqi(x: i64x2, y: i64x2, len: u8, idx: u8) -> i64x2;
#[link_name = "llvm.x86.sse4a.movnt.sd"]
fn movntsd(x: *mut f64, y: __m128d);
#[link_name = "llvm.x86.sse4a.movnt.ss"]
fn movntss(x: *mut f32, y: __m128);
}
/// Extracts the bit range specified by `y` from the lower 64 bits of `x`.
///
/// The `[13:8]` bits of `y` specify the index of the bit-range to extract. The
/// `[5:0]` bits of `y` specify the length of the bit-range to extract. All
/// other bits are ignored.
///
/// If the length is zero, it is interpreted as `64`. If the length and index
/// are zero, the lower 64 bits of `x` are extracted.
///
/// If `length == 0 && index > 0` or `length + index > 64` the result is
/// undefined.
#[inline]
#[target_feature(enable = "sse4a")]
#[cfg_attr(test, assert_instr(extrq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_extract_si64(x: __m128i, y: __m128i) -> __m128i {
transmute(extrq(x.as_i64x2(), y.as_i8x16()))
}
/// Extracts the specified bits from the lower 64 bits of the 128-bit integer vector operand at the
/// index `idx` and of the length `len`.
///
/// `idx` specifies the index of the LSB. `len` specifies the number of bits to extract. If length
/// and index are both zero, bits `[63:0]` of parameter `x` are extracted. It is a compile-time error
/// for `len + idx` to be greater than 64 or for `len` to be zero and `idx` to be non-zero.
///
/// Returns a 128-bit integer vector whose lower 64 bits contain the extracted bits.
#[inline]
#[target_feature(enable = "sse4a")]
#[cfg_attr(test, assert_instr(extrq, LEN = 5, IDX = 5))]
#[rustc_legacy_const_generics(1, 2)]
#[stable(feature = "simd_x86_updates", since = "1.82.0")]
pub unsafe fn _mm_extracti_si64<const LEN: i32, const IDX: i32>(x: __m128i) -> __m128i {
// LLVM mentions that it is UB if these are not satisfied
static_assert_uimm_bits!(LEN, 6);
static_assert_uimm_bits!(IDX, 6);
static_assert!((LEN == 0 && IDX == 0) || (LEN != 0 && LEN + IDX <= 64));
transmute(extrqi(x.as_i64x2(), LEN as u8, IDX as u8))
}
/// Inserts the `[length:0]` bits of `y` into `x` at `index`.
///
/// The bits of `y`:
///
/// - `[69:64]` specify the `length`,
/// - `[77:72]` specify the index.
///
/// If the `length` is zero it is interpreted as `64`. If `index + length > 64`
/// or `index > 0 && length == 0` the result is undefined.
#[inline]
#[target_feature(enable = "sse4a")]
#[cfg_attr(test, assert_instr(insertq))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_insert_si64(x: __m128i, y: __m128i) -> __m128i {
transmute(insertq(x.as_i64x2(), y.as_i64x2()))
}
/// Inserts the `len` least-significant bits from the lower 64 bits of the 128-bit integer vector operand `y` into
/// the lower 64 bits of the 128-bit integer vector operand `x` at the index `idx` and of the length `len`.
///
/// `idx` specifies the index of the LSB. `len` specifies the number of bits to insert. If length and index
/// are both zero, bits `[63:0]` of parameter `x` are replaced with bits `[63:0]` of parameter `y`. It is a
/// compile-time error for `len + idx` to be greater than 64 or for `len` to be zero and `idx` to be non-zero.
#[inline]
#[target_feature(enable = "sse4a")]
#[cfg_attr(test, assert_instr(insertq, LEN = 5, IDX = 5))]
#[rustc_legacy_const_generics(2, 3)]
#[stable(feature = "simd_x86_updates", since = "1.82.0")]
pub unsafe fn _mm_inserti_si64<const LEN: i32, const IDX: i32>(x: __m128i, y: __m128i) -> __m128i {
// LLVM mentions that it is UB if these are not satisfied
static_assert_uimm_bits!(LEN, 6);
static_assert_uimm_bits!(IDX, 6);
static_assert!((LEN == 0 && IDX == 0) || (LEN != 0 && LEN + IDX <= 64));
transmute(insertqi(x.as_i64x2(), y.as_i64x2(), LEN as u8, IDX as u8))
}
/// Non-temporal store of `a.0` into `p`.
///
/// Writes 64-bit data to a memory location without polluting the caches.
///
/// # Safety of non-temporal stores
///
/// After using this intrinsic, but before any other access to the memory that this intrinsic
/// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In
/// particular, functions that call this intrinsic should generally call `_mm_sfence` before they
/// return.
///
/// See [`_mm_sfence`] for details.
#[inline]
#[target_feature(enable = "sse4a")]
#[cfg_attr(test, assert_instr(movntsd))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_stream_sd(p: *mut f64, a: __m128d) {
movntsd(p, a);
}
/// Non-temporal store of `a.0` into `p`.
///
/// Writes 32-bit data to a memory location without polluting the caches.
///
/// # Safety of non-temporal stores
///
/// After using this intrinsic, but before any other access to the memory that this intrinsic
/// mutates, a call to [`_mm_sfence`] must be performed by the thread that used the intrinsic. In
/// particular, functions that call this intrinsic should generally call `_mm_sfence` before they
/// return.
///
/// See [`_mm_sfence`] for details.
#[inline]
#[target_feature(enable = "sse4a")]
#[cfg_attr(test, assert_instr(movntss))]
#[stable(feature = "simd_x86", since = "1.27.0")]
pub unsafe fn _mm_stream_ss(p: *mut f32, a: __m128) {
movntss(p, a);
}
#[cfg(test)]
mod tests {
use crate::core_arch::x86::*;
use stdarch_test::simd_test;
#[simd_test(enable = "sse4a")]
unsafe fn test_mm_extract_si64() {
let b = 0b0110_0000_0000_i64;
// ^^^^ bit range extracted
let x = _mm_setr_epi64x(b, 0);
let v = 0b001000___00___000100_i64;
// ^idx: 2^3 = 8 ^length = 2^2 = 4
let y = _mm_setr_epi64x(v, 0);
let e = _mm_setr_epi64x(0b0110_i64, 0);
let r = _mm_extract_si64(x, y);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4a")]
unsafe fn test_mm_extracti_si64() {
let a = _mm_setr_epi64x(0x0123456789abcdef, 0);
let r = _mm_extracti_si64::<8, 8>(a);
let e = _mm_setr_epi64x(0xcd, 0);
assert_eq_m128i(r, e);
}
#[simd_test(enable = "sse4a")]
unsafe fn test_mm_insert_si64() {
let i = 0b0110_i64;
// ^^^^ bit range inserted
let z = 0b1010_1010_1010i64;
// ^^^^ bit range replaced
let e = 0b0110_1010_1010i64;
// ^^^^ replaced 1010 with 0110
let x = _mm_setr_epi64x(z, 0);
let expected = _mm_setr_epi64x(e, 0);
let v = 0b001000___00___000100_i64;
// ^idx: 2^3 = 8 ^length = 2^2 = 4
let y = _mm_setr_epi64x(i, v);
let r = _mm_insert_si64(x, y);
assert_eq_m128i(r, expected);
}
#[simd_test(enable = "sse4a")]
unsafe fn test_mm_inserti_si64() {
let a = _mm_setr_epi64x(0x0123456789abcdef, 0);
let b = _mm_setr_epi64x(0x0011223344556677, 0);
let r = _mm_inserti_si64::<8, 8>(a, b);
let e = _mm_setr_epi64x(0x0123456789ab77ef, 0);
assert_eq_m128i(r, e);
}
#[repr(align(16))]
struct MemoryF64 {
data: [f64; 2],
}
#[simd_test(enable = "sse4a")]
// Miri cannot support this until it is clear how it fits in the Rust memory model
// (non-temporal store)
#[cfg_attr(miri, ignore)]
unsafe fn test_mm_stream_sd() {
let mut mem = MemoryF64 {
data: [1.0_f64, 2.0],
};
{
let vals = &mut mem.data;
let d = vals.as_mut_ptr();
let x = _mm_setr_pd(3.0, 4.0);
_mm_stream_sd(d, x);
}
assert_eq!(mem.data[0], 3.0);
assert_eq!(mem.data[1], 2.0);
}
#[repr(align(16))]
struct MemoryF32 {
data: [f32; 4],
}
#[simd_test(enable = "sse4a")]
// Miri cannot support this until it is clear how it fits in the Rust memory model
// (non-temporal store)
#[cfg_attr(miri, ignore)]
unsafe fn test_mm_stream_ss() {
let mut mem = MemoryF32 {
data: [1.0_f32, 2.0, 3.0, 4.0],
};
{
let vals = &mut mem.data;
let d = vals.as_mut_ptr();
let x = _mm_setr_ps(5.0, 6.0, 7.0, 8.0);
_mm_stream_ss(d, x);
}
assert_eq!(mem.data[0], 5.0);
assert_eq!(mem.data[1], 2.0);
assert_eq!(mem.data[2], 3.0);
assert_eq!(mem.data[3], 4.0);
}
}