core/slice/ascii.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
//! Operations on ASCII `[u8]`.
use core::ascii::EscapeDefault;
use crate::fmt::{self, Write};
#[cfg(not(all(target_arch = "x86_64", target_feature = "sse2")))]
use crate::intrinsics::const_eval_select;
use crate::{ascii, iter, ops};
#[cfg(not(test))]
impl [u8] {
/// Checks if all bytes in this slice are within the ASCII range.
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
#[must_use]
#[inline]
pub const fn is_ascii(&self) -> bool {
is_ascii(self)
}
/// If this slice [`is_ascii`](Self::is_ascii), returns it as a slice of
/// [ASCII characters](`ascii::Char`), otherwise returns `None`.
#[unstable(feature = "ascii_char", issue = "110998")]
#[must_use]
#[inline]
pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
if self.is_ascii() {
// SAFETY: Just checked that it's ASCII
Some(unsafe { self.as_ascii_unchecked() })
} else {
None
}
}
/// Converts this slice of bytes into a slice of ASCII characters,
/// without checking whether they're valid.
///
/// # Safety
///
/// Every byte in the slice must be in `0..=127`, or else this is UB.
#[unstable(feature = "ascii_char", issue = "110998")]
#[must_use]
#[inline]
pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
let byte_ptr: *const [u8] = self;
let ascii_ptr = byte_ptr as *const [ascii::Char];
// SAFETY: The caller promised all the bytes are ASCII
unsafe { &*ascii_ptr }
}
/// Checks that two slices are an ASCII case-insensitive match.
///
/// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
/// but without allocating and copying temporaries.
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[rustc_const_unstable(feature = "const_eq_ignore_ascii_case", issue = "131719")]
#[must_use]
#[inline]
pub const fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool {
if self.len() != other.len() {
return false;
}
// FIXME(const-hack): This implementation can be reverted when
// `core::iter::zip` is allowed in const. The original implementation:
// self.len() == other.len() && iter::zip(self, other).all(|(a, b)| a.eq_ignore_ascii_case(b))
let mut a = self;
let mut b = other;
while let ([first_a, rest_a @ ..], [first_b, rest_b @ ..]) = (a, b) {
if first_a.eq_ignore_ascii_case(&first_b) {
a = rest_a;
b = rest_b;
} else {
return false;
}
}
true
}
/// Converts this slice to its ASCII upper case equivalent in-place.
///
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
/// but non-ASCII letters are unchanged.
///
/// To return a new uppercased value without modifying the existing one, use
/// [`to_ascii_uppercase`].
///
/// [`to_ascii_uppercase`]: #method.to_ascii_uppercase
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
#[inline]
pub const fn make_ascii_uppercase(&mut self) {
// FIXME(const-hack): We would like to simply iterate using `for` loops but this isn't currently allowed in constant expressions.
let mut i = 0;
while i < self.len() {
let byte = &mut self[i];
byte.make_ascii_uppercase();
i += 1;
}
}
/// Converts this slice to its ASCII lower case equivalent in-place.
///
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
/// but non-ASCII letters are unchanged.
///
/// To return a new lowercased value without modifying the existing one, use
/// [`to_ascii_lowercase`].
///
/// [`to_ascii_lowercase`]: #method.to_ascii_lowercase
#[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
#[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
#[inline]
pub const fn make_ascii_lowercase(&mut self) {
// FIXME(const-hack): We would like to simply iterate using `for` loops but this isn't currently allowed in constant expressions.
let mut i = 0;
while i < self.len() {
let byte = &mut self[i];
byte.make_ascii_lowercase();
i += 1;
}
}
/// Returns an iterator that produces an escaped version of this slice,
/// treating it as an ASCII string.
///
/// # Examples
///
/// ```
///
/// let s = b"0\t\r\n'\"\\\x9d";
/// let escaped = s.escape_ascii().to_string();
/// assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
/// ```
#[must_use = "this returns the escaped bytes as an iterator, \
without modifying the original"]
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
pub fn escape_ascii(&self) -> EscapeAscii<'_> {
EscapeAscii { inner: self.iter().flat_map(EscapeByte) }
}
/// Returns a byte slice with leading ASCII whitespace bytes removed.
///
/// 'Whitespace' refers to the definition used by
/// [`u8::is_ascii_whitespace`].
///
/// # Examples
///
/// ```
/// assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
/// assert_eq!(b" ".trim_ascii_start(), b"");
/// assert_eq!(b"".trim_ascii_start(), b"");
/// ```
#[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
#[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
#[inline]
pub const fn trim_ascii_start(&self) -> &[u8] {
let mut bytes = self;
// Note: A pattern matching based approach (instead of indexing) allows
// making the function const.
while let [first, rest @ ..] = bytes {
if first.is_ascii_whitespace() {
bytes = rest;
} else {
break;
}
}
bytes
}
/// Returns a byte slice with trailing ASCII whitespace bytes removed.
///
/// 'Whitespace' refers to the definition used by
/// [`u8::is_ascii_whitespace`].
///
/// # Examples
///
/// ```
/// assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
/// assert_eq!(b" ".trim_ascii_end(), b"");
/// assert_eq!(b"".trim_ascii_end(), b"");
/// ```
#[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
#[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
#[inline]
pub const fn trim_ascii_end(&self) -> &[u8] {
let mut bytes = self;
// Note: A pattern matching based approach (instead of indexing) allows
// making the function const.
while let [rest @ .., last] = bytes {
if last.is_ascii_whitespace() {
bytes = rest;
} else {
break;
}
}
bytes
}
/// Returns a byte slice with leading and trailing ASCII whitespace bytes
/// removed.
///
/// 'Whitespace' refers to the definition used by
/// [`u8::is_ascii_whitespace`].
///
/// # Examples
///
/// ```
/// assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
/// assert_eq!(b" ".trim_ascii(), b"");
/// assert_eq!(b"".trim_ascii(), b"");
/// ```
#[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
#[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
#[inline]
pub const fn trim_ascii(&self) -> &[u8] {
self.trim_ascii_start().trim_ascii_end()
}
}
impl_fn_for_zst! {
#[derive(Clone)]
struct EscapeByte impl Fn = |byte: &u8| -> ascii::EscapeDefault {
ascii::escape_default(*byte)
};
}
/// An iterator over the escaped version of a byte slice.
///
/// This `struct` is created by the [`slice::escape_ascii`] method. See its
/// documentation for more information.
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct EscapeAscii<'a> {
inner: iter::FlatMap<super::Iter<'a, u8>, ascii::EscapeDefault, EscapeByte>,
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::Iterator for EscapeAscii<'a> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<u8> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
#[inline]
fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
where
Fold: FnMut(Acc, Self::Item) -> R,
R: ops::Try<Output = Acc>,
{
self.inner.try_fold(init, fold)
}
#[inline]
fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
self.inner.fold(init, fold)
}
#[inline]
fn last(mut self) -> Option<u8> {
self.next_back()
}
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::DoubleEndedIterator for EscapeAscii<'a> {
fn next_back(&mut self) -> Option<u8> {
self.inner.next_back()
}
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> iter::FusedIterator for EscapeAscii<'a> {}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> fmt::Display for EscapeAscii<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// disassemble iterator, including front/back parts of flatmap in case it has been partially consumed
let (front, slice, back) = self.clone().inner.into_parts();
let front = front.unwrap_or(EscapeDefault::empty());
let mut bytes = slice.unwrap_or_default().as_slice();
let back = back.unwrap_or(EscapeDefault::empty());
// usually empty, so the formatter won't have to do any work
for byte in front {
f.write_char(byte as char)?;
}
fn needs_escape(b: u8) -> bool {
b > 0x7E || b < 0x20 || b == b'\\' || b == b'\'' || b == b'"'
}
while bytes.len() > 0 {
// fast path for the printable, non-escaped subset of ascii
let prefix = bytes.iter().take_while(|&&b| !needs_escape(b)).count();
// SAFETY: prefix length was derived by counting bytes in the same splice, so it's in-bounds
let (prefix, remainder) = unsafe { bytes.split_at_unchecked(prefix) };
// SAFETY: prefix is a valid utf8 sequence, as it's a subset of ASCII
let prefix = unsafe { crate::str::from_utf8_unchecked(prefix) };
f.write_str(prefix)?; // the fast part
bytes = remainder;
if let Some(&b) = bytes.first() {
// guaranteed to be non-empty, better to write it as a str
f.write_str(ascii::escape_default(b).as_str())?;
bytes = &bytes[1..];
}
}
// also usually empty
for byte in back {
f.write_char(byte as char)?;
}
Ok(())
}
}
#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
impl<'a> fmt::Debug for EscapeAscii<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("EscapeAscii").finish_non_exhaustive()
}
}
/// ASCII test *without* the chunk-at-a-time optimizations.
///
/// This is carefully structured to produce nice small code -- it's smaller in
/// `-O` than what the "obvious" ways produces under `-C opt-level=s`. If you
/// touch it, be sure to run (and update if needed) the assembly test.
#[unstable(feature = "str_internals", issue = "none")]
#[doc(hidden)]
#[inline]
pub const fn is_ascii_simple(mut bytes: &[u8]) -> bool {
while let [rest @ .., last] = bytes {
if !last.is_ascii() {
break;
}
bytes = rest;
}
bytes.is_empty()
}
/// Optimized ASCII test that will use usize-at-a-time operations instead of
/// byte-at-a-time operations (when possible).
///
/// The algorithm we use here is pretty simple. If `s` is too short, we just
/// check each byte and be done with it. Otherwise:
///
/// - Read the first word with an unaligned load.
/// - Align the pointer, read subsequent words until end with aligned loads.
/// - Read the last `usize` from `s` with an unaligned load.
///
/// If any of these loads produces something for which `contains_nonascii`
/// (above) returns true, then we know the answer is false.
#[cfg(not(all(target_arch = "x86_64", target_feature = "sse2")))]
#[inline]
#[rustc_allow_const_fn_unstable(const_eval_select)] // fallback impl has same behavior
const fn is_ascii(s: &[u8]) -> bool {
// The runtime version behaves the same as the compiletime version, it's
// just more optimized.
const_eval_select!(
@capture { s: &[u8] } -> bool:
if const {
is_ascii_simple(s)
} else {
/// Returns `true` if any byte in the word `v` is nonascii (>= 128). Snarfed
/// from `../str/mod.rs`, which does something similar for utf8 validation.
const fn contains_nonascii(v: usize) -> bool {
const NONASCII_MASK: usize = usize::repeat_u8(0x80);
(NONASCII_MASK & v) != 0
}
const USIZE_SIZE: usize = size_of::<usize>();
let len = s.len();
let align_offset = s.as_ptr().align_offset(USIZE_SIZE);
// If we wouldn't gain anything from the word-at-a-time implementation, fall
// back to a scalar loop.
//
// We also do this for architectures where `size_of::<usize>()` isn't
// sufficient alignment for `usize`, because it's a weird edge case.
if len < USIZE_SIZE || len < align_offset || USIZE_SIZE < align_of::<usize>() {
return is_ascii_simple(s);
}
// We always read the first word unaligned, which means `align_offset` is
// 0, we'd read the same value again for the aligned read.
let offset_to_aligned = if align_offset == 0 { USIZE_SIZE } else { align_offset };
let start = s.as_ptr();
// SAFETY: We verify `len < USIZE_SIZE` above.
let first_word = unsafe { (start as *const usize).read_unaligned() };
if contains_nonascii(first_word) {
return false;
}
// We checked this above, somewhat implicitly. Note that `offset_to_aligned`
// is either `align_offset` or `USIZE_SIZE`, both of are explicitly checked
// above.
debug_assert!(offset_to_aligned <= len);
// SAFETY: word_ptr is the (properly aligned) usize ptr we use to read the
// middle chunk of the slice.
let mut word_ptr = unsafe { start.add(offset_to_aligned) as *const usize };
// `byte_pos` is the byte index of `word_ptr`, used for loop end checks.
let mut byte_pos = offset_to_aligned;
// Paranoia check about alignment, since we're about to do a bunch of
// unaligned loads. In practice this should be impossible barring a bug in
// `align_offset` though.
// While this method is allowed to spuriously fail in CTFE, if it doesn't
// have alignment information it should have given a `usize::MAX` for
// `align_offset` earlier, sending things through the scalar path instead of
// this one, so this check should pass if it's reachable.
debug_assert!(word_ptr.is_aligned_to(align_of::<usize>()));
// Read subsequent words until the last aligned word, excluding the last
// aligned word by itself to be done in tail check later, to ensure that
// tail is always one `usize` at most to extra branch `byte_pos == len`.
while byte_pos < len - USIZE_SIZE {
// Sanity check that the read is in bounds
debug_assert!(byte_pos + USIZE_SIZE <= len);
// And that our assumptions about `byte_pos` hold.
debug_assert!(word_ptr.cast::<u8>() == start.wrapping_add(byte_pos));
// SAFETY: We know `word_ptr` is properly aligned (because of
// `align_offset`), and we know that we have enough bytes between `word_ptr` and the end
let word = unsafe { word_ptr.read() };
if contains_nonascii(word) {
return false;
}
byte_pos += USIZE_SIZE;
// SAFETY: We know that `byte_pos <= len - USIZE_SIZE`, which means that
// after this `add`, `word_ptr` will be at most one-past-the-end.
word_ptr = unsafe { word_ptr.add(1) };
}
// Sanity check to ensure there really is only one `usize` left. This should
// be guaranteed by our loop condition.
debug_assert!(byte_pos <= len && len - byte_pos <= USIZE_SIZE);
// SAFETY: This relies on `len >= USIZE_SIZE`, which we check at the start.
let last_word = unsafe { (start.add(len - USIZE_SIZE) as *const usize).read_unaligned() };
!contains_nonascii(last_word)
}
)
}
/// ASCII test optimized to use the `pmovmskb` instruction available on `x86-64`
/// platforms.
///
/// Other platforms are not likely to benefit from this code structure, so they
/// use SWAR techniques to test for ASCII in `usize`-sized chunks.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
#[inline]
const fn is_ascii(bytes: &[u8]) -> bool {
// Process chunks of 32 bytes at a time in the fast path to enable
// auto-vectorization and use of `pmovmskb`. Two 128-bit vector registers
// can be OR'd together and then the resulting vector can be tested for
// non-ASCII bytes.
const CHUNK_SIZE: usize = 32;
let mut i = 0;
while i + CHUNK_SIZE <= bytes.len() {
let chunk_end = i + CHUNK_SIZE;
// Get LLVM to produce a `pmovmskb` instruction on x86-64 which
// creates a mask from the most significant bit of each byte.
// ASCII bytes are less than 128 (0x80), so their most significant
// bit is unset.
let mut count = 0;
while i < chunk_end {
count += bytes[i].is_ascii() as u8;
i += 1;
}
// All bytes should be <= 127 so count is equal to chunk size.
if count != CHUNK_SIZE as u8 {
return false;
}
}
// Process the remaining `bytes.len() % N` bytes.
let mut is_ascii = true;
while i < bytes.len() {
is_ascii &= bytes[i].is_ascii();
i += 1;
}
is_ascii
}