core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] comes with size, alignment, and ABI
234//! guarantees. Specifically, one of either the `T` or `E` type must be a type
235//! that qualifies for the `Option` [representation guarantees][opt-rep] (let's
236//! call that type `I`), and the *other* type is a zero-sized type with
237//! alignment 1 (a "1-ZST").
238//!
239//! If that is the case, then `Result<T, E>` has the same size, alignment, and
240//! [function call ABI] as `I` (and therefore, as `Option<I>`). If `I` is `T`,
241//! it is therefore sound to transmute a value `t` of type `I` to type
242//! `Result<T, E>` (producing the value `Ok(t)`) and to transmute a value
243//! `Ok(t)` of type `Result<T, E>` to type `I` (producing the value `t`). If `I`
244//! is `E`, the same applies with `Ok` replaced by `Err`.
245//!
246//! For example, `NonZeroI32` qualifies for the `Option` representation
247//! guarantees and `()` is a zero-sized type with alignment 1. This means that
248//! both `Result<NonZeroI32, ()>` and `Result<(), NonZeroI32>` have the same
249//! size, alignment, and ABI as `NonZeroI32` (and `Option<NonZeroI32>`). The
250//! only difference between these is in the implied semantics:
251//!
252//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
253//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
254//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
255//!
256//! [opt-rep]: ../option/index.html#representation "Option Representation"
257//! [function call ABI]: ../primitive.fn.html#abi-compatibility
258//!
259//! # Method overview
260//!
261//! In addition to working with pattern matching, [`Result`] provides a
262//! wide variety of different methods.
263//!
264//! ## Querying the variant
265//!
266//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
267//! is [`Ok`] or [`Err`], respectively.
268//!
269//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
270//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
271//! then [`false`] is returned instead without executing the function.
272//!
273//! [`is_err`]: Result::is_err
274//! [`is_ok`]: Result::is_ok
275//! [`is_ok_and`]: Result::is_ok_and
276//! [`is_err_and`]: Result::is_err_and
277//!
278//! ## Adapters for working with references
279//!
280//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
281//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
282//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
283//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
284//!   `Result<&mut T::Target, &mut E>`
285//!
286//! [`as_deref`]: Result::as_deref
287//! [`as_deref_mut`]: Result::as_deref_mut
288//! [`as_mut`]: Result::as_mut
289//! [`as_ref`]: Result::as_ref
290//!
291//! ## Extracting contained values
292//!
293//! These methods extract the contained value in a [`Result<T, E>`] when it
294//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
295//!
296//! * [`expect`] panics with a provided custom message
297//! * [`unwrap`] panics with a generic message
298//! * [`unwrap_or`] returns the provided default value
299//! * [`unwrap_or_default`] returns the default value of the type `T`
300//!   (which must implement the [`Default`] trait)
301//! * [`unwrap_or_else`] returns the result of evaluating the provided
302//!   function
303//! * [`unwrap_unchecked`] produces *[undefined behavior]*
304//!
305//! The panicking methods [`expect`] and [`unwrap`] require `E` to
306//! implement the [`Debug`] trait.
307//!
308//! [`Debug`]: crate::fmt::Debug
309//! [`expect`]: Result::expect
310//! [`unwrap`]: Result::unwrap
311//! [`unwrap_or`]: Result::unwrap_or
312//! [`unwrap_or_default`]: Result::unwrap_or_default
313//! [`unwrap_or_else`]: Result::unwrap_or_else
314//! [`unwrap_unchecked`]: Result::unwrap_unchecked
315//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
316//!
317//! These methods extract the contained value in a [`Result<T, E>`] when it
318//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
319//! trait. If the [`Result`] is [`Ok`]:
320//!
321//! * [`expect_err`] panics with a provided custom message
322//! * [`unwrap_err`] panics with a generic message
323//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
324//!
325//! [`Debug`]: crate::fmt::Debug
326//! [`expect_err`]: Result::expect_err
327//! [`unwrap_err`]: Result::unwrap_err
328//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
329//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
330//!
331//! ## Transforming contained values
332//!
333//! These methods transform [`Result`] to [`Option`]:
334//!
335//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
336//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
337//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
338//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
339//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
340//!   [`Option`] of a [`Result`]
341//!
342// Do NOT add link reference definitions for `err` or `ok`, because they
343// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
344// to case folding.
345//!
346//! [`Err(e)`]: Err
347//! [`Ok(v)`]: Ok
348//! [`Some(e)`]: Option::Some
349//! [`Some(v)`]: Option::Some
350//! [`transpose`]: Result::transpose
351//!
352//! These methods transform the contained value of the [`Ok`] variant:
353//!
354//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
355//!   the provided function to the contained value of [`Ok`] and leaving
356//!   [`Err`] values unchanged
357//! * [`inspect`] takes ownership of the [`Result`], applies the
358//!   provided function to the contained value by reference,
359//!   and then returns the [`Result`]
360//!
361//! [`map`]: Result::map
362//! [`inspect`]: Result::inspect
363//!
364//! These methods transform the contained value of the [`Err`] variant:
365//!
366//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
367//!   applying the provided function to the contained value of [`Err`] and
368//!   leaving [`Ok`] values unchanged
369//! * [`inspect_err`] takes ownership of the [`Result`], applies the
370//!   provided function to the contained value of [`Err`] by reference,
371//!   and then returns the [`Result`]
372//!
373//! [`map_err`]: Result::map_err
374//! [`inspect_err`]: Result::inspect_err
375//!
376//! These methods transform a [`Result<T, E>`] into a value of a possibly
377//! different type `U`:
378//!
379//! * [`map_or`] applies the provided function to the contained value of
380//!   [`Ok`], or returns the provided default value if the [`Result`] is
381//!   [`Err`]
382//! * [`map_or_else`] applies the provided function to the contained value
383//!   of [`Ok`], or applies the provided default fallback function to the
384//!   contained value of [`Err`]
385//!
386//! [`map_or`]: Result::map_or
387//! [`map_or_else`]: Result::map_or_else
388//!
389//! ## Boolean operators
390//!
391//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
392//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
393//! categories of these methods: ones that take a [`Result`] as input, and
394//! ones that take a function as input (to be lazily evaluated).
395//!
396//! The [`and`] and [`or`] methods take another [`Result`] as input, and
397//! produce a [`Result`] as output. The [`and`] method can produce a
398//! [`Result<U, E>`] value having a different inner type `U` than
399//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
400//! value having a different error type `F` than [`Result<T, E>`].
401//!
402//! | method  | self     | input     | output   |
403//! |---------|----------|-----------|----------|
404//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
405//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
406//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
407//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
408//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
409//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
410//!
411//! [`and`]: Result::and
412//! [`or`]: Result::or
413//!
414//! The [`and_then`] and [`or_else`] methods take a function as input, and
415//! only evaluate the function when they need to produce a new value. The
416//! [`and_then`] method can produce a [`Result<U, E>`] value having a
417//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
418//! can produce a [`Result<T, F>`] value having a different error type `F`
419//! than [`Result<T, E>`].
420//!
421//! | method       | self     | function input | function result | output   |
422//! |--------------|----------|----------------|-----------------|----------|
423//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
424//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
425//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
426//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
427//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
428//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
429//!
430//! [`and_then`]: Result::and_then
431//! [`or_else`]: Result::or_else
432//!
433//! ## Comparison operators
434//!
435//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
436//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
437//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
438//! compare as their contained values would in `T` or `E` respectively.  If `T`
439//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
440//!
441//! ```
442//! assert!(Ok(1) < Err(0));
443//! let x: Result<i32, ()> = Ok(0);
444//! let y = Ok(1);
445//! assert!(x < y);
446//! let x: Result<(), i32> = Err(0);
447//! let y = Err(1);
448//! assert!(x < y);
449//! ```
450//!
451//! ## Iterating over `Result`
452//!
453//! A [`Result`] can be iterated over. This can be helpful if you need an
454//! iterator that is conditionally empty. The iterator will either produce
455//! a single value (when the [`Result`] is [`Ok`]), or produce no values
456//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
457//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
458//! [`Result`] is [`Err`].
459//!
460//! [`Ok(v)`]: Ok
461//! [`empty()`]: crate::iter::empty
462//! [`once(v)`]: crate::iter::once
463//!
464//! Iterators over [`Result<T, E>`] come in three types:
465//!
466//! * [`into_iter`] consumes the [`Result`] and produces the contained
467//!   value
468//! * [`iter`] produces an immutable reference of type `&T` to the
469//!   contained value
470//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
471//!   contained value
472//!
473//! See [Iterating over `Option`] for examples of how this can be useful.
474//!
475//! [Iterating over `Option`]: crate::option#iterating-over-option
476//! [`into_iter`]: Result::into_iter
477//! [`iter`]: Result::iter
478//! [`iter_mut`]: Result::iter_mut
479//!
480//! You might want to use an iterator chain to do multiple instances of an
481//! operation that can fail, but would like to ignore failures while
482//! continuing to process the successful results. In this example, we take
483//! advantage of the iterable nature of [`Result`] to select only the
484//! [`Ok`] values using [`flatten`][Iterator::flatten].
485//!
486//! ```
487//! # use std::str::FromStr;
488//! let mut results = vec![];
489//! let mut errs = vec![];
490//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
491//!    .into_iter()
492//!    .map(u8::from_str)
493//!    // Save clones of the raw `Result` values to inspect
494//!    .inspect(|x| results.push(x.clone()))
495//!    // Challenge: explain how this captures only the `Err` values
496//!    .inspect(|x| errs.extend(x.clone().err()))
497//!    .flatten()
498//!    .collect();
499//! assert_eq!(errs.len(), 3);
500//! assert_eq!(nums, [17, 99]);
501//! println!("results {results:?}");
502//! println!("errs {errs:?}");
503//! println!("nums {nums:?}");
504//! ```
505//!
506//! ## Collecting into `Result`
507//!
508//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
509//! which allows an iterator over [`Result`] values to be collected into a
510//! [`Result`] of a collection of each contained value of the original
511//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
512//!
513//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
514//!
515//! ```
516//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
517//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
518//! assert_eq!(res, Err("err!"));
519//! let v = [Ok(2), Ok(4), Ok(8)];
520//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
521//! assert_eq!(res, Ok(vec![2, 4, 8]));
522//! ```
523//!
524//! [`Result`] also implements the [`Product`][impl-Product] and
525//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
526//! to provide the [`product`][Iterator::product] and
527//! [`sum`][Iterator::sum] methods.
528//!
529//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
530//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
531//!
532//! ```
533//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
534//! let res: Result<i32, &str> = v.into_iter().sum();
535//! assert_eq!(res, Err("error!"));
536//! let v = [Ok(1), Ok(2), Ok(21)];
537//! let res: Result<i32, &str> = v.into_iter().product();
538//! assert_eq!(res, Ok(42));
539//! ```
540
541#![stable(feature = "rust1", since = "1.0.0")]
542
543use crate::iter::{self, FusedIterator, TrustedLen};
544use crate::marker::Destruct;
545use crate::ops::{self, ControlFlow, Deref, DerefMut};
546use crate::{convert, fmt, hint};
547
548/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
549///
550/// See the [module documentation](self) for details.
551#[doc(search_unbox)]
552#[derive(Copy, Debug, Hash)]
553#[derive_const(PartialEq, PartialOrd, Eq, Ord)]
554#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
555#[rustc_diagnostic_item = "Result"]
556#[stable(feature = "rust1", since = "1.0.0")]
557pub enum Result<T, E> {
558    /// Contains the success value
559    #[lang = "Ok"]
560    #[stable(feature = "rust1", since = "1.0.0")]
561    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
562
563    /// Contains the error value
564    #[lang = "Err"]
565    #[stable(feature = "rust1", since = "1.0.0")]
566    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
567}
568
569/////////////////////////////////////////////////////////////////////////////
570// Type implementation
571/////////////////////////////////////////////////////////////////////////////
572
573impl<T, E> Result<T, E> {
574    /////////////////////////////////////////////////////////////////////////
575    // Querying the contained values
576    /////////////////////////////////////////////////////////////////////////
577
578    /// Returns `true` if the result is [`Ok`].
579    ///
580    /// # Examples
581    ///
582    /// ```
583    /// let x: Result<i32, &str> = Ok(-3);
584    /// assert_eq!(x.is_ok(), true);
585    ///
586    /// let x: Result<i32, &str> = Err("Some error message");
587    /// assert_eq!(x.is_ok(), false);
588    /// ```
589    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
590    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
591    #[inline]
592    #[stable(feature = "rust1", since = "1.0.0")]
593    pub const fn is_ok(&self) -> bool {
594        matches!(*self, Ok(_))
595    }
596
597    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
598    ///
599    /// # Examples
600    ///
601    /// ```
602    /// let x: Result<u32, &str> = Ok(2);
603    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
604    ///
605    /// let x: Result<u32, &str> = Ok(0);
606    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
607    ///
608    /// let x: Result<u32, &str> = Err("hey");
609    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
610    ///
611    /// let x: Result<String, &str> = Ok("ownership".to_string());
612    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
613    /// println!("still alive {:?}", x);
614    /// ```
615    #[must_use]
616    #[inline]
617    #[stable(feature = "is_some_and", since = "1.70.0")]
618    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
619    pub const fn is_ok_and<F>(self, f: F) -> bool
620    where
621        F: [const] FnOnce(T) -> bool + [const] Destruct,
622        T: [const] Destruct,
623        E: [const] Destruct,
624    {
625        match self {
626            Err(_) => false,
627            Ok(x) => f(x),
628        }
629    }
630
631    /// Returns `true` if the result is [`Err`].
632    ///
633    /// # Examples
634    ///
635    /// ```
636    /// let x: Result<i32, &str> = Ok(-3);
637    /// assert_eq!(x.is_err(), false);
638    ///
639    /// let x: Result<i32, &str> = Err("Some error message");
640    /// assert_eq!(x.is_err(), true);
641    /// ```
642    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
643    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
644    #[inline]
645    #[stable(feature = "rust1", since = "1.0.0")]
646    pub const fn is_err(&self) -> bool {
647        !self.is_ok()
648    }
649
650    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
651    ///
652    /// # Examples
653    ///
654    /// ```
655    /// use std::io::{Error, ErrorKind};
656    ///
657    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
658    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
659    ///
660    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
661    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
662    ///
663    /// let x: Result<u32, Error> = Ok(123);
664    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
665    ///
666    /// let x: Result<u32, String> = Err("ownership".to_string());
667    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
668    /// println!("still alive {:?}", x);
669    /// ```
670    #[must_use]
671    #[inline]
672    #[stable(feature = "is_some_and", since = "1.70.0")]
673    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
674    pub const fn is_err_and<F>(self, f: F) -> bool
675    where
676        F: [const] FnOnce(E) -> bool + [const] Destruct,
677        E: [const] Destruct,
678        T: [const] Destruct,
679    {
680        match self {
681            Ok(_) => false,
682            Err(e) => f(e),
683        }
684    }
685
686    /////////////////////////////////////////////////////////////////////////
687    // Adapter for each variant
688    /////////////////////////////////////////////////////////////////////////
689
690    /// Converts from `Result<T, E>` to [`Option<T>`].
691    ///
692    /// Converts `self` into an [`Option<T>`], consuming `self`,
693    /// and discarding the error, if any.
694    ///
695    /// # Examples
696    ///
697    /// ```
698    /// let x: Result<u32, &str> = Ok(2);
699    /// assert_eq!(x.ok(), Some(2));
700    ///
701    /// let x: Result<u32, &str> = Err("Nothing here");
702    /// assert_eq!(x.ok(), None);
703    /// ```
704    #[inline]
705    #[stable(feature = "rust1", since = "1.0.0")]
706    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
707    #[rustc_diagnostic_item = "result_ok_method"]
708    pub const fn ok(self) -> Option<T>
709    where
710        T: [const] Destruct,
711        E: [const] Destruct,
712    {
713        match self {
714            Ok(x) => Some(x),
715            Err(_) => None,
716        }
717    }
718
719    /// Converts from `Result<T, E>` to [`Option<E>`].
720    ///
721    /// Converts `self` into an [`Option<E>`], consuming `self`,
722    /// and discarding the success value, if any.
723    ///
724    /// # Examples
725    ///
726    /// ```
727    /// let x: Result<u32, &str> = Ok(2);
728    /// assert_eq!(x.err(), None);
729    ///
730    /// let x: Result<u32, &str> = Err("Nothing here");
731    /// assert_eq!(x.err(), Some("Nothing here"));
732    /// ```
733    #[inline]
734    #[stable(feature = "rust1", since = "1.0.0")]
735    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
736    pub const fn err(self) -> Option<E>
737    where
738        T: [const] Destruct,
739        E: [const] Destruct,
740    {
741        match self {
742            Ok(_) => None,
743            Err(x) => Some(x),
744        }
745    }
746
747    /////////////////////////////////////////////////////////////////////////
748    // Adapter for working with references
749    /////////////////////////////////////////////////////////////////////////
750
751    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
752    ///
753    /// Produces a new `Result`, containing a reference
754    /// into the original, leaving the original in place.
755    ///
756    /// # Examples
757    ///
758    /// ```
759    /// let x: Result<u32, &str> = Ok(2);
760    /// assert_eq!(x.as_ref(), Ok(&2));
761    ///
762    /// let x: Result<u32, &str> = Err("Error");
763    /// assert_eq!(x.as_ref(), Err(&"Error"));
764    /// ```
765    #[inline]
766    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
767    #[stable(feature = "rust1", since = "1.0.0")]
768    pub const fn as_ref(&self) -> Result<&T, &E> {
769        match *self {
770            Ok(ref x) => Ok(x),
771            Err(ref x) => Err(x),
772        }
773    }
774
775    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
776    ///
777    /// # Examples
778    ///
779    /// ```
780    /// fn mutate(r: &mut Result<i32, i32>) {
781    ///     match r.as_mut() {
782    ///         Ok(v) => *v = 42,
783    ///         Err(e) => *e = 0,
784    ///     }
785    /// }
786    ///
787    /// let mut x: Result<i32, i32> = Ok(2);
788    /// mutate(&mut x);
789    /// assert_eq!(x.unwrap(), 42);
790    ///
791    /// let mut x: Result<i32, i32> = Err(13);
792    /// mutate(&mut x);
793    /// assert_eq!(x.unwrap_err(), 0);
794    /// ```
795    #[inline]
796    #[stable(feature = "rust1", since = "1.0.0")]
797    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
798    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
799        match *self {
800            Ok(ref mut x) => Ok(x),
801            Err(ref mut x) => Err(x),
802        }
803    }
804
805    /////////////////////////////////////////////////////////////////////////
806    // Transforming contained values
807    /////////////////////////////////////////////////////////////////////////
808
809    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
810    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
811    ///
812    /// This function can be used to compose the results of two functions.
813    ///
814    /// # Examples
815    ///
816    /// Print the numbers on each line of a string multiplied by two.
817    ///
818    /// ```
819    /// let line = "1\n2\n3\n4\n";
820    ///
821    /// for num in line.lines() {
822    ///     match num.parse::<i32>().map(|i| i * 2) {
823    ///         Ok(n) => println!("{n}"),
824    ///         Err(..) => {}
825    ///     }
826    /// }
827    /// ```
828    #[inline]
829    #[stable(feature = "rust1", since = "1.0.0")]
830    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
831    pub const fn map<U, F>(self, op: F) -> Result<U, E>
832    where
833        F: [const] FnOnce(T) -> U + [const] Destruct,
834    {
835        match self {
836            Ok(t) => Ok(op(t)),
837            Err(e) => Err(e),
838        }
839    }
840
841    /// Returns the provided default (if [`Err`]), or
842    /// applies a function to the contained value (if [`Ok`]).
843    ///
844    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
845    /// the result of a function call, it is recommended to use [`map_or_else`],
846    /// which is lazily evaluated.
847    ///
848    /// [`map_or_else`]: Result::map_or_else
849    ///
850    /// # Examples
851    ///
852    /// ```
853    /// let x: Result<_, &str> = Ok("foo");
854    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
855    ///
856    /// let x: Result<&str, _> = Err("bar");
857    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
858    /// ```
859    #[inline]
860    #[stable(feature = "result_map_or", since = "1.41.0")]
861    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
862    #[must_use = "if you don't need the returned value, use `if let` instead"]
863    pub const fn map_or<U, F>(self, default: U, f: F) -> U
864    where
865        F: [const] FnOnce(T) -> U + [const] Destruct,
866        T: [const] Destruct,
867        E: [const] Destruct,
868        U: [const] Destruct,
869    {
870        match self {
871            Ok(t) => f(t),
872            Err(_) => default,
873        }
874    }
875
876    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
877    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
878    ///
879    /// This function can be used to unpack a successful result
880    /// while handling an error.
881    ///
882    ///
883    /// # Examples
884    ///
885    /// ```
886    /// let k = 21;
887    ///
888    /// let x : Result<_, &str> = Ok("foo");
889    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
890    ///
891    /// let x : Result<&str, _> = Err("bar");
892    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
893    /// ```
894    #[inline]
895    #[stable(feature = "result_map_or_else", since = "1.41.0")]
896    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
897    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
898    where
899        D: [const] FnOnce(E) -> U + [const] Destruct,
900        F: [const] FnOnce(T) -> U + [const] Destruct,
901    {
902        match self {
903            Ok(t) => f(t),
904            Err(e) => default(e),
905        }
906    }
907
908    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
909    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
910    /// [default value] for the type `U`.
911    ///
912    /// # Examples
913    ///
914    /// ```
915    /// #![feature(result_option_map_or_default)]
916    ///
917    /// let x: Result<_, &str> = Ok("foo");
918    /// let y: Result<&str, _> = Err("bar");
919    ///
920    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
921    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
922    /// ```
923    ///
924    /// [default value]: Default::default
925    #[inline]
926    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
927    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
928    pub const fn map_or_default<U, F>(self, f: F) -> U
929    where
930        F: [const] FnOnce(T) -> U + [const] Destruct,
931        U: [const] Default,
932        T: [const] Destruct,
933        E: [const] Destruct,
934    {
935        match self {
936            Ok(t) => f(t),
937            Err(_) => U::default(),
938        }
939    }
940
941    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
942    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
943    ///
944    /// This function can be used to pass through a successful result while handling
945    /// an error.
946    ///
947    ///
948    /// # Examples
949    ///
950    /// ```
951    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
952    ///
953    /// let x: Result<u32, u32> = Ok(2);
954    /// assert_eq!(x.map_err(stringify), Ok(2));
955    ///
956    /// let x: Result<u32, u32> = Err(13);
957    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
958    /// ```
959    #[inline]
960    #[stable(feature = "rust1", since = "1.0.0")]
961    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
962    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
963    where
964        O: [const] FnOnce(E) -> F + [const] Destruct,
965    {
966        match self {
967            Ok(t) => Ok(t),
968            Err(e) => Err(op(e)),
969        }
970    }
971
972    /// Calls a function with a reference to the contained value if [`Ok`].
973    ///
974    /// Returns the original result.
975    ///
976    /// # Examples
977    ///
978    /// ```
979    /// let x: u8 = "4"
980    ///     .parse::<u8>()
981    ///     .inspect(|x| println!("original: {x}"))
982    ///     .map(|x| x.pow(3))
983    ///     .expect("failed to parse number");
984    /// ```
985    #[inline]
986    #[stable(feature = "result_option_inspect", since = "1.76.0")]
987    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
988    pub const fn inspect<F>(self, f: F) -> Self
989    where
990        F: [const] FnOnce(&T) + [const] Destruct,
991    {
992        if let Ok(ref t) = self {
993            f(t);
994        }
995
996        self
997    }
998
999    /// Calls a function with a reference to the contained value if [`Err`].
1000    ///
1001    /// Returns the original result.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// use std::{fs, io};
1007    ///
1008    /// fn read() -> io::Result<String> {
1009    ///     fs::read_to_string("address.txt")
1010    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1011    /// }
1012    /// ```
1013    #[inline]
1014    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1015    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1016    pub const fn inspect_err<F>(self, f: F) -> Self
1017    where
1018        F: [const] FnOnce(&E) + [const] Destruct,
1019    {
1020        if let Err(ref e) = self {
1021            f(e);
1022        }
1023
1024        self
1025    }
1026
1027    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1028    ///
1029    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1030    /// and returns the new [`Result`].
1031    ///
1032    /// # Examples
1033    ///
1034    /// ```
1035    /// let x: Result<String, u32> = Ok("hello".to_string());
1036    /// let y: Result<&str, &u32> = Ok("hello");
1037    /// assert_eq!(x.as_deref(), y);
1038    ///
1039    /// let x: Result<String, u32> = Err(42);
1040    /// let y: Result<&str, &u32> = Err(&42);
1041    /// assert_eq!(x.as_deref(), y);
1042    /// ```
1043    #[inline]
1044    #[stable(feature = "inner_deref", since = "1.47.0")]
1045    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1046    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1047    where
1048        T: [const] Deref,
1049    {
1050        self.as_ref().map(Deref::deref)
1051    }
1052
1053    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1054    ///
1055    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1056    /// and returns the new [`Result`].
1057    ///
1058    /// # Examples
1059    ///
1060    /// ```
1061    /// let mut s = "HELLO".to_string();
1062    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1063    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1064    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1065    ///
1066    /// let mut i = 42;
1067    /// let mut x: Result<String, u32> = Err(42);
1068    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1069    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1070    /// ```
1071    #[inline]
1072    #[stable(feature = "inner_deref", since = "1.47.0")]
1073    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1074    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1075    where
1076        T: [const] DerefMut,
1077    {
1078        self.as_mut().map(DerefMut::deref_mut)
1079    }
1080
1081    /////////////////////////////////////////////////////////////////////////
1082    // Iterator constructors
1083    /////////////////////////////////////////////////////////////////////////
1084
1085    /// Returns an iterator over the possibly contained value.
1086    ///
1087    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// let x: Result<u32, &str> = Ok(7);
1093    /// assert_eq!(x.iter().next(), Some(&7));
1094    ///
1095    /// let x: Result<u32, &str> = Err("nothing!");
1096    /// assert_eq!(x.iter().next(), None);
1097    /// ```
1098    #[inline]
1099    #[stable(feature = "rust1", since = "1.0.0")]
1100    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1101    pub const fn iter(&self) -> Iter<'_, T> {
1102        Iter { inner: self.as_ref().ok() }
1103    }
1104
1105    /// Returns a mutable iterator over the possibly contained value.
1106    ///
1107    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1108    ///
1109    /// # Examples
1110    ///
1111    /// ```
1112    /// let mut x: Result<u32, &str> = Ok(7);
1113    /// match x.iter_mut().next() {
1114    ///     Some(v) => *v = 40,
1115    ///     None => {},
1116    /// }
1117    /// assert_eq!(x, Ok(40));
1118    ///
1119    /// let mut x: Result<u32, &str> = Err("nothing!");
1120    /// assert_eq!(x.iter_mut().next(), None);
1121    /// ```
1122    #[inline]
1123    #[stable(feature = "rust1", since = "1.0.0")]
1124    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1125    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1126        IterMut { inner: self.as_mut().ok() }
1127    }
1128
1129    /////////////////////////////////////////////////////////////////////////
1130    // Extract a value
1131    /////////////////////////////////////////////////////////////////////////
1132
1133    /// Returns the contained [`Ok`] value, consuming the `self` value.
1134    ///
1135    /// Because this function may panic, its use is generally discouraged.
1136    /// Instead, prefer to use pattern matching and handle the [`Err`]
1137    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1138    /// [`unwrap_or_default`].
1139    ///
1140    /// [`unwrap_or`]: Result::unwrap_or
1141    /// [`unwrap_or_else`]: Result::unwrap_or_else
1142    /// [`unwrap_or_default`]: Result::unwrap_or_default
1143    ///
1144    /// # Panics
1145    ///
1146    /// Panics if the value is an [`Err`], with a panic message including the
1147    /// passed message, and the content of the [`Err`].
1148    ///
1149    ///
1150    /// # Examples
1151    ///
1152    /// ```should_panic
1153    /// let x: Result<u32, &str> = Err("emergency failure");
1154    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1155    /// ```
1156    ///
1157    /// # Recommended Message Style
1158    ///
1159    /// We recommend that `expect` messages are used to describe the reason you
1160    /// _expect_ the `Result` should be `Ok`.
1161    ///
1162    /// ```should_panic
1163    /// let path = std::env::var("IMPORTANT_PATH")
1164    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1165    /// ```
1166    ///
1167    /// **Hint**: If you're having trouble remembering how to phrase expect
1168    /// error messages remember to focus on the word "should" as in "env
1169    /// variable should be set by blah" or "the given binary should be available
1170    /// and executable by the current user".
1171    ///
1172    /// For more detail on expect message styles and the reasoning behind our recommendation please
1173    /// refer to the section on ["Common Message
1174    /// Styles"](../../std/error/index.html#common-message-styles) in the
1175    /// [`std::error`](../../std/error/index.html) module docs.
1176    #[inline]
1177    #[track_caller]
1178    #[stable(feature = "result_expect", since = "1.4.0")]
1179    pub fn expect(self, msg: &str) -> T
1180    where
1181        E: fmt::Debug,
1182    {
1183        match self {
1184            Ok(t) => t,
1185            Err(e) => unwrap_failed(msg, &e),
1186        }
1187    }
1188
1189    /// Returns the contained [`Ok`] value, consuming the `self` value.
1190    ///
1191    /// Because this function may panic, its use is generally discouraged.
1192    /// Panics are meant for unrecoverable errors, and
1193    /// [may abort the entire program][panic-abort].
1194    ///
1195    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1196    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1197    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1198    ///
1199    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1200    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1201    /// [`unwrap_or`]: Result::unwrap_or
1202    /// [`unwrap_or_else`]: Result::unwrap_or_else
1203    /// [`unwrap_or_default`]: Result::unwrap_or_default
1204    ///
1205    /// # Panics
1206    ///
1207    /// Panics if the value is an [`Err`], with a panic message provided by the
1208    /// [`Err`]'s value.
1209    ///
1210    ///
1211    /// # Examples
1212    ///
1213    /// Basic usage:
1214    ///
1215    /// ```
1216    /// let x: Result<u32, &str> = Ok(2);
1217    /// assert_eq!(x.unwrap(), 2);
1218    /// ```
1219    ///
1220    /// ```should_panic
1221    /// let x: Result<u32, &str> = Err("emergency failure");
1222    /// x.unwrap(); // panics with `emergency failure`
1223    /// ```
1224    #[inline(always)]
1225    #[track_caller]
1226    #[stable(feature = "rust1", since = "1.0.0")]
1227    pub fn unwrap(self) -> T
1228    where
1229        E: fmt::Debug,
1230    {
1231        match self {
1232            Ok(t) => t,
1233            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1234        }
1235    }
1236
1237    /// Returns the contained [`Ok`] value or a default
1238    ///
1239    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1240    /// value, otherwise if [`Err`], returns the default value for that
1241    /// type.
1242    ///
1243    /// # Examples
1244    ///
1245    /// Converts a string to an integer, turning poorly-formed strings
1246    /// into 0 (the default value for integers). [`parse`] converts
1247    /// a string to any other type that implements [`FromStr`], returning an
1248    /// [`Err`] on error.
1249    ///
1250    /// ```
1251    /// let good_year_from_input = "1909";
1252    /// let bad_year_from_input = "190blarg";
1253    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1254    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1255    ///
1256    /// assert_eq!(1909, good_year);
1257    /// assert_eq!(0, bad_year);
1258    /// ```
1259    ///
1260    /// [`parse`]: str::parse
1261    /// [`FromStr`]: crate::str::FromStr
1262    #[inline]
1263    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1264    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1265    pub const fn unwrap_or_default(self) -> T
1266    where
1267        T: [const] Default + [const] Destruct,
1268        E: [const] Destruct,
1269    {
1270        match self {
1271            Ok(x) => x,
1272            Err(_) => Default::default(),
1273        }
1274    }
1275
1276    /// Returns the contained [`Err`] value, consuming the `self` value.
1277    ///
1278    /// # Panics
1279    ///
1280    /// Panics if the value is an [`Ok`], with a panic message including the
1281    /// passed message, and the content of the [`Ok`].
1282    ///
1283    ///
1284    /// # Examples
1285    ///
1286    /// ```should_panic
1287    /// let x: Result<u32, &str> = Ok(10);
1288    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1289    /// ```
1290    #[inline]
1291    #[track_caller]
1292    #[stable(feature = "result_expect_err", since = "1.17.0")]
1293    pub fn expect_err(self, msg: &str) -> E
1294    where
1295        T: fmt::Debug,
1296    {
1297        match self {
1298            Ok(t) => unwrap_failed(msg, &t),
1299            Err(e) => e,
1300        }
1301    }
1302
1303    /// Returns the contained [`Err`] value, consuming the `self` value.
1304    ///
1305    /// # Panics
1306    ///
1307    /// Panics if the value is an [`Ok`], with a custom panic message provided
1308    /// by the [`Ok`]'s value.
1309    ///
1310    /// # Examples
1311    ///
1312    /// ```should_panic
1313    /// let x: Result<u32, &str> = Ok(2);
1314    /// x.unwrap_err(); // panics with `2`
1315    /// ```
1316    ///
1317    /// ```
1318    /// let x: Result<u32, &str> = Err("emergency failure");
1319    /// assert_eq!(x.unwrap_err(), "emergency failure");
1320    /// ```
1321    #[inline]
1322    #[track_caller]
1323    #[stable(feature = "rust1", since = "1.0.0")]
1324    pub fn unwrap_err(self) -> E
1325    where
1326        T: fmt::Debug,
1327    {
1328        match self {
1329            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1330            Err(e) => e,
1331        }
1332    }
1333
1334    /// Returns the contained [`Ok`] value, but never panics.
1335    ///
1336    /// Unlike [`unwrap`], this method is known to never panic on the
1337    /// result types it is implemented for. Therefore, it can be used
1338    /// instead of `unwrap` as a maintainability safeguard that will fail
1339    /// to compile if the error type of the `Result` is later changed
1340    /// to an error that can actually occur.
1341    ///
1342    /// [`unwrap`]: Result::unwrap
1343    ///
1344    /// # Examples
1345    ///
1346    /// ```
1347    /// # #![feature(never_type)]
1348    /// # #![feature(unwrap_infallible)]
1349    ///
1350    /// fn only_good_news() -> Result<String, !> {
1351    ///     Ok("this is fine".into())
1352    /// }
1353    ///
1354    /// let s: String = only_good_news().into_ok();
1355    /// println!("{s}");
1356    /// ```
1357    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1358    #[inline]
1359    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1360    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1361    pub const fn into_ok(self) -> T
1362    where
1363        E: [const] Into<!>,
1364    {
1365        match self {
1366            Ok(x) => x,
1367            Err(e) => e.into(),
1368        }
1369    }
1370
1371    /// Returns the contained [`Err`] value, but never panics.
1372    ///
1373    /// Unlike [`unwrap_err`], this method is known to never panic on the
1374    /// result types it is implemented for. Therefore, it can be used
1375    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1376    /// to compile if the ok type of the `Result` is later changed
1377    /// to a type that can actually occur.
1378    ///
1379    /// [`unwrap_err`]: Result::unwrap_err
1380    ///
1381    /// # Examples
1382    ///
1383    /// ```
1384    /// # #![feature(never_type)]
1385    /// # #![feature(unwrap_infallible)]
1386    ///
1387    /// fn only_bad_news() -> Result<!, String> {
1388    ///     Err("Oops, it failed".into())
1389    /// }
1390    ///
1391    /// let error: String = only_bad_news().into_err();
1392    /// println!("{error}");
1393    /// ```
1394    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1395    #[inline]
1396    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1397    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1398    pub const fn into_err(self) -> E
1399    where
1400        T: [const] Into<!>,
1401    {
1402        match self {
1403            Ok(x) => x.into(),
1404            Err(e) => e,
1405        }
1406    }
1407
1408    ////////////////////////////////////////////////////////////////////////
1409    // Boolean operations on the values, eager and lazy
1410    /////////////////////////////////////////////////////////////////////////
1411
1412    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1413    ///
1414    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1415    /// result of a function call, it is recommended to use [`and_then`], which is
1416    /// lazily evaluated.
1417    ///
1418    /// [`and_then`]: Result::and_then
1419    ///
1420    /// # Examples
1421    ///
1422    /// ```
1423    /// let x: Result<u32, &str> = Ok(2);
1424    /// let y: Result<&str, &str> = Err("late error");
1425    /// assert_eq!(x.and(y), Err("late error"));
1426    ///
1427    /// let x: Result<u32, &str> = Err("early error");
1428    /// let y: Result<&str, &str> = Ok("foo");
1429    /// assert_eq!(x.and(y), Err("early error"));
1430    ///
1431    /// let x: Result<u32, &str> = Err("not a 2");
1432    /// let y: Result<&str, &str> = Err("late error");
1433    /// assert_eq!(x.and(y), Err("not a 2"));
1434    ///
1435    /// let x: Result<u32, &str> = Ok(2);
1436    /// let y: Result<&str, &str> = Ok("different result type");
1437    /// assert_eq!(x.and(y), Ok("different result type"));
1438    /// ```
1439    #[inline]
1440    #[stable(feature = "rust1", since = "1.0.0")]
1441    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1442    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1443    where
1444        T: [const] Destruct,
1445        E: [const] Destruct,
1446        U: [const] Destruct,
1447    {
1448        match self {
1449            Ok(_) => res,
1450            Err(e) => Err(e),
1451        }
1452    }
1453
1454    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1455    ///
1456    ///
1457    /// This function can be used for control flow based on `Result` values.
1458    ///
1459    /// # Examples
1460    ///
1461    /// ```
1462    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1463    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1464    /// }
1465    ///
1466    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1467    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1468    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1469    /// ```
1470    ///
1471    /// Often used to chain fallible operations that may return [`Err`].
1472    ///
1473    /// ```
1474    /// use std::{io::ErrorKind, path::Path};
1475    ///
1476    /// // Note: on Windows "/" maps to "C:\"
1477    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1478    /// assert!(root_modified_time.is_ok());
1479    ///
1480    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1481    /// assert!(should_fail.is_err());
1482    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1483    /// ```
1484    #[inline]
1485    #[stable(feature = "rust1", since = "1.0.0")]
1486    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1487    #[rustc_confusables("flat_map", "flatmap")]
1488    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1489    where
1490        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1491    {
1492        match self {
1493            Ok(t) => op(t),
1494            Err(e) => Err(e),
1495        }
1496    }
1497
1498    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1499    ///
1500    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1501    /// result of a function call, it is recommended to use [`or_else`], which is
1502    /// lazily evaluated.
1503    ///
1504    /// [`or_else`]: Result::or_else
1505    ///
1506    /// # Examples
1507    ///
1508    /// ```
1509    /// let x: Result<u32, &str> = Ok(2);
1510    /// let y: Result<u32, &str> = Err("late error");
1511    /// assert_eq!(x.or(y), Ok(2));
1512    ///
1513    /// let x: Result<u32, &str> = Err("early error");
1514    /// let y: Result<u32, &str> = Ok(2);
1515    /// assert_eq!(x.or(y), Ok(2));
1516    ///
1517    /// let x: Result<u32, &str> = Err("not a 2");
1518    /// let y: Result<u32, &str> = Err("late error");
1519    /// assert_eq!(x.or(y), Err("late error"));
1520    ///
1521    /// let x: Result<u32, &str> = Ok(2);
1522    /// let y: Result<u32, &str> = Ok(100);
1523    /// assert_eq!(x.or(y), Ok(2));
1524    /// ```
1525    #[inline]
1526    #[stable(feature = "rust1", since = "1.0.0")]
1527    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1528    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1529    where
1530        T: [const] Destruct,
1531        E: [const] Destruct,
1532        F: [const] Destruct,
1533    {
1534        match self {
1535            Ok(v) => Ok(v),
1536            Err(_) => res,
1537        }
1538    }
1539
1540    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1541    ///
1542    /// This function can be used for control flow based on result values.
1543    ///
1544    ///
1545    /// # Examples
1546    ///
1547    /// ```
1548    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1549    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1550    ///
1551    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1552    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1553    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1554    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1555    /// ```
1556    #[inline]
1557    #[stable(feature = "rust1", since = "1.0.0")]
1558    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1559    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1560    where
1561        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1562    {
1563        match self {
1564            Ok(t) => Ok(t),
1565            Err(e) => op(e),
1566        }
1567    }
1568
1569    /// Returns the contained [`Ok`] value or a provided default.
1570    ///
1571    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1572    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1573    /// which is lazily evaluated.
1574    ///
1575    /// [`unwrap_or_else`]: Result::unwrap_or_else
1576    ///
1577    /// # Examples
1578    ///
1579    /// ```
1580    /// let default = 2;
1581    /// let x: Result<u32, &str> = Ok(9);
1582    /// assert_eq!(x.unwrap_or(default), 9);
1583    ///
1584    /// let x: Result<u32, &str> = Err("error");
1585    /// assert_eq!(x.unwrap_or(default), default);
1586    /// ```
1587    #[inline]
1588    #[stable(feature = "rust1", since = "1.0.0")]
1589    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1590    pub const fn unwrap_or(self, default: T) -> T
1591    where
1592        T: [const] Destruct,
1593        E: [const] Destruct,
1594    {
1595        match self {
1596            Ok(t) => t,
1597            Err(_) => default,
1598        }
1599    }
1600
1601    /// Returns the contained [`Ok`] value or computes it from a closure.
1602    ///
1603    ///
1604    /// # Examples
1605    ///
1606    /// ```
1607    /// fn count(x: &str) -> usize { x.len() }
1608    ///
1609    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1610    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1611    /// ```
1612    #[inline]
1613    #[track_caller]
1614    #[stable(feature = "rust1", since = "1.0.0")]
1615    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1616    pub const fn unwrap_or_else<F>(self, op: F) -> T
1617    where
1618        F: [const] FnOnce(E) -> T + [const] Destruct,
1619    {
1620        match self {
1621            Ok(t) => t,
1622            Err(e) => op(e),
1623        }
1624    }
1625
1626    /// Returns the contained [`Ok`] value, consuming the `self` value,
1627    /// without checking that the value is not an [`Err`].
1628    ///
1629    /// # Safety
1630    ///
1631    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1632    ///
1633    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1634    ///
1635    /// # Examples
1636    ///
1637    /// ```
1638    /// let x: Result<u32, &str> = Ok(2);
1639    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1640    /// ```
1641    ///
1642    /// ```no_run
1643    /// let x: Result<u32, &str> = Err("emergency failure");
1644    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1645    /// ```
1646    #[inline]
1647    #[track_caller]
1648    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1649    pub unsafe fn unwrap_unchecked(self) -> T {
1650        match self {
1651            Ok(t) => t,
1652            // SAFETY: the safety contract must be upheld by the caller.
1653            Err(_) => unsafe { hint::unreachable_unchecked() },
1654        }
1655    }
1656
1657    /// Returns the contained [`Err`] value, consuming the `self` value,
1658    /// without checking that the value is not an [`Ok`].
1659    ///
1660    /// # Safety
1661    ///
1662    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1663    ///
1664    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1665    ///
1666    /// # Examples
1667    ///
1668    /// ```no_run
1669    /// let x: Result<u32, &str> = Ok(2);
1670    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1671    /// ```
1672    ///
1673    /// ```
1674    /// let x: Result<u32, &str> = Err("emergency failure");
1675    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1676    /// ```
1677    #[inline]
1678    #[track_caller]
1679    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1680    pub unsafe fn unwrap_err_unchecked(self) -> E {
1681        match self {
1682            // SAFETY: the safety contract must be upheld by the caller.
1683            Ok(_) => unsafe { hint::unreachable_unchecked() },
1684            Err(e) => e,
1685        }
1686    }
1687}
1688
1689impl<T, E> Result<&T, E> {
1690    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1691    /// `Ok` part.
1692    ///
1693    /// # Examples
1694    ///
1695    /// ```
1696    /// let val = 12;
1697    /// let x: Result<&i32, i32> = Ok(&val);
1698    /// assert_eq!(x, Ok(&12));
1699    /// let copied = x.copied();
1700    /// assert_eq!(copied, Ok(12));
1701    /// ```
1702    #[inline]
1703    #[stable(feature = "result_copied", since = "1.59.0")]
1704    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1705    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1706    pub const fn copied(self) -> Result<T, E>
1707    where
1708        T: Copy,
1709    {
1710        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1711        // ready yet, should be reverted when possible to avoid code repetition
1712        match self {
1713            Ok(&v) => Ok(v),
1714            Err(e) => Err(e),
1715        }
1716    }
1717
1718    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1719    /// `Ok` part.
1720    ///
1721    /// # Examples
1722    ///
1723    /// ```
1724    /// let val = 12;
1725    /// let x: Result<&i32, i32> = Ok(&val);
1726    /// assert_eq!(x, Ok(&12));
1727    /// let cloned = x.cloned();
1728    /// assert_eq!(cloned, Ok(12));
1729    /// ```
1730    #[inline]
1731    #[stable(feature = "result_cloned", since = "1.59.0")]
1732    pub fn cloned(self) -> Result<T, E>
1733    where
1734        T: Clone,
1735    {
1736        self.map(|t| t.clone())
1737    }
1738}
1739
1740impl<T, E> Result<&mut T, E> {
1741    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1742    /// `Ok` part.
1743    ///
1744    /// # Examples
1745    ///
1746    /// ```
1747    /// let mut val = 12;
1748    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1749    /// assert_eq!(x, Ok(&mut 12));
1750    /// let copied = x.copied();
1751    /// assert_eq!(copied, Ok(12));
1752    /// ```
1753    #[inline]
1754    #[stable(feature = "result_copied", since = "1.59.0")]
1755    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1756    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1757    pub const fn copied(self) -> Result<T, E>
1758    where
1759        T: Copy,
1760    {
1761        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1762        // ready yet, should be reverted when possible to avoid code repetition
1763        match self {
1764            Ok(&mut v) => Ok(v),
1765            Err(e) => Err(e),
1766        }
1767    }
1768
1769    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1770    /// `Ok` part.
1771    ///
1772    /// # Examples
1773    ///
1774    /// ```
1775    /// let mut val = 12;
1776    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1777    /// assert_eq!(x, Ok(&mut 12));
1778    /// let cloned = x.cloned();
1779    /// assert_eq!(cloned, Ok(12));
1780    /// ```
1781    #[inline]
1782    #[stable(feature = "result_cloned", since = "1.59.0")]
1783    pub fn cloned(self) -> Result<T, E>
1784    where
1785        T: Clone,
1786    {
1787        self.map(|t| t.clone())
1788    }
1789}
1790
1791impl<T, E> Result<Option<T>, E> {
1792    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1793    ///
1794    /// `Ok(None)` will be mapped to `None`.
1795    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1796    ///
1797    /// # Examples
1798    ///
1799    /// ```
1800    /// #[derive(Debug, Eq, PartialEq)]
1801    /// struct SomeErr;
1802    ///
1803    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1804    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1805    /// assert_eq!(x.transpose(), y);
1806    /// ```
1807    #[inline]
1808    #[stable(feature = "transpose_result", since = "1.33.0")]
1809    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1810    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1811    pub const fn transpose(self) -> Option<Result<T, E>> {
1812        match self {
1813            Ok(Some(x)) => Some(Ok(x)),
1814            Ok(None) => None,
1815            Err(e) => Some(Err(e)),
1816        }
1817    }
1818}
1819
1820impl<T, E> Result<Result<T, E>, E> {
1821    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1822    ///
1823    /// # Examples
1824    ///
1825    /// ```
1826    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1827    /// assert_eq!(Ok("hello"), x.flatten());
1828    ///
1829    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1830    /// assert_eq!(Err(6), x.flatten());
1831    ///
1832    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1833    /// assert_eq!(Err(6), x.flatten());
1834    /// ```
1835    ///
1836    /// Flattening only removes one level of nesting at a time:
1837    ///
1838    /// ```
1839    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1840    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1841    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1842    /// ```
1843    #[inline]
1844    #[stable(feature = "result_flattening", since = "1.89.0")]
1845    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1846    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1847    pub const fn flatten(self) -> Result<T, E> {
1848        // FIXME(const-hack): could be written with `and_then`
1849        match self {
1850            Ok(inner) => inner,
1851            Err(e) => Err(e),
1852        }
1853    }
1854}
1855
1856// This is a separate function to reduce the code size of the methods
1857#[cfg(not(panic = "immediate-abort"))]
1858#[inline(never)]
1859#[cold]
1860#[track_caller]
1861fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1862    panic!("{msg}: {error:?}");
1863}
1864
1865// This is a separate function to avoid constructing a `dyn Debug`
1866// that gets immediately thrown away, since vtables don't get cleaned up
1867// by dead code elimination if a trait object is constructed even if it goes
1868// unused
1869#[cfg(panic = "immediate-abort")]
1870#[inline]
1871#[cold]
1872#[track_caller]
1873const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1874    panic!()
1875}
1876
1877/////////////////////////////////////////////////////////////////////////////
1878// Trait implementations
1879/////////////////////////////////////////////////////////////////////////////
1880
1881#[stable(feature = "rust1", since = "1.0.0")]
1882impl<T, E> Clone for Result<T, E>
1883where
1884    T: Clone,
1885    E: Clone,
1886{
1887    #[inline]
1888    fn clone(&self) -> Self {
1889        match self {
1890            Ok(x) => Ok(x.clone()),
1891            Err(x) => Err(x.clone()),
1892        }
1893    }
1894
1895    #[inline]
1896    fn clone_from(&mut self, source: &Self) {
1897        match (self, source) {
1898            (Ok(to), Ok(from)) => to.clone_from(from),
1899            (Err(to), Err(from)) => to.clone_from(from),
1900            (to, from) => *to = from.clone(),
1901        }
1902    }
1903}
1904
1905#[unstable(feature = "ergonomic_clones", issue = "132290")]
1906impl<T, E> crate::clone::UseCloned for Result<T, E>
1907where
1908    T: crate::clone::UseCloned,
1909    E: crate::clone::UseCloned,
1910{
1911}
1912
1913#[stable(feature = "rust1", since = "1.0.0")]
1914impl<T, E> IntoIterator for Result<T, E> {
1915    type Item = T;
1916    type IntoIter = IntoIter<T>;
1917
1918    /// Returns a consuming iterator over the possibly contained value.
1919    ///
1920    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1921    ///
1922    /// # Examples
1923    ///
1924    /// ```
1925    /// let x: Result<u32, &str> = Ok(5);
1926    /// let v: Vec<u32> = x.into_iter().collect();
1927    /// assert_eq!(v, [5]);
1928    ///
1929    /// let x: Result<u32, &str> = Err("nothing!");
1930    /// let v: Vec<u32> = x.into_iter().collect();
1931    /// assert_eq!(v, []);
1932    /// ```
1933    #[inline]
1934    fn into_iter(self) -> IntoIter<T> {
1935        IntoIter { inner: self.ok() }
1936    }
1937}
1938
1939#[stable(since = "1.4.0", feature = "result_iter")]
1940impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1941    type Item = &'a T;
1942    type IntoIter = Iter<'a, T>;
1943
1944    fn into_iter(self) -> Iter<'a, T> {
1945        self.iter()
1946    }
1947}
1948
1949#[stable(since = "1.4.0", feature = "result_iter")]
1950impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1951    type Item = &'a mut T;
1952    type IntoIter = IterMut<'a, T>;
1953
1954    fn into_iter(self) -> IterMut<'a, T> {
1955        self.iter_mut()
1956    }
1957}
1958
1959/////////////////////////////////////////////////////////////////////////////
1960// The Result Iterators
1961/////////////////////////////////////////////////////////////////////////////
1962
1963/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1964///
1965/// The iterator yields one value if the result is [`Ok`], otherwise none.
1966///
1967/// Created by [`Result::iter`].
1968#[derive(Debug)]
1969#[stable(feature = "rust1", since = "1.0.0")]
1970pub struct Iter<'a, T: 'a> {
1971    inner: Option<&'a T>,
1972}
1973
1974#[stable(feature = "rust1", since = "1.0.0")]
1975impl<'a, T> Iterator for Iter<'a, T> {
1976    type Item = &'a T;
1977
1978    #[inline]
1979    fn next(&mut self) -> Option<&'a T> {
1980        self.inner.take()
1981    }
1982    #[inline]
1983    fn size_hint(&self) -> (usize, Option<usize>) {
1984        let n = if self.inner.is_some() { 1 } else { 0 };
1985        (n, Some(n))
1986    }
1987}
1988
1989#[stable(feature = "rust1", since = "1.0.0")]
1990impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1991    #[inline]
1992    fn next_back(&mut self) -> Option<&'a T> {
1993        self.inner.take()
1994    }
1995}
1996
1997#[stable(feature = "rust1", since = "1.0.0")]
1998impl<T> ExactSizeIterator for Iter<'_, T> {}
1999
2000#[stable(feature = "fused", since = "1.26.0")]
2001impl<T> FusedIterator for Iter<'_, T> {}
2002
2003#[unstable(feature = "trusted_len", issue = "37572")]
2004unsafe impl<A> TrustedLen for Iter<'_, A> {}
2005
2006#[stable(feature = "rust1", since = "1.0.0")]
2007impl<T> Clone for Iter<'_, T> {
2008    #[inline]
2009    fn clone(&self) -> Self {
2010        Iter { inner: self.inner }
2011    }
2012}
2013
2014/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2015///
2016/// Created by [`Result::iter_mut`].
2017#[derive(Debug)]
2018#[stable(feature = "rust1", since = "1.0.0")]
2019pub struct IterMut<'a, T: 'a> {
2020    inner: Option<&'a mut T>,
2021}
2022
2023#[stable(feature = "rust1", since = "1.0.0")]
2024impl<'a, T> Iterator for IterMut<'a, T> {
2025    type Item = &'a mut T;
2026
2027    #[inline]
2028    fn next(&mut self) -> Option<&'a mut T> {
2029        self.inner.take()
2030    }
2031    #[inline]
2032    fn size_hint(&self) -> (usize, Option<usize>) {
2033        let n = if self.inner.is_some() { 1 } else { 0 };
2034        (n, Some(n))
2035    }
2036}
2037
2038#[stable(feature = "rust1", since = "1.0.0")]
2039impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2040    #[inline]
2041    fn next_back(&mut self) -> Option<&'a mut T> {
2042        self.inner.take()
2043    }
2044}
2045
2046#[stable(feature = "rust1", since = "1.0.0")]
2047impl<T> ExactSizeIterator for IterMut<'_, T> {}
2048
2049#[stable(feature = "fused", since = "1.26.0")]
2050impl<T> FusedIterator for IterMut<'_, T> {}
2051
2052#[unstable(feature = "trusted_len", issue = "37572")]
2053unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2054
2055/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2056///
2057/// The iterator yields one value if the result is [`Ok`], otherwise none.
2058///
2059/// This struct is created by the [`into_iter`] method on
2060/// [`Result`] (provided by the [`IntoIterator`] trait).
2061///
2062/// [`into_iter`]: IntoIterator::into_iter
2063#[derive(Clone, Debug)]
2064#[stable(feature = "rust1", since = "1.0.0")]
2065pub struct IntoIter<T> {
2066    inner: Option<T>,
2067}
2068
2069#[stable(feature = "rust1", since = "1.0.0")]
2070impl<T> Iterator for IntoIter<T> {
2071    type Item = T;
2072
2073    #[inline]
2074    fn next(&mut self) -> Option<T> {
2075        self.inner.take()
2076    }
2077    #[inline]
2078    fn size_hint(&self) -> (usize, Option<usize>) {
2079        let n = if self.inner.is_some() { 1 } else { 0 };
2080        (n, Some(n))
2081    }
2082}
2083
2084#[stable(feature = "rust1", since = "1.0.0")]
2085impl<T> DoubleEndedIterator for IntoIter<T> {
2086    #[inline]
2087    fn next_back(&mut self) -> Option<T> {
2088        self.inner.take()
2089    }
2090}
2091
2092#[stable(feature = "rust1", since = "1.0.0")]
2093impl<T> ExactSizeIterator for IntoIter<T> {}
2094
2095#[stable(feature = "fused", since = "1.26.0")]
2096impl<T> FusedIterator for IntoIter<T> {}
2097
2098#[unstable(feature = "trusted_len", issue = "37572")]
2099unsafe impl<A> TrustedLen for IntoIter<A> {}
2100
2101/////////////////////////////////////////////////////////////////////////////
2102// FromIterator
2103/////////////////////////////////////////////////////////////////////////////
2104
2105#[stable(feature = "rust1", since = "1.0.0")]
2106impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2107    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2108    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2109    /// container with the values of each `Result` is returned.
2110    ///
2111    /// Here is an example which increments every integer in a vector,
2112    /// checking for overflow:
2113    ///
2114    /// ```
2115    /// let v = vec![1, 2];
2116    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2117    ///     x.checked_add(1).ok_or("Overflow!")
2118    /// ).collect();
2119    /// assert_eq!(res, Ok(vec![2, 3]));
2120    /// ```
2121    ///
2122    /// Here is another example that tries to subtract one from another list
2123    /// of integers, this time checking for underflow:
2124    ///
2125    /// ```
2126    /// let v = vec![1, 2, 0];
2127    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2128    ///     x.checked_sub(1).ok_or("Underflow!")
2129    /// ).collect();
2130    /// assert_eq!(res, Err("Underflow!"));
2131    /// ```
2132    ///
2133    /// Here is a variation on the previous example, showing that no
2134    /// further elements are taken from `iter` after the first `Err`.
2135    ///
2136    /// ```
2137    /// let v = vec![3, 2, 1, 10];
2138    /// let mut shared = 0;
2139    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2140    ///     shared += x;
2141    ///     x.checked_sub(2).ok_or("Underflow!")
2142    /// }).collect();
2143    /// assert_eq!(res, Err("Underflow!"));
2144    /// assert_eq!(shared, 6);
2145    /// ```
2146    ///
2147    /// Since the third element caused an underflow, no further elements were taken,
2148    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2149    #[inline]
2150    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2151        iter::try_process(iter.into_iter(), |i| i.collect())
2152    }
2153}
2154
2155#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2156#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2157impl<T, E> const ops::Try for Result<T, E> {
2158    type Output = T;
2159    type Residual = Result<convert::Infallible, E>;
2160
2161    #[inline]
2162    fn from_output(output: Self::Output) -> Self {
2163        Ok(output)
2164    }
2165
2166    #[inline]
2167    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2168        match self {
2169            Ok(v) => ControlFlow::Continue(v),
2170            Err(e) => ControlFlow::Break(Err(e)),
2171        }
2172    }
2173}
2174
2175#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2176#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2177impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2178    for Result<T, F>
2179{
2180    #[inline]
2181    #[track_caller]
2182    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2183        match residual {
2184            Err(e) => Err(From::from(e)),
2185        }
2186    }
2187}
2188#[diagnostic::do_not_recommend]
2189#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2190#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2191impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2192    #[inline]
2193    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2194        Err(From::from(e))
2195    }
2196}
2197
2198#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2199#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2200impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2201    type TryType = Result<T, E>;
2202}