core/result.rs
1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//! Ok(T),
12//! Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//! match header.get(0) {
29//! None => Err("invalid header length"),
30//! Some(&1) => Ok(Version::Version1),
31//! Some(&2) => Ok(Version::Version2),
32//! Some(_) => Err("invalid version"),
33//! }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//! Ok(v) => println!("working with version: {v:?}"),
39//! Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//! fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//! let mut file = File::create("valuable_data.txt")?;
145//! file.write_all(b"important message")?;
146//! Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//! name: String,
167//! age: i32,
168//! rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//! // Early return on error
173//! let mut file = match File::create("my_best_friends.txt") {
174//! Err(e) => return Err(e),
175//! Ok(f) => f,
176//! };
177//! if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//! return Err(e)
179//! }
180//! if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//! return Err(e)
182//! }
183//! if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//! return Err(e)
185//! }
186//! Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//! name: String,
200//! age: i32,
201//! rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//! let mut file = File::create("my_best_friends.txt")?;
206//! // Early return on error
207//! file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//! file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//! file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//! Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] comes with size, alignment, and ABI
234//! guarantees. Specifically, one of either the `T` or `E` type must be a type
235//! that qualifies for the `Option` [representation guarantees][opt-rep] (let's
236//! call that type `I`), and the *other* type is a zero-sized type with
237//! alignment 1 (a "1-ZST").
238//!
239//! If that is the case, then `Result<T, E>` has the same size, alignment, and
240//! [function call ABI] as `I` (and therefore, as `Option<I>`). If `I` is `T`,
241//! it is therefore sound to transmute a value `t` of type `I` to type
242//! `Result<T, E>` (producing the value `Ok(t)`) and to transmute a value
243//! `Ok(t)` of type `Result<T, E>` to type `I` (producing the value `t`). If `I`
244//! is `E`, the same applies with `Ok` replaced by `Err`.
245//!
246//! For example, `NonZeroI32` qualifies for the `Option` representation
247//! guarantees and `()` is a zero-sized type with alignment 1. This means that
248//! both `Result<NonZeroI32, ()>` and `Result<(), NonZeroI32>` have the same
249//! size, alignment, and ABI as `NonZeroI32` (and `Option<NonZeroI32>`). The
250//! only difference between these is in the implied semantics:
251//!
252//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
253//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
254//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
255//!
256//! [opt-rep]: ../option/index.html#representation "Option Representation"
257//! [function call ABI]: ../primitive.fn.html#abi-compatibility
258//!
259//! # Method overview
260//!
261//! In addition to working with pattern matching, [`Result`] provides a
262//! wide variety of different methods.
263//!
264//! ## Querying the variant
265//!
266//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
267//! is [`Ok`] or [`Err`], respectively.
268//!
269//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
270//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
271//! then [`false`] is returned instead without executing the function.
272//!
273//! [`is_err`]: Result::is_err
274//! [`is_ok`]: Result::is_ok
275//! [`is_ok_and`]: Result::is_ok_and
276//! [`is_err_and`]: Result::is_err_and
277//!
278//! ## Adapters for working with references
279//!
280//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
281//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
282//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
283//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
284//! `Result<&mut T::Target, &mut E>`
285//!
286//! [`as_deref`]: Result::as_deref
287//! [`as_deref_mut`]: Result::as_deref_mut
288//! [`as_mut`]: Result::as_mut
289//! [`as_ref`]: Result::as_ref
290//!
291//! ## Extracting contained values
292//!
293//! These methods extract the contained value in a [`Result<T, E>`] when it
294//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
295//!
296//! * [`expect`] panics with a provided custom message
297//! * [`unwrap`] panics with a generic message
298//! * [`unwrap_or`] returns the provided default value
299//! * [`unwrap_or_default`] returns the default value of the type `T`
300//! (which must implement the [`Default`] trait)
301//! * [`unwrap_or_else`] returns the result of evaluating the provided
302//! function
303//! * [`unwrap_unchecked`] produces *[undefined behavior]*
304//!
305//! The panicking methods [`expect`] and [`unwrap`] require `E` to
306//! implement the [`Debug`] trait.
307//!
308//! [`Debug`]: crate::fmt::Debug
309//! [`expect`]: Result::expect
310//! [`unwrap`]: Result::unwrap
311//! [`unwrap_or`]: Result::unwrap_or
312//! [`unwrap_or_default`]: Result::unwrap_or_default
313//! [`unwrap_or_else`]: Result::unwrap_or_else
314//! [`unwrap_unchecked`]: Result::unwrap_unchecked
315//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
316//!
317//! These methods extract the contained value in a [`Result<T, E>`] when it
318//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
319//! trait. If the [`Result`] is [`Ok`]:
320//!
321//! * [`expect_err`] panics with a provided custom message
322//! * [`unwrap_err`] panics with a generic message
323//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
324//!
325//! [`Debug`]: crate::fmt::Debug
326//! [`expect_err`]: Result::expect_err
327//! [`unwrap_err`]: Result::unwrap_err
328//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
329//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
330//!
331//! ## Transforming contained values
332//!
333//! These methods transform [`Result`] to [`Option`]:
334//!
335//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
336//! mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
337//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
338//! mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
339//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
340//! [`Option`] of a [`Result`]
341//!
342// Do NOT add link reference definitions for `err` or `ok`, because they
343// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
344// to case folding.
345//!
346//! [`Err(e)`]: Err
347//! [`Ok(v)`]: Ok
348//! [`Some(e)`]: Option::Some
349//! [`Some(v)`]: Option::Some
350//! [`transpose`]: Result::transpose
351//!
352//! These methods transform the contained value of the [`Ok`] variant:
353//!
354//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
355//! the provided function to the contained value of [`Ok`] and leaving
356//! [`Err`] values unchanged
357//! * [`inspect`] takes ownership of the [`Result`], applies the
358//! provided function to the contained value by reference,
359//! and then returns the [`Result`]
360//!
361//! [`map`]: Result::map
362//! [`inspect`]: Result::inspect
363//!
364//! These methods transform the contained value of the [`Err`] variant:
365//!
366//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
367//! applying the provided function to the contained value of [`Err`] and
368//! leaving [`Ok`] values unchanged
369//! * [`inspect_err`] takes ownership of the [`Result`], applies the
370//! provided function to the contained value of [`Err`] by reference,
371//! and then returns the [`Result`]
372//!
373//! [`map_err`]: Result::map_err
374//! [`inspect_err`]: Result::inspect_err
375//!
376//! These methods transform a [`Result<T, E>`] into a value of a possibly
377//! different type `U`:
378//!
379//! * [`map_or`] applies the provided function to the contained value of
380//! [`Ok`], or returns the provided default value if the [`Result`] is
381//! [`Err`]
382//! * [`map_or_else`] applies the provided function to the contained value
383//! of [`Ok`], or applies the provided default fallback function to the
384//! contained value of [`Err`]
385//!
386//! [`map_or`]: Result::map_or
387//! [`map_or_else`]: Result::map_or_else
388//!
389//! ## Boolean operators
390//!
391//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
392//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
393//! categories of these methods: ones that take a [`Result`] as input, and
394//! ones that take a function as input (to be lazily evaluated).
395//!
396//! The [`and`] and [`or`] methods take another [`Result`] as input, and
397//! produce a [`Result`] as output. The [`and`] method can produce a
398//! [`Result<U, E>`] value having a different inner type `U` than
399//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
400//! value having a different error type `F` than [`Result<T, E>`].
401//!
402//! | method | self | input | output |
403//! |---------|----------|-----------|----------|
404//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
405//! | [`and`] | `Ok(x)` | `Err(d)` | `Err(d)` |
406//! | [`and`] | `Ok(x)` | `Ok(y)` | `Ok(y)` |
407//! | [`or`] | `Err(e)` | `Err(d)` | `Err(d)` |
408//! | [`or`] | `Err(e)` | `Ok(y)` | `Ok(y)` |
409//! | [`or`] | `Ok(x)` | (ignored) | `Ok(x)` |
410//!
411//! [`and`]: Result::and
412//! [`or`]: Result::or
413//!
414//! The [`and_then`] and [`or_else`] methods take a function as input, and
415//! only evaluate the function when they need to produce a new value. The
416//! [`and_then`] method can produce a [`Result<U, E>`] value having a
417//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
418//! can produce a [`Result<T, F>`] value having a different error type `F`
419//! than [`Result<T, E>`].
420//!
421//! | method | self | function input | function result | output |
422//! |--------------|----------|----------------|-----------------|----------|
423//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
424//! | [`and_then`] | `Ok(x)` | `x` | `Err(d)` | `Err(d)` |
425//! | [`and_then`] | `Ok(x)` | `x` | `Ok(y)` | `Ok(y)` |
426//! | [`or_else`] | `Err(e)` | `e` | `Err(d)` | `Err(d)` |
427//! | [`or_else`] | `Err(e)` | `e` | `Ok(y)` | `Ok(y)` |
428//! | [`or_else`] | `Ok(x)` | (not provided) | (not evaluated) | `Ok(x)` |
429//!
430//! [`and_then`]: Result::and_then
431//! [`or_else`]: Result::or_else
432//!
433//! ## Comparison operators
434//!
435//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
436//! derive its [`PartialOrd`] implementation. With this order, an [`Ok`]
437//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
438//! compare as their contained values would in `T` or `E` respectively. If `T`
439//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
440//!
441//! ```
442//! assert!(Ok(1) < Err(0));
443//! let x: Result<i32, ()> = Ok(0);
444//! let y = Ok(1);
445//! assert!(x < y);
446//! let x: Result<(), i32> = Err(0);
447//! let y = Err(1);
448//! assert!(x < y);
449//! ```
450//!
451//! ## Iterating over `Result`
452//!
453//! A [`Result`] can be iterated over. This can be helpful if you need an
454//! iterator that is conditionally empty. The iterator will either produce
455//! a single value (when the [`Result`] is [`Ok`]), or produce no values
456//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
457//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
458//! [`Result`] is [`Err`].
459//!
460//! [`Ok(v)`]: Ok
461//! [`empty()`]: crate::iter::empty
462//! [`once(v)`]: crate::iter::once
463//!
464//! Iterators over [`Result<T, E>`] come in three types:
465//!
466//! * [`into_iter`] consumes the [`Result`] and produces the contained
467//! value
468//! * [`iter`] produces an immutable reference of type `&T` to the
469//! contained value
470//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
471//! contained value
472//!
473//! See [Iterating over `Option`] for examples of how this can be useful.
474//!
475//! [Iterating over `Option`]: crate::option#iterating-over-option
476//! [`into_iter`]: Result::into_iter
477//! [`iter`]: Result::iter
478//! [`iter_mut`]: Result::iter_mut
479//!
480//! You might want to use an iterator chain to do multiple instances of an
481//! operation that can fail, but would like to ignore failures while
482//! continuing to process the successful results. In this example, we take
483//! advantage of the iterable nature of [`Result`] to select only the
484//! [`Ok`] values using [`flatten`][Iterator::flatten].
485//!
486//! ```
487//! # use std::str::FromStr;
488//! let mut results = vec![];
489//! let mut errs = vec![];
490//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
491//! .into_iter()
492//! .map(u8::from_str)
493//! // Save clones of the raw `Result` values to inspect
494//! .inspect(|x| results.push(x.clone()))
495//! // Challenge: explain how this captures only the `Err` values
496//! .inspect(|x| errs.extend(x.clone().err()))
497//! .flatten()
498//! .collect();
499//! assert_eq!(errs.len(), 3);
500//! assert_eq!(nums, [17, 99]);
501//! println!("results {results:?}");
502//! println!("errs {errs:?}");
503//! println!("nums {nums:?}");
504//! ```
505//!
506//! ## Collecting into `Result`
507//!
508//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
509//! which allows an iterator over [`Result`] values to be collected into a
510//! [`Result`] of a collection of each contained value of the original
511//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
512//!
513//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
514//!
515//! ```
516//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
517//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
518//! assert_eq!(res, Err("err!"));
519//! let v = [Ok(2), Ok(4), Ok(8)];
520//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
521//! assert_eq!(res, Ok(vec![2, 4, 8]));
522//! ```
523//!
524//! [`Result`] also implements the [`Product`][impl-Product] and
525//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
526//! to provide the [`product`][Iterator::product] and
527//! [`sum`][Iterator::sum] methods.
528//!
529//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
530//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
531//!
532//! ```
533//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
534//! let res: Result<i32, &str> = v.into_iter().sum();
535//! assert_eq!(res, Err("error!"));
536//! let v = [Ok(1), Ok(2), Ok(21)];
537//! let res: Result<i32, &str> = v.into_iter().product();
538//! assert_eq!(res, Ok(42));
539//! ```
540
541#![stable(feature = "rust1", since = "1.0.0")]
542
543use crate::iter::{self, FusedIterator, TrustedLen};
544use crate::marker::Destruct;
545use crate::ops::{self, ControlFlow, Deref, DerefMut};
546use crate::{convert, fmt, hint};
547
548/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
549///
550/// See the [module documentation](self) for details.
551#[doc(search_unbox)]
552#[derive(Copy, Debug, Hash)]
553#[derive_const(PartialEq, PartialOrd, Eq, Ord)]
554#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
555#[rustc_diagnostic_item = "Result"]
556#[stable(feature = "rust1", since = "1.0.0")]
557pub enum Result<T, E> {
558 /// Contains the success value
559 #[lang = "Ok"]
560 #[stable(feature = "rust1", since = "1.0.0")]
561 Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
562
563 /// Contains the error value
564 #[lang = "Err"]
565 #[stable(feature = "rust1", since = "1.0.0")]
566 Err(#[stable(feature = "rust1", since = "1.0.0")] E),
567}
568
569/////////////////////////////////////////////////////////////////////////////
570// Type implementation
571/////////////////////////////////////////////////////////////////////////////
572
573impl<T, E> Result<T, E> {
574 /////////////////////////////////////////////////////////////////////////
575 // Querying the contained values
576 /////////////////////////////////////////////////////////////////////////
577
578 /// Returns `true` if the result is [`Ok`].
579 ///
580 /// # Examples
581 ///
582 /// ```
583 /// let x: Result<i32, &str> = Ok(-3);
584 /// assert_eq!(x.is_ok(), true);
585 ///
586 /// let x: Result<i32, &str> = Err("Some error message");
587 /// assert_eq!(x.is_ok(), false);
588 /// ```
589 #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
590 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
591 #[inline]
592 #[stable(feature = "rust1", since = "1.0.0")]
593 pub const fn is_ok(&self) -> bool {
594 matches!(*self, Ok(_))
595 }
596
597 /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
598 ///
599 /// # Examples
600 ///
601 /// ```
602 /// let x: Result<u32, &str> = Ok(2);
603 /// assert_eq!(x.is_ok_and(|x| x > 1), true);
604 ///
605 /// let x: Result<u32, &str> = Ok(0);
606 /// assert_eq!(x.is_ok_and(|x| x > 1), false);
607 ///
608 /// let x: Result<u32, &str> = Err("hey");
609 /// assert_eq!(x.is_ok_and(|x| x > 1), false);
610 ///
611 /// let x: Result<String, &str> = Ok("ownership".to_string());
612 /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
613 /// println!("still alive {:?}", x);
614 /// ```
615 #[must_use]
616 #[inline]
617 #[stable(feature = "is_some_and", since = "1.70.0")]
618 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
619 pub const fn is_ok_and<F>(self, f: F) -> bool
620 where
621 F: [const] FnOnce(T) -> bool + [const] Destruct,
622 T: [const] Destruct,
623 E: [const] Destruct,
624 {
625 match self {
626 Err(_) => false,
627 Ok(x) => f(x),
628 }
629 }
630
631 /// Returns `true` if the result is [`Err`].
632 ///
633 /// # Examples
634 ///
635 /// ```
636 /// let x: Result<i32, &str> = Ok(-3);
637 /// assert_eq!(x.is_err(), false);
638 ///
639 /// let x: Result<i32, &str> = Err("Some error message");
640 /// assert_eq!(x.is_err(), true);
641 /// ```
642 #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
643 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
644 #[inline]
645 #[stable(feature = "rust1", since = "1.0.0")]
646 pub const fn is_err(&self) -> bool {
647 !self.is_ok()
648 }
649
650 /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
651 ///
652 /// # Examples
653 ///
654 /// ```
655 /// use std::io::{Error, ErrorKind};
656 ///
657 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
658 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
659 ///
660 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
661 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
662 ///
663 /// let x: Result<u32, Error> = Ok(123);
664 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
665 ///
666 /// let x: Result<u32, String> = Err("ownership".to_string());
667 /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
668 /// println!("still alive {:?}", x);
669 /// ```
670 #[must_use]
671 #[inline]
672 #[stable(feature = "is_some_and", since = "1.70.0")]
673 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
674 pub const fn is_err_and<F>(self, f: F) -> bool
675 where
676 F: [const] FnOnce(E) -> bool + [const] Destruct,
677 E: [const] Destruct,
678 T: [const] Destruct,
679 {
680 match self {
681 Ok(_) => false,
682 Err(e) => f(e),
683 }
684 }
685
686 /////////////////////////////////////////////////////////////////////////
687 // Adapter for each variant
688 /////////////////////////////////////////////////////////////////////////
689
690 /// Converts from `Result<T, E>` to [`Option<T>`].
691 ///
692 /// Converts `self` into an [`Option<T>`], consuming `self`,
693 /// and discarding the error, if any.
694 ///
695 /// # Examples
696 ///
697 /// ```
698 /// let x: Result<u32, &str> = Ok(2);
699 /// assert_eq!(x.ok(), Some(2));
700 ///
701 /// let x: Result<u32, &str> = Err("Nothing here");
702 /// assert_eq!(x.ok(), None);
703 /// ```
704 #[inline]
705 #[stable(feature = "rust1", since = "1.0.0")]
706 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
707 #[rustc_diagnostic_item = "result_ok_method"]
708 pub const fn ok(self) -> Option<T>
709 where
710 T: [const] Destruct,
711 E: [const] Destruct,
712 {
713 match self {
714 Ok(x) => Some(x),
715 Err(_) => None,
716 }
717 }
718
719 /// Converts from `Result<T, E>` to [`Option<E>`].
720 ///
721 /// Converts `self` into an [`Option<E>`], consuming `self`,
722 /// and discarding the success value, if any.
723 ///
724 /// # Examples
725 ///
726 /// ```
727 /// let x: Result<u32, &str> = Ok(2);
728 /// assert_eq!(x.err(), None);
729 ///
730 /// let x: Result<u32, &str> = Err("Nothing here");
731 /// assert_eq!(x.err(), Some("Nothing here"));
732 /// ```
733 #[inline]
734 #[stable(feature = "rust1", since = "1.0.0")]
735 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
736 pub const fn err(self) -> Option<E>
737 where
738 T: [const] Destruct,
739 E: [const] Destruct,
740 {
741 match self {
742 Ok(_) => None,
743 Err(x) => Some(x),
744 }
745 }
746
747 /////////////////////////////////////////////////////////////////////////
748 // Adapter for working with references
749 /////////////////////////////////////////////////////////////////////////
750
751 /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
752 ///
753 /// Produces a new `Result`, containing a reference
754 /// into the original, leaving the original in place.
755 ///
756 /// # Examples
757 ///
758 /// ```
759 /// let x: Result<u32, &str> = Ok(2);
760 /// assert_eq!(x.as_ref(), Ok(&2));
761 ///
762 /// let x: Result<u32, &str> = Err("Error");
763 /// assert_eq!(x.as_ref(), Err(&"Error"));
764 /// ```
765 #[inline]
766 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
767 #[stable(feature = "rust1", since = "1.0.0")]
768 pub const fn as_ref(&self) -> Result<&T, &E> {
769 match *self {
770 Ok(ref x) => Ok(x),
771 Err(ref x) => Err(x),
772 }
773 }
774
775 /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
776 ///
777 /// # Examples
778 ///
779 /// ```
780 /// fn mutate(r: &mut Result<i32, i32>) {
781 /// match r.as_mut() {
782 /// Ok(v) => *v = 42,
783 /// Err(e) => *e = 0,
784 /// }
785 /// }
786 ///
787 /// let mut x: Result<i32, i32> = Ok(2);
788 /// mutate(&mut x);
789 /// assert_eq!(x.unwrap(), 42);
790 ///
791 /// let mut x: Result<i32, i32> = Err(13);
792 /// mutate(&mut x);
793 /// assert_eq!(x.unwrap_err(), 0);
794 /// ```
795 #[inline]
796 #[stable(feature = "rust1", since = "1.0.0")]
797 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
798 pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
799 match *self {
800 Ok(ref mut x) => Ok(x),
801 Err(ref mut x) => Err(x),
802 }
803 }
804
805 /////////////////////////////////////////////////////////////////////////
806 // Transforming contained values
807 /////////////////////////////////////////////////////////////////////////
808
809 /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
810 /// contained [`Ok`] value, leaving an [`Err`] value untouched.
811 ///
812 /// This function can be used to compose the results of two functions.
813 ///
814 /// # Examples
815 ///
816 /// Print the numbers on each line of a string multiplied by two.
817 ///
818 /// ```
819 /// let line = "1\n2\n3\n4\n";
820 ///
821 /// for num in line.lines() {
822 /// match num.parse::<i32>().map(|i| i * 2) {
823 /// Ok(n) => println!("{n}"),
824 /// Err(..) => {}
825 /// }
826 /// }
827 /// ```
828 #[inline]
829 #[stable(feature = "rust1", since = "1.0.0")]
830 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
831 pub const fn map<U, F>(self, op: F) -> Result<U, E>
832 where
833 F: [const] FnOnce(T) -> U + [const] Destruct,
834 {
835 match self {
836 Ok(t) => Ok(op(t)),
837 Err(e) => Err(e),
838 }
839 }
840
841 /// Returns the provided default (if [`Err`]), or
842 /// applies a function to the contained value (if [`Ok`]).
843 ///
844 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
845 /// the result of a function call, it is recommended to use [`map_or_else`],
846 /// which is lazily evaluated.
847 ///
848 /// [`map_or_else`]: Result::map_or_else
849 ///
850 /// # Examples
851 ///
852 /// ```
853 /// let x: Result<_, &str> = Ok("foo");
854 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
855 ///
856 /// let x: Result<&str, _> = Err("bar");
857 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
858 /// ```
859 #[inline]
860 #[stable(feature = "result_map_or", since = "1.41.0")]
861 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
862 #[must_use = "if you don't need the returned value, use `if let` instead"]
863 pub const fn map_or<U, F>(self, default: U, f: F) -> U
864 where
865 F: [const] FnOnce(T) -> U + [const] Destruct,
866 T: [const] Destruct,
867 E: [const] Destruct,
868 U: [const] Destruct,
869 {
870 match self {
871 Ok(t) => f(t),
872 Err(_) => default,
873 }
874 }
875
876 /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
877 /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
878 ///
879 /// This function can be used to unpack a successful result
880 /// while handling an error.
881 ///
882 ///
883 /// # Examples
884 ///
885 /// ```
886 /// let k = 21;
887 ///
888 /// let x : Result<_, &str> = Ok("foo");
889 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
890 ///
891 /// let x : Result<&str, _> = Err("bar");
892 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
893 /// ```
894 #[inline]
895 #[stable(feature = "result_map_or_else", since = "1.41.0")]
896 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
897 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
898 where
899 D: [const] FnOnce(E) -> U + [const] Destruct,
900 F: [const] FnOnce(T) -> U + [const] Destruct,
901 {
902 match self {
903 Ok(t) => f(t),
904 Err(e) => default(e),
905 }
906 }
907
908 /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
909 /// value if the result is [`Ok`], otherwise if [`Err`], returns the
910 /// [default value] for the type `U`.
911 ///
912 /// # Examples
913 ///
914 /// ```
915 /// #![feature(result_option_map_or_default)]
916 ///
917 /// let x: Result<_, &str> = Ok("foo");
918 /// let y: Result<&str, _> = Err("bar");
919 ///
920 /// assert_eq!(x.map_or_default(|x| x.len()), 3);
921 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
922 /// ```
923 ///
924 /// [default value]: Default::default
925 #[inline]
926 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
927 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
928 pub const fn map_or_default<U, F>(self, f: F) -> U
929 where
930 F: [const] FnOnce(T) -> U + [const] Destruct,
931 U: [const] Default,
932 T: [const] Destruct,
933 E: [const] Destruct,
934 {
935 match self {
936 Ok(t) => f(t),
937 Err(_) => U::default(),
938 }
939 }
940
941 /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
942 /// contained [`Err`] value, leaving an [`Ok`] value untouched.
943 ///
944 /// This function can be used to pass through a successful result while handling
945 /// an error.
946 ///
947 ///
948 /// # Examples
949 ///
950 /// ```
951 /// fn stringify(x: u32) -> String { format!("error code: {x}") }
952 ///
953 /// let x: Result<u32, u32> = Ok(2);
954 /// assert_eq!(x.map_err(stringify), Ok(2));
955 ///
956 /// let x: Result<u32, u32> = Err(13);
957 /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
958 /// ```
959 #[inline]
960 #[stable(feature = "rust1", since = "1.0.0")]
961 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
962 pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
963 where
964 O: [const] FnOnce(E) -> F + [const] Destruct,
965 {
966 match self {
967 Ok(t) => Ok(t),
968 Err(e) => Err(op(e)),
969 }
970 }
971
972 /// Calls a function with a reference to the contained value if [`Ok`].
973 ///
974 /// Returns the original result.
975 ///
976 /// # Examples
977 ///
978 /// ```
979 /// let x: u8 = "4"
980 /// .parse::<u8>()
981 /// .inspect(|x| println!("original: {x}"))
982 /// .map(|x| x.pow(3))
983 /// .expect("failed to parse number");
984 /// ```
985 #[inline]
986 #[stable(feature = "result_option_inspect", since = "1.76.0")]
987 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
988 pub const fn inspect<F>(self, f: F) -> Self
989 where
990 F: [const] FnOnce(&T) + [const] Destruct,
991 {
992 if let Ok(ref t) = self {
993 f(t);
994 }
995
996 self
997 }
998
999 /// Calls a function with a reference to the contained value if [`Err`].
1000 ///
1001 /// Returns the original result.
1002 ///
1003 /// # Examples
1004 ///
1005 /// ```
1006 /// use std::{fs, io};
1007 ///
1008 /// fn read() -> io::Result<String> {
1009 /// fs::read_to_string("address.txt")
1010 /// .inspect_err(|e| eprintln!("failed to read file: {e}"))
1011 /// }
1012 /// ```
1013 #[inline]
1014 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1015 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1016 pub const fn inspect_err<F>(self, f: F) -> Self
1017 where
1018 F: [const] FnOnce(&E) + [const] Destruct,
1019 {
1020 if let Err(ref e) = self {
1021 f(e);
1022 }
1023
1024 self
1025 }
1026
1027 /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1028 ///
1029 /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1030 /// and returns the new [`Result`].
1031 ///
1032 /// # Examples
1033 ///
1034 /// ```
1035 /// let x: Result<String, u32> = Ok("hello".to_string());
1036 /// let y: Result<&str, &u32> = Ok("hello");
1037 /// assert_eq!(x.as_deref(), y);
1038 ///
1039 /// let x: Result<String, u32> = Err(42);
1040 /// let y: Result<&str, &u32> = Err(&42);
1041 /// assert_eq!(x.as_deref(), y);
1042 /// ```
1043 #[inline]
1044 #[stable(feature = "inner_deref", since = "1.47.0")]
1045 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1046 pub const fn as_deref(&self) -> Result<&T::Target, &E>
1047 where
1048 T: [const] Deref,
1049 {
1050 self.as_ref().map(Deref::deref)
1051 }
1052
1053 /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1054 ///
1055 /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1056 /// and returns the new [`Result`].
1057 ///
1058 /// # Examples
1059 ///
1060 /// ```
1061 /// let mut s = "HELLO".to_string();
1062 /// let mut x: Result<String, u32> = Ok("hello".to_string());
1063 /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1064 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1065 ///
1066 /// let mut i = 42;
1067 /// let mut x: Result<String, u32> = Err(42);
1068 /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1069 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1070 /// ```
1071 #[inline]
1072 #[stable(feature = "inner_deref", since = "1.47.0")]
1073 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1074 pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1075 where
1076 T: [const] DerefMut,
1077 {
1078 self.as_mut().map(DerefMut::deref_mut)
1079 }
1080
1081 /////////////////////////////////////////////////////////////////////////
1082 // Iterator constructors
1083 /////////////////////////////////////////////////////////////////////////
1084
1085 /// Returns an iterator over the possibly contained value.
1086 ///
1087 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1088 ///
1089 /// # Examples
1090 ///
1091 /// ```
1092 /// let x: Result<u32, &str> = Ok(7);
1093 /// assert_eq!(x.iter().next(), Some(&7));
1094 ///
1095 /// let x: Result<u32, &str> = Err("nothing!");
1096 /// assert_eq!(x.iter().next(), None);
1097 /// ```
1098 #[inline]
1099 #[stable(feature = "rust1", since = "1.0.0")]
1100 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1101 pub const fn iter(&self) -> Iter<'_, T> {
1102 Iter { inner: self.as_ref().ok() }
1103 }
1104
1105 /// Returns a mutable iterator over the possibly contained value.
1106 ///
1107 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1108 ///
1109 /// # Examples
1110 ///
1111 /// ```
1112 /// let mut x: Result<u32, &str> = Ok(7);
1113 /// match x.iter_mut().next() {
1114 /// Some(v) => *v = 40,
1115 /// None => {},
1116 /// }
1117 /// assert_eq!(x, Ok(40));
1118 ///
1119 /// let mut x: Result<u32, &str> = Err("nothing!");
1120 /// assert_eq!(x.iter_mut().next(), None);
1121 /// ```
1122 #[inline]
1123 #[stable(feature = "rust1", since = "1.0.0")]
1124 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1125 pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1126 IterMut { inner: self.as_mut().ok() }
1127 }
1128
1129 /////////////////////////////////////////////////////////////////////////
1130 // Extract a value
1131 /////////////////////////////////////////////////////////////////////////
1132
1133 /// Returns the contained [`Ok`] value, consuming the `self` value.
1134 ///
1135 /// Because this function may panic, its use is generally discouraged.
1136 /// Instead, prefer to use pattern matching and handle the [`Err`]
1137 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1138 /// [`unwrap_or_default`].
1139 ///
1140 /// [`unwrap_or`]: Result::unwrap_or
1141 /// [`unwrap_or_else`]: Result::unwrap_or_else
1142 /// [`unwrap_or_default`]: Result::unwrap_or_default
1143 ///
1144 /// # Panics
1145 ///
1146 /// Panics if the value is an [`Err`], with a panic message including the
1147 /// passed message, and the content of the [`Err`].
1148 ///
1149 ///
1150 /// # Examples
1151 ///
1152 /// ```should_panic
1153 /// let x: Result<u32, &str> = Err("emergency failure");
1154 /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1155 /// ```
1156 ///
1157 /// # Recommended Message Style
1158 ///
1159 /// We recommend that `expect` messages are used to describe the reason you
1160 /// _expect_ the `Result` should be `Ok`.
1161 ///
1162 /// ```should_panic
1163 /// let path = std::env::var("IMPORTANT_PATH")
1164 /// .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1165 /// ```
1166 ///
1167 /// **Hint**: If you're having trouble remembering how to phrase expect
1168 /// error messages remember to focus on the word "should" as in "env
1169 /// variable should be set by blah" or "the given binary should be available
1170 /// and executable by the current user".
1171 ///
1172 /// For more detail on expect message styles and the reasoning behind our recommendation please
1173 /// refer to the section on ["Common Message
1174 /// Styles"](../../std/error/index.html#common-message-styles) in the
1175 /// [`std::error`](../../std/error/index.html) module docs.
1176 #[inline]
1177 #[track_caller]
1178 #[stable(feature = "result_expect", since = "1.4.0")]
1179 pub fn expect(self, msg: &str) -> T
1180 where
1181 E: fmt::Debug,
1182 {
1183 match self {
1184 Ok(t) => t,
1185 Err(e) => unwrap_failed(msg, &e),
1186 }
1187 }
1188
1189 /// Returns the contained [`Ok`] value, consuming the `self` value.
1190 ///
1191 /// Because this function may panic, its use is generally discouraged.
1192 /// Panics are meant for unrecoverable errors, and
1193 /// [may abort the entire program][panic-abort].
1194 ///
1195 /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1196 /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1197 /// [`unwrap_or_else`], or [`unwrap_or_default`].
1198 ///
1199 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1200 /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1201 /// [`unwrap_or`]: Result::unwrap_or
1202 /// [`unwrap_or_else`]: Result::unwrap_or_else
1203 /// [`unwrap_or_default`]: Result::unwrap_or_default
1204 ///
1205 /// # Panics
1206 ///
1207 /// Panics if the value is an [`Err`], with a panic message provided by the
1208 /// [`Err`]'s value.
1209 ///
1210 ///
1211 /// # Examples
1212 ///
1213 /// Basic usage:
1214 ///
1215 /// ```
1216 /// let x: Result<u32, &str> = Ok(2);
1217 /// assert_eq!(x.unwrap(), 2);
1218 /// ```
1219 ///
1220 /// ```should_panic
1221 /// let x: Result<u32, &str> = Err("emergency failure");
1222 /// x.unwrap(); // panics with `emergency failure`
1223 /// ```
1224 #[inline(always)]
1225 #[track_caller]
1226 #[stable(feature = "rust1", since = "1.0.0")]
1227 pub fn unwrap(self) -> T
1228 where
1229 E: fmt::Debug,
1230 {
1231 match self {
1232 Ok(t) => t,
1233 Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1234 }
1235 }
1236
1237 /// Returns the contained [`Ok`] value or a default
1238 ///
1239 /// Consumes the `self` argument then, if [`Ok`], returns the contained
1240 /// value, otherwise if [`Err`], returns the default value for that
1241 /// type.
1242 ///
1243 /// # Examples
1244 ///
1245 /// Converts a string to an integer, turning poorly-formed strings
1246 /// into 0 (the default value for integers). [`parse`] converts
1247 /// a string to any other type that implements [`FromStr`], returning an
1248 /// [`Err`] on error.
1249 ///
1250 /// ```
1251 /// let good_year_from_input = "1909";
1252 /// let bad_year_from_input = "190blarg";
1253 /// let good_year = good_year_from_input.parse().unwrap_or_default();
1254 /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1255 ///
1256 /// assert_eq!(1909, good_year);
1257 /// assert_eq!(0, bad_year);
1258 /// ```
1259 ///
1260 /// [`parse`]: str::parse
1261 /// [`FromStr`]: crate::str::FromStr
1262 #[inline]
1263 #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1264 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1265 pub const fn unwrap_or_default(self) -> T
1266 where
1267 T: [const] Default + [const] Destruct,
1268 E: [const] Destruct,
1269 {
1270 match self {
1271 Ok(x) => x,
1272 Err(_) => Default::default(),
1273 }
1274 }
1275
1276 /// Returns the contained [`Err`] value, consuming the `self` value.
1277 ///
1278 /// # Panics
1279 ///
1280 /// Panics if the value is an [`Ok`], with a panic message including the
1281 /// passed message, and the content of the [`Ok`].
1282 ///
1283 ///
1284 /// # Examples
1285 ///
1286 /// ```should_panic
1287 /// let x: Result<u32, &str> = Ok(10);
1288 /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1289 /// ```
1290 #[inline]
1291 #[track_caller]
1292 #[stable(feature = "result_expect_err", since = "1.17.0")]
1293 pub fn expect_err(self, msg: &str) -> E
1294 where
1295 T: fmt::Debug,
1296 {
1297 match self {
1298 Ok(t) => unwrap_failed(msg, &t),
1299 Err(e) => e,
1300 }
1301 }
1302
1303 /// Returns the contained [`Err`] value, consuming the `self` value.
1304 ///
1305 /// # Panics
1306 ///
1307 /// Panics if the value is an [`Ok`], with a custom panic message provided
1308 /// by the [`Ok`]'s value.
1309 ///
1310 /// # Examples
1311 ///
1312 /// ```should_panic
1313 /// let x: Result<u32, &str> = Ok(2);
1314 /// x.unwrap_err(); // panics with `2`
1315 /// ```
1316 ///
1317 /// ```
1318 /// let x: Result<u32, &str> = Err("emergency failure");
1319 /// assert_eq!(x.unwrap_err(), "emergency failure");
1320 /// ```
1321 #[inline]
1322 #[track_caller]
1323 #[stable(feature = "rust1", since = "1.0.0")]
1324 pub fn unwrap_err(self) -> E
1325 where
1326 T: fmt::Debug,
1327 {
1328 match self {
1329 Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1330 Err(e) => e,
1331 }
1332 }
1333
1334 /// Returns the contained [`Ok`] value, but never panics.
1335 ///
1336 /// Unlike [`unwrap`], this method is known to never panic on the
1337 /// result types it is implemented for. Therefore, it can be used
1338 /// instead of `unwrap` as a maintainability safeguard that will fail
1339 /// to compile if the error type of the `Result` is later changed
1340 /// to an error that can actually occur.
1341 ///
1342 /// [`unwrap`]: Result::unwrap
1343 ///
1344 /// # Examples
1345 ///
1346 /// ```
1347 /// # #![feature(never_type)]
1348 /// # #![feature(unwrap_infallible)]
1349 ///
1350 /// fn only_good_news() -> Result<String, !> {
1351 /// Ok("this is fine".into())
1352 /// }
1353 ///
1354 /// let s: String = only_good_news().into_ok();
1355 /// println!("{s}");
1356 /// ```
1357 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1358 #[inline]
1359 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1360 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1361 pub const fn into_ok(self) -> T
1362 where
1363 E: [const] Into<!>,
1364 {
1365 match self {
1366 Ok(x) => x,
1367 Err(e) => e.into(),
1368 }
1369 }
1370
1371 /// Returns the contained [`Err`] value, but never panics.
1372 ///
1373 /// Unlike [`unwrap_err`], this method is known to never panic on the
1374 /// result types it is implemented for. Therefore, it can be used
1375 /// instead of `unwrap_err` as a maintainability safeguard that will fail
1376 /// to compile if the ok type of the `Result` is later changed
1377 /// to a type that can actually occur.
1378 ///
1379 /// [`unwrap_err`]: Result::unwrap_err
1380 ///
1381 /// # Examples
1382 ///
1383 /// ```
1384 /// # #![feature(never_type)]
1385 /// # #![feature(unwrap_infallible)]
1386 ///
1387 /// fn only_bad_news() -> Result<!, String> {
1388 /// Err("Oops, it failed".into())
1389 /// }
1390 ///
1391 /// let error: String = only_bad_news().into_err();
1392 /// println!("{error}");
1393 /// ```
1394 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1395 #[inline]
1396 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1397 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1398 pub const fn into_err(self) -> E
1399 where
1400 T: [const] Into<!>,
1401 {
1402 match self {
1403 Ok(x) => x.into(),
1404 Err(e) => e,
1405 }
1406 }
1407
1408 ////////////////////////////////////////////////////////////////////////
1409 // Boolean operations on the values, eager and lazy
1410 /////////////////////////////////////////////////////////////////////////
1411
1412 /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1413 ///
1414 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1415 /// result of a function call, it is recommended to use [`and_then`], which is
1416 /// lazily evaluated.
1417 ///
1418 /// [`and_then`]: Result::and_then
1419 ///
1420 /// # Examples
1421 ///
1422 /// ```
1423 /// let x: Result<u32, &str> = Ok(2);
1424 /// let y: Result<&str, &str> = Err("late error");
1425 /// assert_eq!(x.and(y), Err("late error"));
1426 ///
1427 /// let x: Result<u32, &str> = Err("early error");
1428 /// let y: Result<&str, &str> = Ok("foo");
1429 /// assert_eq!(x.and(y), Err("early error"));
1430 ///
1431 /// let x: Result<u32, &str> = Err("not a 2");
1432 /// let y: Result<&str, &str> = Err("late error");
1433 /// assert_eq!(x.and(y), Err("not a 2"));
1434 ///
1435 /// let x: Result<u32, &str> = Ok(2);
1436 /// let y: Result<&str, &str> = Ok("different result type");
1437 /// assert_eq!(x.and(y), Ok("different result type"));
1438 /// ```
1439 #[inline]
1440 #[stable(feature = "rust1", since = "1.0.0")]
1441 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1442 pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1443 where
1444 T: [const] Destruct,
1445 E: [const] Destruct,
1446 U: [const] Destruct,
1447 {
1448 match self {
1449 Ok(_) => res,
1450 Err(e) => Err(e),
1451 }
1452 }
1453
1454 /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1455 ///
1456 ///
1457 /// This function can be used for control flow based on `Result` values.
1458 ///
1459 /// # Examples
1460 ///
1461 /// ```
1462 /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1463 /// x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1464 /// }
1465 ///
1466 /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1467 /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1468 /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1469 /// ```
1470 ///
1471 /// Often used to chain fallible operations that may return [`Err`].
1472 ///
1473 /// ```
1474 /// use std::{io::ErrorKind, path::Path};
1475 ///
1476 /// // Note: on Windows "/" maps to "C:\"
1477 /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1478 /// assert!(root_modified_time.is_ok());
1479 ///
1480 /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1481 /// assert!(should_fail.is_err());
1482 /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1483 /// ```
1484 #[inline]
1485 #[stable(feature = "rust1", since = "1.0.0")]
1486 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1487 #[rustc_confusables("flat_map", "flatmap")]
1488 pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1489 where
1490 F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1491 {
1492 match self {
1493 Ok(t) => op(t),
1494 Err(e) => Err(e),
1495 }
1496 }
1497
1498 /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1499 ///
1500 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1501 /// result of a function call, it is recommended to use [`or_else`], which is
1502 /// lazily evaluated.
1503 ///
1504 /// [`or_else`]: Result::or_else
1505 ///
1506 /// # Examples
1507 ///
1508 /// ```
1509 /// let x: Result<u32, &str> = Ok(2);
1510 /// let y: Result<u32, &str> = Err("late error");
1511 /// assert_eq!(x.or(y), Ok(2));
1512 ///
1513 /// let x: Result<u32, &str> = Err("early error");
1514 /// let y: Result<u32, &str> = Ok(2);
1515 /// assert_eq!(x.or(y), Ok(2));
1516 ///
1517 /// let x: Result<u32, &str> = Err("not a 2");
1518 /// let y: Result<u32, &str> = Err("late error");
1519 /// assert_eq!(x.or(y), Err("late error"));
1520 ///
1521 /// let x: Result<u32, &str> = Ok(2);
1522 /// let y: Result<u32, &str> = Ok(100);
1523 /// assert_eq!(x.or(y), Ok(2));
1524 /// ```
1525 #[inline]
1526 #[stable(feature = "rust1", since = "1.0.0")]
1527 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1528 pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1529 where
1530 T: [const] Destruct,
1531 E: [const] Destruct,
1532 F: [const] Destruct,
1533 {
1534 match self {
1535 Ok(v) => Ok(v),
1536 Err(_) => res,
1537 }
1538 }
1539
1540 /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1541 ///
1542 /// This function can be used for control flow based on result values.
1543 ///
1544 ///
1545 /// # Examples
1546 ///
1547 /// ```
1548 /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1549 /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1550 ///
1551 /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1552 /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1553 /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1554 /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1555 /// ```
1556 #[inline]
1557 #[stable(feature = "rust1", since = "1.0.0")]
1558 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1559 pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1560 where
1561 O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1562 {
1563 match self {
1564 Ok(t) => Ok(t),
1565 Err(e) => op(e),
1566 }
1567 }
1568
1569 /// Returns the contained [`Ok`] value or a provided default.
1570 ///
1571 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1572 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1573 /// which is lazily evaluated.
1574 ///
1575 /// [`unwrap_or_else`]: Result::unwrap_or_else
1576 ///
1577 /// # Examples
1578 ///
1579 /// ```
1580 /// let default = 2;
1581 /// let x: Result<u32, &str> = Ok(9);
1582 /// assert_eq!(x.unwrap_or(default), 9);
1583 ///
1584 /// let x: Result<u32, &str> = Err("error");
1585 /// assert_eq!(x.unwrap_or(default), default);
1586 /// ```
1587 #[inline]
1588 #[stable(feature = "rust1", since = "1.0.0")]
1589 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1590 pub const fn unwrap_or(self, default: T) -> T
1591 where
1592 T: [const] Destruct,
1593 E: [const] Destruct,
1594 {
1595 match self {
1596 Ok(t) => t,
1597 Err(_) => default,
1598 }
1599 }
1600
1601 /// Returns the contained [`Ok`] value or computes it from a closure.
1602 ///
1603 ///
1604 /// # Examples
1605 ///
1606 /// ```
1607 /// fn count(x: &str) -> usize { x.len() }
1608 ///
1609 /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1610 /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1611 /// ```
1612 #[inline]
1613 #[track_caller]
1614 #[stable(feature = "rust1", since = "1.0.0")]
1615 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1616 pub const fn unwrap_or_else<F>(self, op: F) -> T
1617 where
1618 F: [const] FnOnce(E) -> T + [const] Destruct,
1619 {
1620 match self {
1621 Ok(t) => t,
1622 Err(e) => op(e),
1623 }
1624 }
1625
1626 /// Returns the contained [`Ok`] value, consuming the `self` value,
1627 /// without checking that the value is not an [`Err`].
1628 ///
1629 /// # Safety
1630 ///
1631 /// Calling this method on an [`Err`] is *[undefined behavior]*.
1632 ///
1633 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1634 ///
1635 /// # Examples
1636 ///
1637 /// ```
1638 /// let x: Result<u32, &str> = Ok(2);
1639 /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1640 /// ```
1641 ///
1642 /// ```no_run
1643 /// let x: Result<u32, &str> = Err("emergency failure");
1644 /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1645 /// ```
1646 #[inline]
1647 #[track_caller]
1648 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1649 pub unsafe fn unwrap_unchecked(self) -> T {
1650 match self {
1651 Ok(t) => t,
1652 // SAFETY: the safety contract must be upheld by the caller.
1653 Err(_) => unsafe { hint::unreachable_unchecked() },
1654 }
1655 }
1656
1657 /// Returns the contained [`Err`] value, consuming the `self` value,
1658 /// without checking that the value is not an [`Ok`].
1659 ///
1660 /// # Safety
1661 ///
1662 /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1663 ///
1664 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1665 ///
1666 /// # Examples
1667 ///
1668 /// ```no_run
1669 /// let x: Result<u32, &str> = Ok(2);
1670 /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1671 /// ```
1672 ///
1673 /// ```
1674 /// let x: Result<u32, &str> = Err("emergency failure");
1675 /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1676 /// ```
1677 #[inline]
1678 #[track_caller]
1679 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1680 pub unsafe fn unwrap_err_unchecked(self) -> E {
1681 match self {
1682 // SAFETY: the safety contract must be upheld by the caller.
1683 Ok(_) => unsafe { hint::unreachable_unchecked() },
1684 Err(e) => e,
1685 }
1686 }
1687}
1688
1689impl<T, E> Result<&T, E> {
1690 /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1691 /// `Ok` part.
1692 ///
1693 /// # Examples
1694 ///
1695 /// ```
1696 /// let val = 12;
1697 /// let x: Result<&i32, i32> = Ok(&val);
1698 /// assert_eq!(x, Ok(&12));
1699 /// let copied = x.copied();
1700 /// assert_eq!(copied, Ok(12));
1701 /// ```
1702 #[inline]
1703 #[stable(feature = "result_copied", since = "1.59.0")]
1704 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1705 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1706 pub const fn copied(self) -> Result<T, E>
1707 where
1708 T: Copy,
1709 {
1710 // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1711 // ready yet, should be reverted when possible to avoid code repetition
1712 match self {
1713 Ok(&v) => Ok(v),
1714 Err(e) => Err(e),
1715 }
1716 }
1717
1718 /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1719 /// `Ok` part.
1720 ///
1721 /// # Examples
1722 ///
1723 /// ```
1724 /// let val = 12;
1725 /// let x: Result<&i32, i32> = Ok(&val);
1726 /// assert_eq!(x, Ok(&12));
1727 /// let cloned = x.cloned();
1728 /// assert_eq!(cloned, Ok(12));
1729 /// ```
1730 #[inline]
1731 #[stable(feature = "result_cloned", since = "1.59.0")]
1732 pub fn cloned(self) -> Result<T, E>
1733 where
1734 T: Clone,
1735 {
1736 self.map(|t| t.clone())
1737 }
1738}
1739
1740impl<T, E> Result<&mut T, E> {
1741 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1742 /// `Ok` part.
1743 ///
1744 /// # Examples
1745 ///
1746 /// ```
1747 /// let mut val = 12;
1748 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1749 /// assert_eq!(x, Ok(&mut 12));
1750 /// let copied = x.copied();
1751 /// assert_eq!(copied, Ok(12));
1752 /// ```
1753 #[inline]
1754 #[stable(feature = "result_copied", since = "1.59.0")]
1755 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1756 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1757 pub const fn copied(self) -> Result<T, E>
1758 where
1759 T: Copy,
1760 {
1761 // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1762 // ready yet, should be reverted when possible to avoid code repetition
1763 match self {
1764 Ok(&mut v) => Ok(v),
1765 Err(e) => Err(e),
1766 }
1767 }
1768
1769 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1770 /// `Ok` part.
1771 ///
1772 /// # Examples
1773 ///
1774 /// ```
1775 /// let mut val = 12;
1776 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1777 /// assert_eq!(x, Ok(&mut 12));
1778 /// let cloned = x.cloned();
1779 /// assert_eq!(cloned, Ok(12));
1780 /// ```
1781 #[inline]
1782 #[stable(feature = "result_cloned", since = "1.59.0")]
1783 pub fn cloned(self) -> Result<T, E>
1784 where
1785 T: Clone,
1786 {
1787 self.map(|t| t.clone())
1788 }
1789}
1790
1791impl<T, E> Result<Option<T>, E> {
1792 /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1793 ///
1794 /// `Ok(None)` will be mapped to `None`.
1795 /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1796 ///
1797 /// # Examples
1798 ///
1799 /// ```
1800 /// #[derive(Debug, Eq, PartialEq)]
1801 /// struct SomeErr;
1802 ///
1803 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1804 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1805 /// assert_eq!(x.transpose(), y);
1806 /// ```
1807 #[inline]
1808 #[stable(feature = "transpose_result", since = "1.33.0")]
1809 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1810 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1811 pub const fn transpose(self) -> Option<Result<T, E>> {
1812 match self {
1813 Ok(Some(x)) => Some(Ok(x)),
1814 Ok(None) => None,
1815 Err(e) => Some(Err(e)),
1816 }
1817 }
1818}
1819
1820impl<T, E> Result<Result<T, E>, E> {
1821 /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1822 ///
1823 /// # Examples
1824 ///
1825 /// ```
1826 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1827 /// assert_eq!(Ok("hello"), x.flatten());
1828 ///
1829 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1830 /// assert_eq!(Err(6), x.flatten());
1831 ///
1832 /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1833 /// assert_eq!(Err(6), x.flatten());
1834 /// ```
1835 ///
1836 /// Flattening only removes one level of nesting at a time:
1837 ///
1838 /// ```
1839 /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1840 /// assert_eq!(Ok(Ok("hello")), x.flatten());
1841 /// assert_eq!(Ok("hello"), x.flatten().flatten());
1842 /// ```
1843 #[inline]
1844 #[stable(feature = "result_flattening", since = "1.89.0")]
1845 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1846 #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1847 pub const fn flatten(self) -> Result<T, E> {
1848 // FIXME(const-hack): could be written with `and_then`
1849 match self {
1850 Ok(inner) => inner,
1851 Err(e) => Err(e),
1852 }
1853 }
1854}
1855
1856// This is a separate function to reduce the code size of the methods
1857#[cfg(not(panic = "immediate-abort"))]
1858#[inline(never)]
1859#[cold]
1860#[track_caller]
1861fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1862 panic!("{msg}: {error:?}");
1863}
1864
1865// This is a separate function to avoid constructing a `dyn Debug`
1866// that gets immediately thrown away, since vtables don't get cleaned up
1867// by dead code elimination if a trait object is constructed even if it goes
1868// unused
1869#[cfg(panic = "immediate-abort")]
1870#[inline]
1871#[cold]
1872#[track_caller]
1873const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1874 panic!()
1875}
1876
1877/////////////////////////////////////////////////////////////////////////////
1878// Trait implementations
1879/////////////////////////////////////////////////////////////////////////////
1880
1881#[stable(feature = "rust1", since = "1.0.0")]
1882impl<T, E> Clone for Result<T, E>
1883where
1884 T: Clone,
1885 E: Clone,
1886{
1887 #[inline]
1888 fn clone(&self) -> Self {
1889 match self {
1890 Ok(x) => Ok(x.clone()),
1891 Err(x) => Err(x.clone()),
1892 }
1893 }
1894
1895 #[inline]
1896 fn clone_from(&mut self, source: &Self) {
1897 match (self, source) {
1898 (Ok(to), Ok(from)) => to.clone_from(from),
1899 (Err(to), Err(from)) => to.clone_from(from),
1900 (to, from) => *to = from.clone(),
1901 }
1902 }
1903}
1904
1905#[unstable(feature = "ergonomic_clones", issue = "132290")]
1906impl<T, E> crate::clone::UseCloned for Result<T, E>
1907where
1908 T: crate::clone::UseCloned,
1909 E: crate::clone::UseCloned,
1910{
1911}
1912
1913#[stable(feature = "rust1", since = "1.0.0")]
1914impl<T, E> IntoIterator for Result<T, E> {
1915 type Item = T;
1916 type IntoIter = IntoIter<T>;
1917
1918 /// Returns a consuming iterator over the possibly contained value.
1919 ///
1920 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1921 ///
1922 /// # Examples
1923 ///
1924 /// ```
1925 /// let x: Result<u32, &str> = Ok(5);
1926 /// let v: Vec<u32> = x.into_iter().collect();
1927 /// assert_eq!(v, [5]);
1928 ///
1929 /// let x: Result<u32, &str> = Err("nothing!");
1930 /// let v: Vec<u32> = x.into_iter().collect();
1931 /// assert_eq!(v, []);
1932 /// ```
1933 #[inline]
1934 fn into_iter(self) -> IntoIter<T> {
1935 IntoIter { inner: self.ok() }
1936 }
1937}
1938
1939#[stable(since = "1.4.0", feature = "result_iter")]
1940impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1941 type Item = &'a T;
1942 type IntoIter = Iter<'a, T>;
1943
1944 fn into_iter(self) -> Iter<'a, T> {
1945 self.iter()
1946 }
1947}
1948
1949#[stable(since = "1.4.0", feature = "result_iter")]
1950impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1951 type Item = &'a mut T;
1952 type IntoIter = IterMut<'a, T>;
1953
1954 fn into_iter(self) -> IterMut<'a, T> {
1955 self.iter_mut()
1956 }
1957}
1958
1959/////////////////////////////////////////////////////////////////////////////
1960// The Result Iterators
1961/////////////////////////////////////////////////////////////////////////////
1962
1963/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1964///
1965/// The iterator yields one value if the result is [`Ok`], otherwise none.
1966///
1967/// Created by [`Result::iter`].
1968#[derive(Debug)]
1969#[stable(feature = "rust1", since = "1.0.0")]
1970pub struct Iter<'a, T: 'a> {
1971 inner: Option<&'a T>,
1972}
1973
1974#[stable(feature = "rust1", since = "1.0.0")]
1975impl<'a, T> Iterator for Iter<'a, T> {
1976 type Item = &'a T;
1977
1978 #[inline]
1979 fn next(&mut self) -> Option<&'a T> {
1980 self.inner.take()
1981 }
1982 #[inline]
1983 fn size_hint(&self) -> (usize, Option<usize>) {
1984 let n = if self.inner.is_some() { 1 } else { 0 };
1985 (n, Some(n))
1986 }
1987}
1988
1989#[stable(feature = "rust1", since = "1.0.0")]
1990impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1991 #[inline]
1992 fn next_back(&mut self) -> Option<&'a T> {
1993 self.inner.take()
1994 }
1995}
1996
1997#[stable(feature = "rust1", since = "1.0.0")]
1998impl<T> ExactSizeIterator for Iter<'_, T> {}
1999
2000#[stable(feature = "fused", since = "1.26.0")]
2001impl<T> FusedIterator for Iter<'_, T> {}
2002
2003#[unstable(feature = "trusted_len", issue = "37572")]
2004unsafe impl<A> TrustedLen for Iter<'_, A> {}
2005
2006#[stable(feature = "rust1", since = "1.0.0")]
2007impl<T> Clone for Iter<'_, T> {
2008 #[inline]
2009 fn clone(&self) -> Self {
2010 Iter { inner: self.inner }
2011 }
2012}
2013
2014/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2015///
2016/// Created by [`Result::iter_mut`].
2017#[derive(Debug)]
2018#[stable(feature = "rust1", since = "1.0.0")]
2019pub struct IterMut<'a, T: 'a> {
2020 inner: Option<&'a mut T>,
2021}
2022
2023#[stable(feature = "rust1", since = "1.0.0")]
2024impl<'a, T> Iterator for IterMut<'a, T> {
2025 type Item = &'a mut T;
2026
2027 #[inline]
2028 fn next(&mut self) -> Option<&'a mut T> {
2029 self.inner.take()
2030 }
2031 #[inline]
2032 fn size_hint(&self) -> (usize, Option<usize>) {
2033 let n = if self.inner.is_some() { 1 } else { 0 };
2034 (n, Some(n))
2035 }
2036}
2037
2038#[stable(feature = "rust1", since = "1.0.0")]
2039impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2040 #[inline]
2041 fn next_back(&mut self) -> Option<&'a mut T> {
2042 self.inner.take()
2043 }
2044}
2045
2046#[stable(feature = "rust1", since = "1.0.0")]
2047impl<T> ExactSizeIterator for IterMut<'_, T> {}
2048
2049#[stable(feature = "fused", since = "1.26.0")]
2050impl<T> FusedIterator for IterMut<'_, T> {}
2051
2052#[unstable(feature = "trusted_len", issue = "37572")]
2053unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2054
2055/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2056///
2057/// The iterator yields one value if the result is [`Ok`], otherwise none.
2058///
2059/// This struct is created by the [`into_iter`] method on
2060/// [`Result`] (provided by the [`IntoIterator`] trait).
2061///
2062/// [`into_iter`]: IntoIterator::into_iter
2063#[derive(Clone, Debug)]
2064#[stable(feature = "rust1", since = "1.0.0")]
2065pub struct IntoIter<T> {
2066 inner: Option<T>,
2067}
2068
2069#[stable(feature = "rust1", since = "1.0.0")]
2070impl<T> Iterator for IntoIter<T> {
2071 type Item = T;
2072
2073 #[inline]
2074 fn next(&mut self) -> Option<T> {
2075 self.inner.take()
2076 }
2077 #[inline]
2078 fn size_hint(&self) -> (usize, Option<usize>) {
2079 let n = if self.inner.is_some() { 1 } else { 0 };
2080 (n, Some(n))
2081 }
2082}
2083
2084#[stable(feature = "rust1", since = "1.0.0")]
2085impl<T> DoubleEndedIterator for IntoIter<T> {
2086 #[inline]
2087 fn next_back(&mut self) -> Option<T> {
2088 self.inner.take()
2089 }
2090}
2091
2092#[stable(feature = "rust1", since = "1.0.0")]
2093impl<T> ExactSizeIterator for IntoIter<T> {}
2094
2095#[stable(feature = "fused", since = "1.26.0")]
2096impl<T> FusedIterator for IntoIter<T> {}
2097
2098#[unstable(feature = "trusted_len", issue = "37572")]
2099unsafe impl<A> TrustedLen for IntoIter<A> {}
2100
2101/////////////////////////////////////////////////////////////////////////////
2102// FromIterator
2103/////////////////////////////////////////////////////////////////////////////
2104
2105#[stable(feature = "rust1", since = "1.0.0")]
2106impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2107 /// Takes each element in the `Iterator`: if it is an `Err`, no further
2108 /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2109 /// container with the values of each `Result` is returned.
2110 ///
2111 /// Here is an example which increments every integer in a vector,
2112 /// checking for overflow:
2113 ///
2114 /// ```
2115 /// let v = vec![1, 2];
2116 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2117 /// x.checked_add(1).ok_or("Overflow!")
2118 /// ).collect();
2119 /// assert_eq!(res, Ok(vec![2, 3]));
2120 /// ```
2121 ///
2122 /// Here is another example that tries to subtract one from another list
2123 /// of integers, this time checking for underflow:
2124 ///
2125 /// ```
2126 /// let v = vec![1, 2, 0];
2127 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2128 /// x.checked_sub(1).ok_or("Underflow!")
2129 /// ).collect();
2130 /// assert_eq!(res, Err("Underflow!"));
2131 /// ```
2132 ///
2133 /// Here is a variation on the previous example, showing that no
2134 /// further elements are taken from `iter` after the first `Err`.
2135 ///
2136 /// ```
2137 /// let v = vec![3, 2, 1, 10];
2138 /// let mut shared = 0;
2139 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2140 /// shared += x;
2141 /// x.checked_sub(2).ok_or("Underflow!")
2142 /// }).collect();
2143 /// assert_eq!(res, Err("Underflow!"));
2144 /// assert_eq!(shared, 6);
2145 /// ```
2146 ///
2147 /// Since the third element caused an underflow, no further elements were taken,
2148 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2149 #[inline]
2150 fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2151 iter::try_process(iter.into_iter(), |i| i.collect())
2152 }
2153}
2154
2155#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2156#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2157impl<T, E> const ops::Try for Result<T, E> {
2158 type Output = T;
2159 type Residual = Result<convert::Infallible, E>;
2160
2161 #[inline]
2162 fn from_output(output: Self::Output) -> Self {
2163 Ok(output)
2164 }
2165
2166 #[inline]
2167 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2168 match self {
2169 Ok(v) => ControlFlow::Continue(v),
2170 Err(e) => ControlFlow::Break(Err(e)),
2171 }
2172 }
2173}
2174
2175#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2176#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2177impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2178 for Result<T, F>
2179{
2180 #[inline]
2181 #[track_caller]
2182 fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2183 match residual {
2184 Err(e) => Err(From::from(e)),
2185 }
2186 }
2187}
2188#[diagnostic::do_not_recommend]
2189#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2190#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2191impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2192 #[inline]
2193 fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2194 Err(From::from(e))
2195 }
2196}
2197
2198#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2199#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2200impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2201 type TryType = Result<T, E>;
2202}